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PREFACE

In 1972, 1 taught an informal course on numerical solution of heat transfer
and fluid flow to a small group of research workers at Imperial College,
London. Later, the material was expanded and formalized for presentation in
graduate courses at the University of Waterloo in Canada (in 1974), at the
Norwegian Institute of Technology, Trondheim (in 1977), and at the Uni-
versity of Minnesota (in 1975, 1977, and 1979). During the last two years, |
have also presented the same material in a short-course format at ASME
national meetings. The enthusiastic response accorded to these courses has
encouraged me to write this book, which can be used as a text for a graduate
course as well as a reference book for computational work in heat transfer
and fluid flow.

Although there is an extensive literature on computational thermotluid
analysis, the newcomer to the field has insufficient help available. The
graduate student, the rescarcher, and the practicing engineer must struggle
through journal articles or be content with elementary presentation in books
on numerical analysis. Often, it is the subtle details that determine the success
or failure of a computational activity; yet, the practices that are learned
through experience by successful computing groups rarely appear in print. A
consequence is that many workers either give up the computational approach
after many months of frustrating pursuit or struggle through to the end with
inefficient computer programs.

Being aware of this situation, 1 have tried to present in this book u
self-contained, simple, and practical treatment of the subject. The book is
introductory in style and is intended for the potental practitioner of
numerical heat transfer and fluid flow; it is not designed for the experts in the
subject area. In developing the numerical techniques, 1 emphasize physicul
significance rafher_than mathematical manipulation. Indeed, most of the

xi




Xii PREFACE

mathematics used here is limited to simple algebra. The result is that, whereas
the book enables the reader to travel all the way to the present-day frontier
of the subject, the journey takes place through delightfully simple and
illuminating physical concepts and considerations, In teaching the material
with such an approach, [ have often been pleasantly surprised by the fact that
the students not only learn about numerical methods but also develop a better
appreciation of the relevant physical processes.

As a user of numerical techniques, 1 have come to prefer a certain family
of methods and a certain set of practices. This repertoire has been collected
partly from the literature and subsequently has been enriched, adapted, and
modified. Thus, since a considerable amount of sorting and sifting of available
methods has already taken place (albeit with my own bias), I have limited the
scope of this book to the set of methods that 1 wish to recommend. I do not
attempt to present a comparative study of all available methods; other
methods are only occasionally mentioned when they serve to illuminate a
specific feature under consideration. In this sense, this book represents my
personal view of the subject. Although 1 am, of course, enthusiastic about this
viewpoint, I recognize that my choices have been influenced by my back-
around, personal preferences, and technical objectives. Others operating in
difterent environments may well come to prefer alternative approaches.

To itlustrate the application of the material, problems are given at the end
of some chapters. Most of the problems can be solved by using a pocket
calculator, although some of them should be programmed for a digital
computer. The problems are not meant for testing the student reader, but are
included primarily for extending and enriching the learning process. They
suggest alternative techniques and present additional material. At times, in my
attempt to give a hint for the problem solution, I almost disclose the full
answer. In such cases, arriving at the correct answer is not the main objective;
the reader should focus on the message that the problem is designed to
convey.

This book carries the description of the numerical method to a point
where the reader could begin to write a computer program. Indeed, the reader
should be able to construct computer programs that generate the kind of
results presented in the final chapter of the book. A range of computer
programs of varying generality can be designed depending upon the nature of
the problems to be solved. Many readers might have found it helpful if a
representative computer program were included in this book. I did consider
the possibility. However, the task of providing a reasonably general computer
program, its detailed description, and several examples of its use seemed so
formidable that it would have considerably delayed the publication of this
book. For the time being, I have included a section on the preparation and
testing of a computer program (Section 7.4), where many useful procedures
and practices gathered through experience are described.

The completion of this book tulfills a desire and a dream that 1 have held

PRETACE Xiii

for a number of years. It was in 1971 that Professor D. Brian Spalding and 1
planned a book of this kind and wrote a preliminary outline for it. Further
progress, however, became difficult because of the geographical distance
between us and because of our involvement in a variety of demanding
activities. Finally, a joint book seemed impracticable, and 1 proceeded to
convert my lecture notes into this textbook. The present book has some
resemblance to the joint book that we had planned, since I have made liberal
use of Spalding’s lectures and writings. His direct involvement, however, would
have made this book much better.

In this undertaking, I owe the greatest debt to Professor Spalding. He
introduced me to the fascinating world of computational methods. The work
that we accomplished together represents the most delightful and creative
experience of my professional life. The influence of his ideas on my thinking
can be seen throughout this book. The concepts of “one-way” and “two-way”’
coordinates (and the terms themselves) are the product of his imagination. It
was he who orpanized all the relevant physical processes through a general
differential equation of a standard form. Above all, our rapid progress in
computational work has resulted from Spalding’s vision and conviction that
one day all practical situations will become amenable to computer analysis.

I wish to record my sincere thanks to Professor D. Brian Spalding for his
creative influence on my professional activities, for continued warm friend-
ship, and for his direct and indirect contributions to this book.

Professor Ephraim M. Sparrow has been my most enthusiastic supporter
in the activity of writing this book. His interest began even earlier when he
attended my graduate course on the subject. I have greatly benefited from his
questions and subsequent discussions. He spent countless hours in reading the
manuscript of this book and in suggesting changes and improvements. It is due
to his critical review that I have been able to achieve some measure of clarity
and completeness in this book. I am very grateful to him for his active
interest in this work and for his personal interest in me.

A number of other colleagues and friends have also provided constant
inspiration through their special interest in my work. In particular, I wish to
thank Professor Richard J. Goldstein for his support and encouragement and
Professor George D. Raithby for many stimulating discussions. My thanks are
also due to the many students in my graduate courses, who have contributed
significantly to this book through their questions and discussions and through
their enthusiasm and response. I am grateful to Mrs. Lucille R. Laing, who
typed the manuscript so carefully and cheerfully. I would like to thank Mr.
William Begell, President of Hemisphere Publishing Corporation, for his
personal interest in publishing this book and the staff at Hemisphere for their
competent handling of this project.

My family has been very understanding and supportive during my writing
activity; now that the writing is over, I plan to spend more time with my wife
and children.
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CHAPTER

ONE

INTRODUCTION

1.1 SCOPE OF THE BOOK

Importance of heat transfer and fluid flow. This book is concerned with heat
and mass transfer, fluid flow, chemical reaction, and other related processes
that occur in engineering equipment, in the natural environment, and in living
organisms. That these processes play a vital role can be observed in a great
variety of practical situations. Nearly all methods of power production involve
fluid flow and heat transfer as essential processes. The same processes govern
the heating and air conditioning of buildings. Major segments of the chemical
and metallurgical industries use components such as furnaces, heat exchangers,
condensers, and reactors, where thermofluid processes are at work. Aircraft
and rockets owe their functioning to fluid flow, heat transfer, and chemical
reaction. In the design of electrical machinery and electronic circuits, heat
transfer is often the limiting factor. The pollution of the natural environment
is largely caused by heat and mass transfer, and so are storms, floods, and
fires. In the face of changing weather conditions, the human body resorts to
heat and mass transfer for its temperature control. The processes of heat
transfer and fluid flow seem to pervade all aspects of our life.

Need for understanding and prediction. Since the processes under con-
sideration have such an overwhelming impact on human life, we should be
able to deal with them effectively. This ability can result from an understanding
of the nature of the processes and from methodology with which to predict
them quantitatively. Armed with this expertise, the designer of an engineering
device can ensure the desired performance—the designer is able to choose the
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optimum design from among @ number of alternative possibilities. The power
of prediction enubles us to operate existing equipment more safely and
efficiently. Predictions of the relevant processes help us in forecasting, and
even controlling, potential dungers such as floods, tides, and fires. in all these
cases, predictions offer economic benefits and contribute to human well-being.

Nuature of prediction. The prediction of behavior in a given physical
situation consists of the values of the relevant variables governing the
processes of interest. Let us consider a particular example. In a combustion
chamber of a certain description, a complete prediction should give us the
values of velocity, pressure, temperature, concentrations of the relevant
chemical species, etc., throughout the domain of interest; it should also
provide the shear stresses, heat fluxes, and mass flow rates at the confining
walls of the combustion chamber. The prediction should state how uny of
thiese quantities would change in response to proposed changes in geometry,
flow rates, fluid properties, etc.

Purpose of the book. This book is primarily aimed at developing a general
method of prediction for heat and mass transfer, fluid flow, and related
processes. As we shall shortly see, among the different methods of prediction,
the numerical solution offers great promise. In this book, we shall construct a
numerical method for predicting the processes of interest.

As far as possible, our aim will be to design a numerical method having
complete generality. We shall, therefore, refrain from accepting any final
restrictions such as two-dimensionality, boundary-layer approximations, and
constant-density flow. If any restrictions are temporarily adopted, it will be
for ease of presentation and understanding and not because of any intrinsic
limitation. We shall begin the subject at a very elementary level and, from
there, travel nearly to the frontier of the subject.

This ambitious task cannot, of course, be accomplished in a modest-sized
book without leaving out a number of important topics. Therefore, the
mathematical formulation of the equations that govern the processes of
interest will be discussed only briefly in this book. For the complete
derivation of the required equations, the reader must turn 10 standard
textbooks on the subject. The mathematical models for complex processes like
turbulence, combustion, and radiation will be assumed to be known or
available to the reader. Even in the subject of numerical solution, we shall not
survey all available methods and discuss their merits and demerits. Rather, we
shall focus attention on a particular family of methods that the author has
used, developed, or contributed to. Reference to other methods will be made
only when this serves to highlight a certain issue. While a general formulation
will be attempted, no special attention will be given to supersonic flows,
free-surfuce tlows, or two-phase flows.

An important characteristic of the numerical methods to be developed in
this book is that they are strongly bused on physical considerations, not just
on mathematical manipulations, Indeed, nothing more sophisticated than
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simple algebra and elementary calculus is used. A significant advantage of this
strategy 1is that the reader, while learning about the numerical methods,
develops a deeper understanding of, and insight into, the underlying physical
processes. This appreciation for physical significance is very helpful in
analyzing and interpreting computed results. But, even if the reader never
performs numerical computations, this study of the numerical methods will
provide—it is interesting to note—a greater feel for the physical aspects of heat
transfer and fluid flow. Further, the physical approach will equip the reader
with general criteria with which to judge other existing and future numerical
methods.

1.2 METHODS OF PREDICTION

Prediction of heat transfer and fluid-flow processes can be obtained by two

main_methods: experimental investigation and theoretical caleulation. We shall

briefly consider each and then compare the two.

1.2-1 Experimental Investigation

The most reliable information about a physical process is often given by
actual measurement. An experimental investigation involving full-scale equip-
ment can be used to predict how identical copies of the equipment would
perform under the same conditions. Such full-scale tests are, in most cases,
prohibitively expensive and often impossible. The alternative then is to
perform experiments on small-scale models. The resulting information, how-
ever, must be extrapolated to full scale, and general rules for doing this are
often unavailable. Further, the small-scale models do not always simulate all
the features of the full-scale equipment; frequently, important features such as
combustion or boiling are omitted from the model tests. This further reduces
the usefulness of the test results. Finally, it must be remembered that there are
serious difficulties of measurement in many situations, and that the measuring
instruments are not free from errors.

1.2-2 Theoretical Calculation

A theoretical prediction works out the consequences of a mathematical model,
rather than those of an actual physical model. For the physical processes of
interest here, the mathematical model mainly consists of a set of differential
equations. If the methods of classical mathematics were to be used for solving
these equations, there would be little hope of predicting many phenomena of
practical interest. A look at a classical text on heat conduction or fluid
mechanics leads to the conclusion that only a tiny fraction of the range of
practical problems can be solved in closed form. Further, these solutions often
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Figure 1.1 Grid luyout for 4 numerical solution for the temperature tield.

contain infinite series, special functions, transcendental equations for ewen-
values, etc., so that thelr numerical evaluation may present a formidable task.*

Fortunately, the development of numerical methods and the availability
of lurge digital computers hold the promise that the implications of a
mathematical model can be worked out for almost any practical problem. A
preliminary idea of the numerical approach to problem solving can be
obtuined by reference to Fig. 1.1. Suppose that we wish to obtain the
temperature field in the domain shown. It may be sufficient to know the
values of temperature at discrete points of the domain. One possible method
is to imagine a wid that fills the domain, and to seek the values of
temperature at the grid points, We then construct and solve algebraic
equations for these unknown temperatures. The simplification inherent in the
use of algebraic equations rather than differential equations is what makes
numerical methods so powerful and widely applicable

2-3 Advantages of a Theoretical Calculation

We shall now list the advantages that a theoretical calculation offers over a
corresponding experimental investigation.

*l[ is not implied hLere that exact analytical solutions are without practical value.
Indeed, us we shull sec luter, some features of numerical methods are constructed by the
use of simple analytical solutions. Further, there s no better way of checking the
aeeuruey of o numerical method than by comparison with an exact analy tical solution.,
However, there seems to be fitthe doubt that the methods of classical mathematics do not
offer w practical way of solving complex enyineering problems.

INTRODUCTION 5

Low cost. The most important advantage of a computational prediction is
its low cost. In most applications, the cost of a computer run is many orders
of magnitude lower than the cost of a corresponding experimental investiga-
tion. This factor assumes increasing importance as the physical situation to be
studied becomes larger and more complicated. Further, whereas the prices of
most items are increasing, computing costs are likely to be even lower in the
future.

Speed. A computational investigation can be performed with remarkable
speed. A designer can study the implications of hundreds of different
configurations in less than a day and choose the optimum design. On the
other hand, a corresponding experimental investigation, it is easy to imagine,
would take a very long time.

Complete information. A computer solution of a problem gives detailed
and complete information. It can provide the values of all the relevant
variables (such as velocity, pressure, temperature, concentration, turbulence
intensity) throughout the domain of interest. Unlike the situation in an
experiment, there are few inaccessible locations in a computation, and there is
no counterpart to the flow disturbance caused by the probes. Obviously, no
experimental study can be expected to measure the distributions of all
variables over the entire domain. For this reason, even when an experiment is
performed, there is great value in obtaining a companion_computer solution to
supplement the experimental inform .

Abilitv  to simulate realistic condmons In a theoretical calculation,
realistic conditions can be easily simulated. There is no need to resort to
small-scale or cold-flow models. For a computer program, there is little
difficulty in having very large or very small dimensions, in treating very low or
very high temperatures, in handling toxic or flammable substances, or in
following very fast or very slow processes.

Ability to simulate ideal conditions. A prediction method is sometimes
used to study a basic phenomenon, rather than a complex engineering
application. In the study of a phenomenon, one wants to focus attention on a
few essential parameters and eliminate all irrelevant features. Thus, many
idealizations are desirable—for example, two-dimensionality, constant density,
an adiabatic surface, or infinite reaction rate. In a computation, such
conditions can be easily and exactly set up. On the other hand, even a very
careful experiment can barely approximate the idealization.

1.2-4 Disadvantages of a Theoretical Calculation

The foregoing advantages are sufficiently impressive to stimulate enthusiasm
about computer analysis. A blind enthusiasm for any cause is, however,
undesirable. It is useful to be aware of the drawbacks and limitations.

As mentioned earlier, a computer analysis works out the implications of a
mathematical model. The experimental investigation, by contrast, observes the
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reality itsell. The validity of the mathematical model, therefore, limits the
usefulness of @ computation. In this book, we shull be concerned only with
computational methods and not with mathematical models. Yet, we must note
that the wser of the computer unalysis receives an end product that depends
on both the mathematical model and the numerical method. A perfectly
satisfactory numerical technique can produce worthless results if an inade-
quate mathematical model Is employed.

For the purpose of discussing the disadvantages of a theoretical calcula-
tion, it is, therefore, useful to divide all practical problems into two groups:

Group 4; Problems for which an adequate mathematical description can be
written. (Examples: heat conduction, laminar flows, simple turbulent
boundary layers.)

Group B: Problems for which an adequate mathematical description has not
yet been worked out. (Examples: complex turbulent flows, certain
non-Newtonian tlows, formation of nitric oxides in turbulent combustion,

some two-phase tlows.)

Of course, the group into which a given problem falls will be determined by
what we are prepared to consider as an “adequate” description.

Disudvantages for Group A. It may be stated that, for most problems of
Group A, the theoretical calculation suffers from no disadvantages. The
computer solution then represents an alternative that is highly superior to an
experimental  study. Occasionally, however, one encounters some dis-
advantages. I the prediction has a very limited objective (such as finding the
overall pressure drop for a complicated apparatus), the computation may not
be less expensive than an experiment. For difficult problems involving
complex geometry, strong nonlinearities, sensitive fluid-property variations,
ete., w numerical solution may be hard to obtain and would be excessively
expensive if ut all possible. Extremely fast and small-scale phenomena such as
turbulence, if they are to be computed in all their time-dependent detail by
solving the unsteady Navier-Stokes equations, are still beyond the practical
reach of computational methods. Finally, when the mathematical problem
occusionally admits more than one solution, it is not casy to determine
whether the computed solution corresponds to reality.

Research in computational methods is aimed at making them more
reliable, accurate, and efficient. The disadvantages mentioned here will
diminish as this research progresses.

Disadvantages for Group B. The problems of Group B share all the
disadvantages of Group A; in addition, there is the uncertainty about the
extent to which the computed results would agree with reality. In such cases,
some experimental backup is highly desirable.

Research in mathematical models causes a transfer of problems from
Group B into Group A. This rescarch consists of proposing a model, working
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out its implications by computer analysis, and comparing the results with
experimental data. Thus, computational methods play a key role in this
research. A striking example of this role can be found in the recent
development of turbulence models. The currently popular and widely used
two-equation turbulence models are primarily based on the work of
Kolmogorov (1942) and Prandil (1945). it was, however, only in the 1970s
when computers and computational methods became more powerful, that thej
turbulence models were put to practical use. ’

1.2-5 Choice of Prediction Method

This discussion about the relative merits of computer analysis and experi-
mental investigation is not aimed at recommending computation to the
exclusion of experiment. An appreciation of the strengths and weaknesses of
both approaches is essential to the proper choice of the appropriate technique

There is no doubt that experiment is the only method for investigating a
new basic phenomenon. In this sense exp‘ebr.i;lfc_n.tﬁireads andmggr‘n;u'tat;on
_follows. It is in the synthesis of a number of iﬁt&‘ﬁéth{g erlown;)heh.ér‘r'lena
that th? computation performs more efticiently. Even then, sufficient valida-
tion of the computed results by comparison with experimental data is
requ.ired. On the other hand, for the design of experimental apparatus
prehmipary computations are often helptul, and the amount of experij
mentation can usually be significantly reduced if the investigation is supple-
mented by computation. i "

An optimal prediction effort should thus be a judicious combination of
computation and experiment. The proportions of the two ingredients would
depend on the nature of the problem, on the objectives of the prediction, and
on the economic and other constraints of the situation. 5

1.3 OUTLINE OF THE BOOK

This book is designed to unfold the subject in a certain sequence, and the
reader is urged to follow the same sequence. It will not be profitablé to jump
to a later chapter, as all chapters build upon the material covered in the
previous ones. The problems at the end of some chapters are intended to give
the reader both direct experience with and deeper understanding of bthe
principles developed in the book. i

. ‘The nine chapters that comprise this book can be grouped into three
different parts of three chapters each. The first three chapters constitute the
preparatory phase. Here, a preliminary discussion about the mathematical and
numerical aspects is included, and the particular philosophy of the book is
outlined. Chapters 4-6 contain the main development of the numerical
method. The last three chapters are devoted to elucidations and applications.
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Before we begin the task of numerical solution, the physical phenomena
must be described via appropriate differential equations. This is outlined and
discussed in Chuapter 2. Of special importance in that chapter is the examina-
tion of the parabolic or elliptic nature of these equations from a physically
meaningiul viewpoint.

The concept of numerical solution is developed in Chapter 3, where the
common procedures of constructing numerical methods are described. Among
these, the method that lends itself to easy physical interpretation is chosen
and illustrated by means of a very simple example. This introductory material
is used to formulate general criteria in the form of four basic rules. These
rules form the guideposts for the development of the numerical method in the
rest of this book. Although the rules are formulated from physical con-
siderations alone, they often lead to results that—it is interesting to observe—
are normally derived from purely mathematical analysis, Furthermore, these
rules guide us to better formulations that may not have been suggested by
standard mathematical methods.

The construction of the numerical method begins in Chapter 4. It is
carried out in three stages. lleat conduction (i.e., the general problem without
the convection term) is treated in Chapter 4. Chapter 5 concentrates on the
interaction of convection and conduction, with the flow field regarded as given.
Finally, the calculation of the velocity field itself is dealt with in Chapter 6.

Readers who are interested in fluid flow alone, and not in heat transfer,
should note that Chapter 6 is not a self-contained chapter. It describes only
the addirional features required for the fluid-flow calculation, the other details
having already been given in Chapters 4 and 5. Thus, Chapter 4 docs not
merely deal with heat conduction; it completes much of the groundwork
needed for fluid flow. The treatment of convection in Chapter S is also
equally applicable to {luid-flow calculation. This approach—handling {luid flow

through heat transfer—may be unfamiliar to some readers, but it appears to be

an effective pedugogical technique. The early focus on heat transfer enables us
to conduct all the preliminary discussion in terms of temperature, which is an
casy-to-understand  scalar variable. It also reinforces the conceptual unity
between variables such as temperature and momentum, which is useful in
understanding und interpreting results.

Another technique that will be in evidence in these chapters is the use of
one-dimensional situations to construct the basic algorithm, which is then
quickly generalized to multidimensional cases. The one-dimensional problem
serves 10 keep the ulgebraic complication to a minimum and to focus
attention on the significant issues.

Chapter 7 is a compilation of a number of elucidating remarks and
suggestions that can be properly appreciated after the reader has had an
overview of the method through familiarity with the first six chapters.
Chapter 8 deals with caleulation procedures that can be considered as special
cases of the general method developed in the book. The g@ﬂ}g@:@nle-based
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ﬁmte-elen.ientmmgthod, which is briefly described in Section 8.4, is, however
an extension rather than a special case of the general method ”

1 : y i
i, tthlfnhﬁt ghalptex serves to give the reader a taste of possible applications

c method. It contains a brief descripti

ption of some of the bl
by the author and his co-wor is i S
-workers. This is, of course, onl er racti
of the totality of interesti , it e e frcton
ing problems that are within the
of in g reach of the

method. The possibilities are limited only by the imagination of the user




CHAPTER

TWO

MATHEMATICAL DESCRIPTION
OF PHYSICAL PHENOMENA

The numerical solution of heat transfer, fluid flow, and other related processes
can begin when the laws governing ‘these processes have been expressed in
mathematlc'al form, gpnerally in terms of f differential equations. For a detailed
and complete derivation of these equations, the reader should turn to a
standard textbook. Our purpose here is to develop familiarity with the form
and the meaning of these equations. It will be shown that all the equations of
relevance here possess a commeon form, the identification of which is the first
step toward constructing a general solution procedure. We shall also discuss
some characteristics of the independent variables used in these equations.

2.1 GOVERNING DIFFERENTIAL EQUATIONS

2.1-1 Meaning of a Differential Equation

The individual differential equations that we shall encounter express a certain
conservation principle. Each equation employs a certain physical quantity as
its dependent variable and implies that there must be a balance among the
various factors that influence the variable. The dependent variables of these
differential equations are usually specific properties, i.e., quantities expressed
On_a unit-mass basis. Examples™ are mass fraction, velocity (i.e., momentum
per unit mass), and specific enthalpy.

Temperature, which is quite frequently used as a dependent variable, is not a
specific property; it arises from more basic equations employing specitic internal energy
or specific enthalpy as the dependent variable.

11
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The terms in a differential equation of this type denote influences on a
unit-volume basis. An example will make this clear. Suppose J denotes a flux
influencing a typical dependent variable o. Let us consider the control volume
of dimensions dx, dy, dz shown in Fig. 2.1. The flux J, (which is the
x-direction component of J) is shown entering one face of area dy dz, while
the flux leaving the opposite face is shown as J, + (8J/ox) dx. Thus, the net
efflux is (8/,/0x) dx dy dz over the area of the face. Considering the
contributions of the y and z directions as well and noting that dx dy dz is the
volume of the region considered, we have

0, | By 4 s
ox ay 0z

Il

Net efflux per unit volume

div J. 2.1

Il

This interpretation of div J will be particularly useful to us because, as we shall
see later, our numerical method will be constructed by performing a balance
over a control volume.

Another example of a term expressed on a unit-volume basis is the
rate-of-change term 3(pg)/dt. 1f ¢ is a specific property and p is the density,
then p¢ denotes the amount of the corresﬁdﬁ'ding extensive property con-
tained in a unit volume. Thus, 0(pg)/ds is the rate of change of the relevant
property per unit volume.

A differential equation is a compilation of such terms, each representing

an influence on a unit-volume basis, and all the terms together implying a
balance or conservation. We shall now take as examples a few standard
differential equations, to find a general form.

2.1-2 Conservation of a Chemical Species

Let m; denote the mass fraction™ of a chemical species. In the presence of a
velocity field u, the conservation of »7 is expressed as ’

St

) | ,
37 (pmy) + div (pumy + 1)) = R, . (2:2)

Here 3(pm;)/dr denotes, as explained earlier, the rate of change of the mass of
the chemical species per unit volume. The quantity pum is the convection
flux of the species, ie., the flux carried by the general flow field pu. The
symbol J; stands for the diffusion flux, which is normally caused by the

The muss fraction my of a chemical species [ is defined as the ratio of the mass of
the species / (contained in a given volume) to the total mags of the mixture (contained in
the same volume).

B E
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gradients of m;. The divergence of the two fluxes (convection and diffusion)
forms the second term of the differential equation. The quantity R, on the
right-hand side is the rate of generation of the chemical species per unit
volume. The generation is caused by chemical reaction. Of course, R; can have
a positive or negative value depending on whether the reaction actually
produces or destroys the chemical species, and R; is zero for a nonreacting
species.

If the diffusion flux J; is expressed by the use of Fick’s law of diffusion,
we can write

Jy = —Ty grad my , 2.3)

where I' is the diffusion coefficient. The substitution of Eq. (2.3) into (2.2)
leads to

) .
3 (pmy) + div (pumy) = div ([ grad my) + R, . 2.4)

2.1-3 The Energy Equation

The energy equation in its most general form contains a large number of
influences. Since we are primarily interested in the form rather than in the
details of the equation, it will be sufficient to consider some restricted cases.
For a steady low-velocity flow with negligible viscous dissipation, the
energy equation can be written as

div (puh) = div(k grad T) + S, , (2.5)

where % is the specific enthalpy, k is the thermal conductivity, T is the
temperature, and S, is the volumetric rate of heat generation. The term div (k
grad T) represents the influence of conduction heat transfer within the fluid
according to the Fourier law of conduction. ’
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For ideual gases and for solids and liquids, we can write
cgrad T = grad h , (2.6)

where ¢ is the constant-pressure specific heat. With this substitution, the
energy equation becomes

div (puh) = div <ﬁ grad h> + S, . 2.7
¢

If ¢ is constant, the A ~ T relation simplifies to

h=cT, 2.8)
which would lead to

div (puT) = div <E grad T> + - 2.9)
c

In this manner, either the enthalpy or the temperature can be chosen as the
dependent variable.

The steady heat-conduction situation is obtained by setting the velocity u
to zero; thus,

div(kgrad ) + S, =0. (2.10)

2.1-4 A Momentum Equation

The differential equution governing the conservation of momentum in a given
direction for a Newtonian fluid can be written along similar lines; however,
the compiication is greater because both shear and normal stresses must be
considered and because the Stokes viscosity law is more complicated than
Fick’s law or Fourier’s law. With u denoting the x-direction velocity, we write
the corresponding momentum equation as

3
a% (pu) + div (puu) = div (u grad u) — a—[;- + B, + V., (2.1D)

where u is the viscosity, p is the pressure, B, is the x-direction body force per
unit volume, and ¥V, stands for the viscous terms that are in addition to those
expressed by div (u grad u).

2.1-5 The Time-averaged Equations for Turbulent Flow

Turbulent flows are commonly encountered in practical applications. It is the
time-mean behavior of these flows that is usually of practical interest,
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Therefore, the equations for unsteady laminar flow are converted into the time-
averaged equations for turbulent flow by an averaging operation in which it is
assumed that there are rapid and random fluctuations about the mean value. The
additional terms arising from this operation are the so-called Reynolds stresses,

turbulent heat flux, turbulent diffusion flux, etc. To express these fluxes in

terms of the mean properties of the flow is the task of a turbulence model.

Many turbulence models employ the concept of a turbulent viscosity or a
turbulent diffusivity to express the turbulent stresses and fluxes. The result is
that the time-averaged equations for turbulent flow have the same appearance
as the equations for laminar flow, but the laminar exchange coefficients such
as viscosity, diffusivity, and conductivity are replaced by effective (i.e.,
laminar plus turbulent) exchange coefficients. From a —c—o—r—{lputational
viewpoint, a turbulent flow within this framework is equivalent to a laminar
flow with a rather complicated prescription of viscosity. (The same idea is
applicable to non-Newtonian flows, which can be thought of as flows in which
the viscosity depends on the velocity gradient.)

2.1-6 The Turbulence-Kinetic-Energy Equation

The currently popular “two-equation models” of turbulence (Launder and
Spalding, 1972, 1974) employ, as one of the equations, the equation for the
kinetic energy k of the fluctuating motion, which reads

38; (k) + div (puk) = div (I'y grad k) + G — pe, (2.12)

where Ty is the diffusion coefficient for k, G is the rate of generation of
turbulence energy, and ¢ is the kinematic rate of dissipation. The quantity
G — pe is the net source term in the equation. A similar differential equation
governs the variable e.

2.1-7 The General Differential Equation

This brief journey through some of the relevant differential equations has
indicated that all the dependent variables of interest here seem to obey a
generalized conservation principle. If the dependent variable is denoted by ¢,
the general differential equation is

ai[ (09) + div (pug) = div (T grad ¢) + S , (2.13)

where T is the diffusion coefficient, and S is the source term. The quantities
I' and § are specific to a particular meaning of ¢. (Indeed, we should have
used the symbols I‘¢ and Sy; this would, however, lead to too many
subscripts in subsequent work.)
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The four terms in the general differential equation are the unsteady term,
the ;&rvgcn;m term, the diffusion term, and the source term. The dependent
variable ¢ can stand for a variety of different quantities, such as th:_mgs,s
fraction of a chemical species, the enthalpy or the temperature, a }\;/p,,gq;l;y
component, the turbulence kinetic energy, or a .turbulenc.e lengi'lt h(sceate(;
Accordingly, for each of these variables, an appropriate meaning will hav
be given to the diffusion coefficient I" and the source term S. 1 t

Not all diffusion fluxes are governed by the gradient of the relevant
" variable. The use of div (" grad ¢) as the diffusic.)? tc?rm does not, however,
limit the general ¢ equation to gradient-driven diffusion processes. Whateve'r
| cannot be fitted into the nominal diffusion term can .al.ways be expressed as a
part of the source term; in fact, the diffusion coefficient I' ca.n.eve¥1 ble dse(;
equal to zero if desired. A gradient-diffusion term has beer.l explicitly inclu e
“in the general ¢ equation because most dependent variables do require a

i diffusion term of this nature. ‘
promTHkiZntiensity appearing in Eq. (2.13) may be related, via an equatlon 0;
state, to variables such as mass fraction and temper?ture. Th.ese vanal;les ax;l
the velocity components obey the general differellt{al equation. Further, the
flow field should satisfy an additional constraint, namely, the mass-
conservation or the continuity equation, which is

A

gt 2_/) + div (pu) = 0 . 2.14)
' f

We have written Egs. (2.13) and (2.14) in vector form. Another useful
representation is the Cartesian-tensor form- of these equations:

d B3 o= O (p 3 (2.15)
Y (o9) + ax, (ou;9) ox; < ox;
% . 8 o y=0 (2.16)
5 + 5 (pup) ,

where the subscript j can take the values 1, 2, 3, denoting the' three space
coordinates. When a subscript is repeated in a term, 3 summation_of three

terms is implied; for example,

9 _ 0 +. 2 + % (ous) (2.17)
53?/’ (Puj) = 5?(—1 (ouy) %, (ouz2) 9xs3 3

o (Loe\_ @ [pas), o péﬂ>+i <F,a@<z> 18
0x; ox; 0x, 0x, 0x, 0x4 0x3 X3
An immediate benefit of the Cartesian-tensor form is that the o.ne-c.iz’mensional
form of the equation is obtained by simply dropping the subscript J.
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The_ procedure for casting any particular differential equation into the
general form (2.13) is to manipulate it until, for the chosen dependent
variable, the unsteady term and the convection and diffusion terms conform
to the standard form. The coefficient of grad ¢ in the diffusion term is then
taken as the expression for I', and the remaining terms on the right-hand side”
are collectively defined as the source term S. o

Although we have so far considered all the variables as dimensional
quantities, it is at times more convenient to work with dimensionless variables.
Again, any particular differential equation written in terms of dimensionless
variables can be regarded as possessing the general form (2.13), with ¢
standing for the dimensionless dependent variable, and with " and S being the
dimensionless forms of the diffusion coefficient and the source term. In many
cases, the dimensionless value of T" may simply be unity, while S may take the
value of 0 or 1.

The recognition that all the relevant differential equations for heat and
mass transfer, fluid flow, turbulence, and related phenomena can be
thought of as particular cases of the general ¢ equation is an important
time-saving step. As a consequence, we need to concern ourselves with the
numerical solution of only Eq. (2.13). Even in the construction of a computer
program, it is sufficient to write a general sequence of instructions for solving
Eq. (2.13), which can be repeatedly used for different meanings of ¢ along
with appropriate expressions for I and S, and, of course, with appropriate
initial and boundary conditions. Thus, the concept of the general ¢ equation
enables us to formulate a general numerical method and to prepare general-

purpose computer programs.

2.2 NATURE OF COORDINATES

So far we have given attention to the dependent variables. Now we shall turn

!0 the independent variables and discuss their properties from the computa-
tional point of view.

2.2-1 Independent Variables

The dependent variable ¢ would, in general, be a function of three space
coordinates and time. Thus,

o= ¢x, y, 2 1), (2.19)

where x, v, z, and ¢ are the independent variables. In a numerical solution, we

shall choose the values of the independent variables at which the values of ¢
are to be calculated.

Fortunately, not all problems requirc consideration of all four
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independent variables. The smaller the number of participating independent
variables, the fewer will be the locations (or grid points) at which the ¢ values
must be calculated (provided that otherwise the problems are of comparable
complexity).

When the relevant physical quantities depend on only one space
coordinate, the situation is called one-dimensional. Dependence on two space
coordinates leads to a rwo-dimensional situation, and on three space co-
ordinates to a three-dimensional situation. When the problem contains no
dependence on time, it is called steady. Otherwise, it is called unsteady or
time-dependent. Considering the dependence on space and time together, we
shall describe a situation as an unstcady one-dimensional problem, a steady
three-dimensional tflow, etc.

The choice of independent coordinates as expressed by Eq. (2.19) is not
the only possibility. Instead of describing a steady temperature distribution as
T(x, y, z), we may write

z=2(T x, y), (2.20)

where z becomes the dependent variable that stands for the height of an
isothermal surface corresponding to T at the location (x, ¥). A method based
on such a representation has been developed by Dix and Cizek (1970) and by
Crank and co-workers (Crank and Phahle, 1973; Crank and Gupta, 1975;
Crank and Crowley, 1978) and is known as the isotherm migration method.
The method is, however, limited to temperature fields that are monotonic
functions of the coordinates; for more general fields, the height z could have
several values for given values of T, x, and y; this makes z, for computational
purposes, unsuitable as a dependent variable.

2.2-2 Proper Choice of Coordinates

Since the number of grid points would, in gencral, be related to the number

of independent variables, there is a significant computational saving to be
achieved by working with fewer independent variables. A judicious choice of
the coordinate system can sometimes reduce the number of independent
variables required.

Although we have used x, y, and z as the space coordinates, it is not
implied that we must usc the Cartesian coordinate system; any description of
the spatial location will do. We shall now illustrate, by a few specific
examples, how the choice of coordinates influences the number of
independent variables.

1. The flow around an airplane that is moving with constant velocity is
unsteady when viewed from a stationary coordinate system, but steady
with respect to a moving coordinate system attached to the airplane.
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2. ng_iggg}g}igpjgggg“.ﬂpw in a circular pipe appears to be three-dimensional in
a ar.tcsmn coordinate system but is two-dimensional in cylindrical polar
coordinates r, 8, z, since

o= o¢(r, ) 2.21)

with no dependence on 8.

. Transformed coordinates offer furth ibiliti
: er possibilities of fewer i
variables. For example: r independent

a. A ng-dimensional laminar boundary layer on a flat plate gives a
similarity behavior such that the velocity u depends on 7 alone, where

=3
I

e

(2.22)

fmd where ¢ is a dimensional constant. Thus, a two-dimensional problem
is reduced to a one-dimensional problem.

. pnsteady heat conduction in a semi-infinite solid has x and ¢ as the
independent variables. However, for some simple boundary conditions
the temperature can be shown to depend on £ alone, where ’

£= $ ) (2.23)

with C representing an appropriate dimensional constant.
4. A (?hange of the dependent variable can lead to a reduction in the number
of independent variables. For example:
a. In a fully developed duct flow, the temperature T depends on the
streamwise coordinate x and the cross-stream coordinate y. However, in

;he thermally developed regime with uniform wall temperature T, we
ave "

6 =60, (2.24)
where
g = T—T,
Tb - Tw

and T, is the bulk temperature, which varies with x.
b. A plane free jet is a two-dimensional flow. However, we can write

i=un), (2.25)
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where

~ U .
(=—, nN=
U

(2.26)

fil

o |

Here u, rcpresents the center-line velocity, y is the cross-stream
coordinate, and & is a characteristic jet width. Both u, and & vary with
the streamwise coordinate X.

Although most of the discussion in this book will be conducted in terms

of x, y, z, and r as the independent variables, it should be remembered that

Call the ideas and practices are equally applicable to the transformed or

" dimensionless variables illustrated here. Indeed, for computational efficiency,

"numerical methods should always be used with the appropriate choice of
coordinates.

2.2-3 One-Way and Two-Way Coordinates

We shall now consider new concepts about the properties of coordinates and
then establish a connection between these and the standard mathematical
terminology.

Definitions. A_two-way coordinate is such that the conditions at a given
location in that coordinate are influenced by changes in conditions on either

side of that location. A one-way coordinate is_such that the conditions at a

siven location in that coordinate are influenced by changes in conditions on
only one side of that location.

Examples. One-dimensional steady heat conduction in a rod provides an
example of a two-way coordinate. The temperature of any given point in the
rod can be influenced by changing the temperature of either end. Normally,
space coordinates are two-way coordinates. Time, on the other hand, is always
a one-way coordinate. During the unsteady cooling of a solid, the temperature
at a given instant can be influenced by changing only those conditions that
prevailed before that instant. It is a matter of common experience that
yesterday’s events atfect today’s happenings, but tomorrow’s conditions have
no influence on what happens today.

Space as a one-way coordinare. What is more interesting is that even a
space coordinate can very nearly become one-way under the action of fluid
flow. If there is a strong unidirectional tlow in the coordinate direction, then

- significant intluences travel only from upstream to downstream. The condi-
- tions at a point are then affected largely by the upstream conditions, and very
litle by the downstream ones. The one-way nature of a space coordinate is an
approximation. It is true that convection is a one-way process, but diffusion
(which is always present) has two-way influences. However, when the flow
rate is large, convection overpowers diffusion and thus makes the space
. coordinate nearly one-way.
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Pargbolic, elliptic, hyperbolic. 1t appears that the mathematical terms
parabolic and elliptic, which are used for the classification of differential
equations, correspond to our computational concepts of one-way and two-way
coordinates. The term parabolic indicates a_one-way behavior, while elliptic
signifies the two-way concept.

It would be more meaningful if situations were described ds being
parabolic or elliptic in a given coordinate. Thus, the unsteady heat conduction
problem, which is normally called parabolic, is actually parabolic in time and
elliptic in the space coordinates. The steady heat conduction problem is
elliptic in all coordinates. A two-dimensional boundary layer is parabolic in
the streamwise coordinate and elliptic in the cross-stream coordinate.

Since such descriptions are unconventional, a connection with established
practice can perhaps be achieved by the following rule:

A situation is parabolic if there exists at least one one-way coordinate;
otherwise, it is elliptic.

A flow with one_one-way space coordinate is sometimes called a
boundary-layer-type flow, while a flow with all two-way coordinates is
referred to as a recirculating flow [see the titles of the books by Patankar and

Spalding (1970) and Gosman, Pun, Runchal, Spalding, and Wolfshtein
(1969)].

What about the third category, namely, hyperbolic? It so happens that a
hyperbolic situation does not neatly fit into the computational classification.
A hyperbolic problem has a kind of one-way behavior, which is, however, not
along coordinate directions but along special lines called characteristics. There
are numerical methods that make use of the characteristic lines, but they are
restricted to hyperbolic problems. On the other hand, the numerical method
to be developed in this book does not take advantage of the special nature of
a hyperbolic problem. We shall treat hyperbolic problems as members of the
general class of elliptic problems (i.e., all two-way coordinates).

Computational implications. The motivation for the foregoing discussion
about one-way and two-way coordinates is that, if a one-way coordinate can
be identified in a given situation, substantial economy of computer storage
and computer time is possible. Let us consider an unsteady two-dimensional

heat conduction problem. We shall construct a two-dimensional array of grid
points in the calculation domain. At any instant of time, there will be a
corresponding two-dimensional temperature field. Such a field will have to be
handled in the computer for each of the successive instants of time. However,
since time is a one-way coordinate, the temperature field at a given time is
not affected by the future temperature fields. Indeed, the entire unsteady
problem can be reduced to the required repetitions of one basic step, namely
this: Given the temperature field at time ¢, find the temperature field at time
t + Atr. Thus, computer storage will be needed only for these two temperature




22 NUMERICAL HEAT TRANSFER AND FLUID FLOW

fields; the same storage space can be used, over and over again, for all the
time steps.

In this manner, starting with a given initial temperature field, we are able
to “march” forward to successive instants of time. During any time step, only
one two-dimensional array of temperatures forms the unknowns to be treated
simultaneousty.™ They are decoupled from all future values of temperature,
and the previous values that influence them are known. Thus, we need to
solve a much simpler set of equations, with a consequent saving of computer
time.

In a similar manner, a two-dimensional boundary layer is computed by
marching in the streamwise coordinate. With values of the dependent variables
given along one cross-stream line at an upstream station, the values along
successive cross-stream lines are obtained. Only one-dimensional computer
storage is needed for handling the two-dimensional flow. Similarly, a three-
dimensional duct flow that is parabolic in the streamwise direction can be
treated as a series of two-dimensional problems for successive cross-stream
planes.

In this book, we shall give only occasional attention to the one-way space
coordinate, However, its great potential for saving computer storage and
computer time should always be kept in mind.

PROBLEMS

. \‘,’2.1 Write the unsteady heat conduction equation for the case of constant specific heat c.
Show that, with reference to the general equation (2.13), this implies ¢ =7, u=0,
T =k/c, and § = Sy/c.

_ 2.2 Derive the expressions for ¢, I', and S if in Problem 2.1 the specific heat ¢ cannot be
taken as constant. (Minr: Use the internal energy / as the dependent variable; note that
di =¢dT.)

2.3 If Egq. (2.7) were to be written for an unsteady situation, show that the resulting
form can be expressed as ¢ =h, ' = k/c,and § = Sp + aplat.
2.4 Derive an expression for Vy in Eq. (2.11). Hence show that V, becomes zero when
the density and viscosity are constant. (Use the continuity equation.)
2.5 Define an effective pressure by

P=p—ipdivu,
where p is the thermodynamic pressure. If the viscosity is constant but the density p is
not constant (and hence div u # 0), show that the term ¥V, in Eq. (2.11) can be

combined with the pressure gradient such that

o
ax

P
+ Vy=——.
* ax
It is assumed here that an fmplicit method is to be employed. This matter is
discussed in detail in Chapter 4.
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“2.6 If the continuity equation (2.14) were i
! . to be regarded as a special case of the geners
equation (2.13), what would be the expressions for ¢, I, and $?  generad

«2.1 Qonsidcr a mixture of various chemical species. Define the mixture enthalpy by
h =X mh;, where my is the mass fraction of a ty

M pical species, and A is its ifi
enthalpy, which is given by P 118t specific

T
hl:h;+/ ¢ dT .

0

[ .
Here hy is a constant, and ¢; is the constant-pressure specific heat of species /. Write the
steady-state enthalpy-conservation equation and hence show that ¢=h, T'=Fk/e, and

S=8, +div £ [(Iy — k/ ; .
1 cyhy grad my), wi e .
£ mye;. ! 1! here ¢ is the mixture specific heat, given by




CHAPTER

THREE
DISCRETIZATION METHODS

So far we have seen that there are significant benefits in obtaining 2
theoretical prediction of physical phenomena. The phenomena of interest here
are governed by differential equations, which we have represented by a general
equation for the variable ¢. Now our main task is to develop the means of
solving this equation.

Dor ease of understanding, we shall assume in this chapter that the
variable ¢ is a function of only one independent variable x. However, the
ideas developed here continue to be applicable when more than one inde-
pendent variable is active.

3.1 THE NATURE OF NUMERICAL METHODS

3.1-1 The Task

A numerical solution of a differential equation consists of a set of numbers

from which the distribution of the dependent variable ¢ can be constructed.
In this sense, a numerical method is akin to a laboratory experiment, in which
a set of instrument readings enables us to establish the distribution of the
measured quantity in the domain under investigation. The numerical analyst
and the laboratory experimenter both must remain content with only a finire
number of numerical values as the outcome, although this number can, at
least in principle, be made large enough for practical purposes.

25
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Let us suppose that we decide to represent the variation of ¢ by a
polynomial in x,

¢:a0+a1x+u2x2+...+am_xm, (31)

and employ a numerical method to find the finite number of coefﬁ?ients at:,,
4y, dz, ..., Gm. This will enable us to evaluate ¢>’ aF any location x 1'y
substituting the value of x and the values of the a’s 1gto Eq.. (3.1). .T 1is
procedure is, however, somewhat inconvenient if our ultimate mtc,:rest is to
obtain the values of ¢ at various locations. The values of the as. are, by
themselves, not particularly meaningful, and the substitutism operation must
be carried out to arrive at the required values of ¢. This leads us to the
following thought: Why not construct a method that employs the values of ¢
at a number of gven points as the primary unknowns? Indeed? mos.t
numerical methods for solving differential equations do belong in this
category, and therefore we shall limit our attention to such methods.

Thus, a numerical method treats as its basic unknowns the Yalueshof tbe
dependent variable at a finite number of locations (called the grld points) in
the calculation domain. The method includes the tasks of p;gy_ldl_,ng%g_s_g‘;‘pj
aloebraic_equations for these unknowns and of prescribing an algorithm for
solving the equations,

3.1-2 The Discretization Concept

In focusing attention on the values at the grid points, we hgve rephlabced tbe
continuous information contained in the exact solution ot.th.e dlfferentxal
equation with discrete values. We have thus discreti;ed the dlstrlbut19n of o,
and it is appropriate to refer to this class of numerical methods as discretiza-
o "’f?:leerhzﬁ:«esgraic equations involving the unknown values Of.(b at chosen grid
points, which we shall now name the discretization equations, are derived
from the differential equation governing ¢. In_this derivatior_l, we must emplo_y
- some assumption about how ¢ varies between the grid pomts. Alt.hough .thlS
“profile” of ¢ could be chosen such that a single algebraic expression .suff1c.es
" for the whole calculation domain, it is often more practical to use piecewise
profiles such that a given segment describes the variatilon. of ¢ over only a
! small region in terms of the ¢ values at the grid poin.ts w1thm_an.d around that
region. Thus, it is common to subdivide the calculation domain mtg a number
of subdomains or elements such that a separate profile assumption can be
associated with each subdomain. .
In this manner, we encounter the discretization concept in ar'xothf?r
context. The continuum calculation domain has been dis'cretized. It is thl‘S
systematic discretization of space and of the dependent variables that makes it
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possible to replace the governing differential cquations with simple algebraic
equations, which can be solved with relative ease.

3.1-3 The Structure of the Discretization Equation

A_discretization equation is an algebraic relation connecting the values of ¢
for a group of grid points. Such an equation is derived from the differential
equation governing ¢ and thus expresses the same physical information as the
differential equation. That only a few grid points participate in a given
discretization equation is a consequence of the piecewise nature of the profiles
chosen. The value of ¢ at a grid point thereby influences the distribution of o)
only in jts immediate neighborhood. As the number of grid points becomes
very large, the solution of the discretization equations is expected to approach
the exact solution of the corresponding differential equation. This follows
from the consideration that, as the grid points get closer together, the change
in ¢ between neighboring grid points becomes small, and then the actual
details of the profile assumption become unimportant. o
For a given differential equation, the possible discretization equations are
by no means unique, although all types of discretization equations are, in the
limit of a very large number of grid points, expected to give the same
solution. The different types arise from the differences in the profile
assumptions and in the methods of derivation.,

Until now we have deliberately refrained from making reference to

finite-difference and finite-element methods. Now it may be stated that these |
can be thought of as two alternative versions of the discretization method,
which we have described in general terms. ‘The distinction between the
finite-difference method and the finite-element method results from the ways
of choosing the profiles and deriving the discretization equations, The method
that is to be the main focus of attention in this book has the appearance of a
finite-difference method, but it employs many ideas that are typical of the
finite-element methodology. To call the present method a finite-difference :
method might convey an adherence to the conventional finite-difference '
practice. For this reason, we shall refer to it simply as a discretization
method. Also, we shall note in Chapter 8 how a method that has the
appearance of a finite-element method can be constructed from the general
principles presented in this book.

3.2 METHODS OF DERIVING
THE DISCRETIZATION EQUATIONS

For a given differential equation, the required discretization equations can be
derived in many ways. Here, we shall outline a few common methods and
then indicate a preference.
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3.2-1 Taylor-Series Formulation

The usual procedure for deriving finite-difference equations consists o(;
approximating_the derivatives in the_differential equation via a truncated

AN M M in} .
i sider ¢ i S S 1g. J.l. FOI
Taylor series. Let us consider the grid points shown in Ff’

orid point 2, locuted midway between grid points 1 and 3 such that
rumc =x, —X, =X3 —X,, the Taylor-series expansion around 2 gives

do 1 A2 d*¢ .. 32

6, = ¢, — AX <§;>2 5 (A% <—~dx2>2 (32)

d¢ 1 d*¢ . 3.3

and ¢35 = ¢y + Ax <Z‘C'>2 + 5 (Ax)z <dX2 ) + ' G.3)

Truncating the series just after the third term, and adding and subtracting the
two equations, we obtain

do) _ ¢ — 1 (3.4)
dx 2 2 Ax
d?¢\ _ o1t ¢ — 262 (3.5)
and e , (AX)?

The substitution of such expressions into the differential equation leads to the
ite-difference equation.
ﬁmthilerrithod ?ncludes the assumption that the variation of ¢ is somcwha't
like a polynomial in x, so that the higher de‘rivatives. are Lunmpgrtant. This
assumption, however, leads to an undesirable formulation wl.len, for exavlTlpl.e:,
exponential variations are encountered. (We s:hall refcr to thls. matter flgc‘llll]k)lll
Chapter 5.) The Taylor-series formulation is r.elutlvely stral'ghtforwm. uf
allows less flexibility and provides little insight into the physical meanings o

#
the terms.

*This is admittedly an entirely subjective view. Someone with pro_per‘ mathematical
training may find the Taylor-series method highly illuminating and meaninglul.

3
B4

=

—_—
X

1 2

Figure 3.1 Three successive grid points used for the Taylor-series expansion.
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3.2-2 Variational Formulation

Another method of obtaining the discretization equations is based on the
calculus of variations. To understand the method fully, the reader should have
sufficient knowledge of this branch of calculus. However, a general apprecia-
tion of the main ingredients of the formulation is all that is needed for the
present purposes.

The calculus of variations shows that solving certain differential equations
is equivalent to minimizing a related quantity called the finctional. This
equivalence is known as a variational principle. If the functional is minimized
with respect to the grid-point values of the dependent variable, the resulting
conditions give the required discretization equations. The variational
formulation is very commonly employed in finite-element methods for stress
analysis, where it can be linked to the virtual-work principle. In addition to its
algebraic and conceptual complexity, the main drawback of this formulation is
its limited applicability, since a variational principle does not exist for all
differential equations of interest.

3.2-3 Method of Weighted Residuals

A powerful method for solving differential equations is the method of

weighted residuals, which is described in detail by Finlayson (1972). The basic
concept is simple and interesting. Let the differential equation be represented
by

Lip) = 0. (3.6)

Further, let us assume an approximate solution ¢ that contains a number of
undetermined parameters, for example,

b=a +ax tapx? g, x™ 3.7

the a’s being the parameters. The substitution of tE into the differential
equation leaves a residual R, defined as

R =L(¢). (3.8)
We wish to make this residual small in some sense. Let us propose that
S WRdx =0, (3.9)

where W is a weighting function and the integration is performed over the
domain of interest. By choosing a succession of weighting functions, we can
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generate as many equations as are required for evaluating the parameters.
These algebraic equations containing the parameters as the unknowns are
solved to obtain the approximate solution to the differential equation.
Different versions of the method (known by specific names) result from the
choice of different classes of weighting functions.

The method was very popular in boundary-layer analysis before the
finite-difference method nearly replaced it. However, a connection with the
finite-difference method, or rather with the discretization method, can be
established if the approximate solution ¢, instead of being a single algebraic
expression over the whole domain, is constructed via piecewise profiles with
the grid-point values of ¢ as the unknown parameters. Indeed, much of the
recent development of the finite-element technique is also based on piecewise
profiles used in conjunction with a particular weighted-residual practice known
as the Galerkin method.

The simplest weighting function is W=1. From this, a number of
weighted-residual equations can be generated by dividing the calculation
domain into subdomains or control volumes, and setting the weighting
function to be unity over one subdomain at a time and zero everywhere else.
This variant of the method of weighted residuals is called the subdomain
method or the controlvolume formulation. It implies that the integral of the
residual over each control volume must become zero. Since we shall adopt the

)gcontrol-volume approach in this book, a more detailed discussion is desirable,
%? hich now follows.

3.2-4 Control-Volume Formulation

Often elementary textbooks on heat transfer derive the finite-difference
cquation via the Taylor-series method and then demonstrate that the resulting
equation is consistent with a heat balance over a small region surrounding a
grid point. We have also seen that the control-volume formulation can be
regarded as a special version of the method of weighted residuals. The basic
idea of the control-volume formulation is easy to understand and lends itself
to direct physical interpretation. The calculation domain is divided into a
number of nonoverlapping control volumes such that there is one control
volume surrounding each grid point. The differential equation is integrated
over each control volume. Piecewise profiles expressing the variation of ¢
between the grid points are used to evaluate the required integrals. The result
is the discretization equation containing the values of ¢ for a group of grid points.

The discretization equation obtained in this manner expresses the con-
servation principle for ¢ for the finite control volume, just as the differential
equation expresses it for an infinitesimal control volume.*

Indeed, deriving the control-volume discretization ¢quation by integrating the
difterential equation over 4 finite control volume is a rather roundabout process, much
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The _most attractive feature of the_control-volume formulation is that the
resulting solution would imply that the inregral conservation of quantities
such as mass, momentum, and energy is exactly satisfied over any group of
control volumes and, of course, over the whole calculation domain. This
characteristic exists for any number of grid points—not just in a limiting sense
when the number of grid points becomes large. Thus, even the coarse-grid
solution exhibits exact integral balances.

When the discretization equations are solved to obtain the grid-point
values of the dependent variable, the result can be viewed in twobdifferent
ways. In the finite-element method and in most weighted-residual methods
.the assumed variation of ¢ consisting of the grid-point values and thé
interpolation functions (or profiles) between the grid points is taken as the
approxjmate solution. In the finite-difference method, however only the
grid-point values of ¢ are considered to constitute the solution w’ithout any
explicit reference as to how ¢ varies between the grid points. Th,is is akin to a
laboratory experiment where the distribution of a quantity is obtained in
terms of the measured values at some discrete locations without any statement
about the variation between these locations. In our control-volume approach
wg shall also adopt this view. We shall seek the solution in the form of the’
grid-point values only. The interpolation formulas or the profiles will be
regarded as auxiliary relations needed to evaluate the required integrals in the
f.ormulation. Once the discretization equations are derived, the profile assump-
tions can be forgotten. This viewpoint permits complete freedom of choice in
employing, if we wish, different profile assumptions for integrating different
terms in the differential equation,

To make the foregoing discussion more concrete, we shall now derive the
control-volume discretization equation for a simple situation.

3.3 AN ILLUSTRATIVE EXAMPLE

Let us consider steady one-dimensional heat conduction governed by

d [, 4T
E<k3>+S:O, (3.10)

where k is the thermal conductivity, T is the temperature, and S is the rate of
heat generation per unit volume.

:;ke- pr.eparing r-n‘ashed potatoes from dehydrated potato powder. After all, textbook
tcrllvzmons of differential equations always start from the conservation principle applied
0 a small control volume. It is useful to imagine ourselves to be in the pre-calculus days;

then thc_ control-volume equation would have been our only way of stating the
conservation principle. )
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Preparation. To derive the discretization equation, we shall employ the
grid-point cluster shown in Fig. 3.2. We focus attention on the grid point P,
which has the grid points £ and W as its neighbors. (£ denotes the east side,
ie., the positive x direction, while W stands for west or the negative x direc-
tion.) The dashed lines show the faces of the control volume; their exact
locations are unimportant for the time being. The letters e and w denote these
faces. For the one-dimensional problem under consideration, we shall assume a
unit thickness in the y and z directions. Thus, the volume of the control
volume shown is Ax X 1 X 1. If we integrate Eq. (3.10) over the control
volume, we get

e
a9y 4 | sax=o. (3.11)
dx /, dx J,,
w

Frofile assumption. To make further progress, we need a profile assump-
tion or an interpolation formula. Two simple profile assumptions are shown in
Fig. 3.3. The simplest possibility is to assume that the value of T at a grid
point prevails over the control volume surrounding it. This gives the stepwise
profile sketched in Fig. 3.3a. For this profile, the slope dT/dx is not defined
at the control-volume faces (i.e., at w or ¢). A profile that does not suffer
from this difficulty is the piecewise-linear profile (Fig. 3.3b). Here, linear
interpolation functions are used between the grid points.

The discretization equation. 1f we evaluate the derivatives dT/dx in Eq.
(3.11) from the piecewise-linear profile, the resulting equation will be

ke(Tg —Tp) _ kyw(Tp —
(6x), (6x)

Tw) SAx =0, (3.12)

where S is the average value of § over the control volume. It is useful to cast
the discretization equation (3.12) into the following form:

apTP:aETE""{IwT}V“I'b, (313)

(DU ' (6x), '
IW |

Q : O :E O

w i P | E
! i
- AX —_——

R ot
X

Figure 3.2 Grid-point cluster for the one-dimensional problem.
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Figure 3.3 Two simple profile assumptions. (z) Stepwise prefile; (b) piecewise-linear profile.

where
a ke
E (Sx)e » (3]4(2)
Ky
w= , (3.14b)
(6x)y
ap =ag +ay , (3.14¢)
and b=S Ax. (3.14d)
Comments.

1. Equation (3.13) represents the standard form in which we shall write our
discretization equations. The temperature Tp at the central grid point
appears on the left side of the equation, while the neighbor-point
temperatures and the constant b form the terms on the right side. As we
shall see later, the number of neighbors increases for two- and three-
dimensional situations. In general, it is convenient to think of Eq. (3.13) as
having the form

apTp = X anpTyp + bj (3.15)
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where the subscript nb denotes a neighbor, and the summation is to be
taken over all the neighbors.

2. In deriving Eq. (3.13), we have used the simplest profile assumption that
enabled us to evaluate d7T/dx. Of course, many other interpolation
functions would have been possible.

3. Further, it is important to understand that we need not use the same
profile for all quantities. For example, S need not be calculated from a
lincar variation of .S between the grid points, nor k, from a linear variation
of k between kp and kg.

4. Even for a given variable, the same profile assumption need not be used for
all terms in the equation. For example, if Eq. (3.10) had an additional
term involving T alone, it would have been permissible to use a stepwise
profile for that term, instead of adhering to the piecewise-linear profile
used for evaluating d7/dx.

Guiding principles. The freedom of choice indicated so far gives rise to a
variety of discretization formuiations. It is true that, as the number of grid
points is increased, all the formulations are expected to give the same
solution. We shall, however, impose an additional requirement that will enable
us to narrow down the number of acceptable formulations. We shall require
that_even the coarse-grid solution should always have (1) physically realistic
behavior and (2) overall balance.

Physical realism is casy to understand, at least in simple cases. The
variations shown in Fig. 3.4 illustrate this concept. A realistic variation should
have the same qualitative trend as the exact variation. In heat conduction
without sources, no temperature can lic outside the range of temperature
established by the boundary temperatures. When a hot solid is being cooled

Unrealistic

Approximate, but
physically realistic

Unrealistic

- Figure 3.4 Physically realistic
and unrealistic behavior.

o ————e.

DISCRETIZATION METHODS 35

by an ambient fluid, the solid cannot acquire a temperature lower than that
of the fluid. We shall always apply such tests to our discretization equations.

The requirement of overall balance implies integral conservation over the
whole calculation domain. We shall insist that the heat fluxes, mass flow rates,
and momentum fluxes must correctly give an overall balance with appropriate
sources and sinks—not just in the limit as the number of grid points becomes
very large, but for any number of grid points. Our control-volume formulation
makes this overall balance possible, but care is needed, as we shall shortly see,
in calculating fluxes at the control-volume interfaces.

The constraints of physical realism and overall balance will be used to
guide our choices of profile assumptions and related practices. On the basis of
these constraints, we shall develop some basic rules that will enable us to
discriminate between available formulations and to invent new ones. The
decisions that are normally governed by mathematical considerations can now
be directed by physical reasoning.

Treatment of the source term. Before we proceed to develop the basic
rules, we shall give some attention to the source term S in Eq. (3.10). Often,
the source term is a function of the dependent variable T itself, and it is then
desirable to acknowledge this dependence in constructing the discretization
equation. We can, however, formally account for only a linear dependence
because, as we shall see later, the discretization equations will be solved by
the techniques for linear algebraic equations. The procedure for “linearizing” a
given S~ T relationship will be discussed in the next chapter. Here, it is
sufficient to express the average value S as

S =S¢+ SpTp, (3.16)

where S stands for the constant part of S, while Sp is the coefficient of Tp.
(Obviously, Sp does not stand for S evaluated at point P.)

The appearance of Tp in Eq. (3.16) reveals that, in expressing the average
value S, we have presumed that the value Tp prevails over the control volume;
in_other words, the stepwise profile shown in Fig. 3.3¢ has been used. (It
should be noted that we are free to use the stepwise profile for the source
term while using the piecewise-linear profile for the dT/dx term.)

With the linearized source expression, the discretization equation would
still look like Eq. (3.13), but the coefficient definitions [Egs. (3.14)] would
change. The new set is

apTp=apgTg +ayTy + b, (3.17)

where

AT (3.182)
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Cw
4y = (3.180)
Y B,
ap =uag tay — Sp Ax, (3.18¢)
and b =S Ax . (3.184)

The foregoing introductory discussion provides sufficient background to
allow the formulation of the basic rules that our discretization equations
should obey, to ensure physical realism and overall balance. These seemingly
simple rules have far-reaching implications, and they will guide the develop-
ment of methods throughout this book.

3.4 THE FOUR BASIC RULES

Rule 1: Consistency at control-volume faces When a face is common to
two adjacent control volumes, the flux across it must be represented by
the sgme expression in the discretization equations for the two control
volumes.

Discussion. Obviously, the heat flux that leaves one control volume
through a particular face must be identical to the flux that enters the next
control volume through the same face. Otherwise, the overall balance would
not be satisfied. Although this requirement is easy to understand, subtle
violations must be watched for. For the control volume shown in Fig, 3.2, we
could have evaluated the interface heat fluxes k dT/dx from a quadratic
profile passing through Ty, Tp, and Tg. The use of the same kind of
formulation for the next control volume implies that the gradient d7/dx at
the common interface is calculated from different profiles, depending on
which control volume is being considered. The resulting inconsistency™ in
dT/dx (and hence in the heat flux) is sketched in Fig. 3.5.

Another practice that could lead to flux inconsistency is to assume that
the fluxes at the faces of a given control volume are all governed by the
center-point conductivity kp. Then the heat flux at the interface e (shown in
Fig. 3.2) will be expressed as kp (Tp — Tx)/(6x). when the control volume
surrounding the point P is considered, and as kg (Tp — Tg)/(6x), when the
equation with £ as the center point is constructed. To avoid such incon-

*1t so happens that, if the intertaces are located midway between the grid points,
the type of quadratic profile shown in Fig. 3.5 does not give any inconsistency. This is
because the slope of a purabola at a location midway between two points is exactly equal
to the slope of the straight line joining the two points. But this property of the parabola
must be regarded as tfortuitous, and one must, in general, refrain from changing the
interface flux expression while going from one control volume to the next,
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/
Stope from right

\@ from left

Figure 3.5 Flux inconsistency resulting from quadratic profile,

sistencies, it is useful to remember that an interface flux must be considered
in its own right, and not as belonging to a certain control volume.

Rule 2: Positive coefficients Most situations of interest here will be such
that the value of a dependent variable at a grid point is influenced by the
values at neighboring grid points only through the processes of convection
and diffusion. Then it follows that an incregse in the value at one grid
point should, with other conditions remaining unchanged, lead to an
increase (and not a decrease) in the value at the neighboring grid point. In
Eq. (3.13), if an increase in Tz must lead to an increase in Tp, it follows
that the coefficients @z and ap must have the same sign. In other words,
for the general equation (3.15), the neighbor coefficients anp and the

- center-point coefficient ap all must be of the same sign. We can, of
course, choose to make them all positive or all negative. Let us decide to
write our discretization equations such that the coefficients are positive;
then Rule 2 can be stated as follows:

All coefficients (ap and neighbor coefficients anp) must always be
positive.

Comments. The coefficient definitions given in Egs. (3.14) show that our
illustrative discretization equation [Eq. (3.13)] does obey the positive-
coefficient rule. However, as we shall see later, there are numerous formula-
tions that frequently violate this rule. Usually, the consequence is a physically
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unrealistic solution. The presence of a negative neighbor coefficient can lead
to the situation in which an increase in a boundary temperature causes the
temperature at the adjacent grid point to decrease. We shall accept only those
formulations that guarantee positive coefficients under all circumstances.

Rule 3: Negative-slope linearization of the source term 1f we consider the
coefticient definitions in Eqgs. (3.18), it appears that, even if the neighbor
coefficients are positive, the center-point coefficient ap can become
negative via the Sp term. Of course, the danger can be completely avoided
by requiring that Sp will not be positive. Thus, we formulate Rule 3 as
follows:

When the source term is lincarized as S = Sc + SpTp, the coefficient
Sp must always be less than or equal to zero.

Remarks. This rule is not as arbitrary as it sounds. Most physical
processes do have a negative-slope relationship between the source term and
the dependent variable. Indeed, if Sp were positive, the physical situation
could become unstable. A positive Sp implies that, as Tp increases, the source
term increases; if an effective heat-removal mechanism is not available, this
may, in turn, lead to an increase in Tp, and so on. Computationally, it is vital
to keep Sp negative so that instabilities and physically unrealistic solutions do
not afisé. The source-term linearization is further discussed in the next
chapter. It is sufficient to note here that, for computational success, the
principle of negative Sp is essential.

Rule 4: Sum of the neighbor coefficients Often the governing differential
cquations contain only the derivatives of the dependent variable. Then, if
T represents the dependent variable, the functions T and T+ ¢ (where ¢
is an arbitrary constant) both satisfy the differential equation. This
property of the differential equation must also be reflected by the
discretization equation. Thus, Eq. (3.15) should remain valid even when
Tp and all Tpy’s are increased by a constant. From this requirement, it
follows that ap must equal the sum of the neighbor coefficients. Hence,
the statement of Rule 4 is:

We require
ap = Zan (319)
for situations where the differential equation continues to remain

satistied after a constant is added to the dependent variable.

Discussion. It is easy to see that Eq. (3.13) does satisfy this rule. The rule
implies that the center-point value Tp is a weighted average of the neighbor
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values Ty, Unlike Eq. (3.13), the coefficients in Eg. (3.17) do not obey the
rule. This is, however, not a violation, but a case of inapplicability of the rule
When the source term depends on T, both T and T+ ¢ do not satisfy the.
differential equation. Even in such cases, the rule should not be forgotten, but
shou.ld be applied by envisaging a special case of the equation. If, fobr exar;xple
Sp is set equal to zero in Eq. (3.17), the rule becomes applicable and is,
indeed obeyed.

When the differential equation is satisfied by both T and T +¢, the
desired temperature field 7 does not become multivalued or indetermi,nate.
The values of T can be made determinate by appropriate boundary conditions.
Conformity to Rule 4 ensures that, if, for example, the boundary ”t‘ehmpera-
tures were increased by a constant, all temperatures would increase by exactly
that constant.

Another way of looking at Rule 4 is this: When the source term is absent
and the neighbor temperatures Thy are all equal, the center temperature Tp
must become equal to them. Ounly a poor discretization equation would not
predict Tp = Ty, under these circumstances.

3.5 CLOSURE

If'l this chapter, we have made certain basic decisions about the type of
discretization method to be developed in this book. Through a simple
example, we have been able to formulate four basic rules, which constitute
tf.le underlying guiding principles for all further work. The discussion has been
given in terms of temperature 7 as the dependent variable. This was done
simply for conceptual convenience. We shall continue with T in Chapter 4
but switch to the general variable ¢ from Chapter 5 onward. Of course the,
four rules developed in this chapter are all applicable to the general variab,le ¢.

.The convection term in the general differential equation (2.13) requires
special formulation. This matter is deferred to Chapter 5. The remaining three

terms of Eq. (2.13) are dealt with in Chapter 4 in the framework of heat
conduction.

PROBLEMS

3.1. Usi.ng the Taylor-series expansion around point P in Fig. 3.2, show that the
finite-difference approximation for d? T/dx? is given by ’

ﬂ:‘___z_ﬁ TE—TP_TP‘TW
dx? (6x)e + (6x),, (6x), ©x),, )

3.2 Fgr the djff'erential. equation (3.10), derive a discretization equation by the method
of weighted residuals in the following manner: Assume % and S to be constant (for
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convenience). Let the weighting function W be zero everywhere except between the
points W and £ in Fig. 3.2. Further, assume that the weighting function is piecewise-
linear, with value unity at P and zero at points W and E. Multiply Eq. (3.10) by the
weighting function, and integrate over the region from point W to point E. Use a
piccewise-linear profile for 7. Compare the resulting discretization equation with Eq.
(3.12). (Note that the method outlined here, which is a special case of the method of
weighted residuals, is known as the Galerkin method.)

3.3 Consider Eq. (3.10) and assume that § is constant, but k depends on x. Further, use
4 uniform grid spacing in Tig. 3.2, so that Ay = (8x)e = (6x),y. Derive the discretization
equation by writing Eq. (3.10) as

d*T  dk dT

f——+85=0

k
dx? dx dx

and using the approximations

iljl‘ _ kP(TE + Ty — 2Tp)
dx? (ax)? ’

AT _ Tp—Ty
dx 2 Ax

with dk/dx as a given quantity. Noting that dk/dx can be positive or negative, find the
conditions for which the coefficient ¢ or ajy would become negative, thus violating Rule
2. (Note that the derivation in Section 3.3, which was based on the physical significance
of the terms, did not lead to negative coelficients.)

3.4 In an axisymmetrical situation, a steady one-dimensional conduction problem is

d
LY (0 dr) vs=0,
. rodr dr

where 7 is the radial coordinate. Following the procedure in Section 3.3, derive a
discretization equation for this situation. (Multiply the differential equation by r, and
then integrate with respect to r from ry, to re.) Interpret the coefficients in the
discretization equation in  physical terms.

governed by

CHAPTER

FOUR
HEAT CONDUCTION

4.1 OBJECTIVES OF THE CHAPTER

In this _chapter, we shall begin the task of constructing a numerical method
for solving the general differential equation (2.13), which governs the ph 'Ol
processes of interest here. As we have seen, the equation contains fog );)Slca
terms.'Here we shall omit the convection term and concentrate r at;lb
remaining three terms. The construction of the method will be co Iotnd "
Chapter‘S,. where the treatment of the convection term will be discur?side o
typeOr?éss;:n OIfI t'he convect.ion terrrf reduces the situation to a condu.ction-
v ;1> blem. eat conductlop provides a convenient starting point for our
rmu atlgn, because the physical processes are easy to understand and
mathematical complication is minimal, e nd the
Tf}e objectives of this chapter, however, go far beyond presenting

numerical method for heat conduction alone. First, other physical s
are ggverned by very similar mathematical equations. Among tireocesses
potential flow, mass diffusion, flow through porous media, and somesef ‘He
g.eveloped duc't flows. The numerical techniques described ir; this chapteruarz
d?;ct}y applicable to all these  processes. Electromagnetic field theory
itusion models of thermal radiation, and lubrication flows are furtl :
examples of phenomena governed by conduction-type equations Althou;;l we
§llall only occasionally make reference to these related pr.ocesses it b
%mport.ant to remember that the techniques developed in this ch ; .
immediately available for application in these different areas e
Second, this chapter accomplishes much of the preparz;tory work needed
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for later chapters. The procedure for the solution of the algebraic equa~t10nshls
presented here in a once-and-for-all manner. LatcrA chapter§ mod]fy' the
content of the algebraic equations, but the same so}utlon tthnlqpe contlrcx‘ut?s
to be applicable. Thus, even for the reader who is exclvuswely %nt.ereste mf
fluid-flow calculation, an understanding of this chapter is essential; m}ich 0
the material here (and in the next chapter) is ag integral part of the fluid-flow
salculati cheme to be presented in Chapter 6.

Lalwll"‘:)mg; Szglemto see gle similaritics between transfer of momentum and
transfer _of heat and to regard velocity as, in some ways, angﬂl‘g‘gpgsrt’?
temperature is a great conceptual help. The use of heat conyd\uctwn 213 ‘1
building block in the fluid-flow calculation scheme reinforces this conceptua

unity.
4.2 STEADY ONE-DIMENSIONAL CONDUCTION

4.2-1 The Basic Equations

In the course of presenting the illustrative example in Section 3.3, w}%xch was
used as a vehicle to explain the four basic rules, we have a;ready derlyed the
discretization equation for steady conduction in one.dimensxon. To review the
main ingredients, the governing differential equation is

4 (39T 4 5=0. @1
dx dx
This leads to the discretization equation
apr = aETE + awTW + b 5 (42)
where
ke (4.30)
ag = ,
R G)
dy = W _ (4.3D)
Y (3w
ap=aE+aW—Sp AX, (436‘)
and b=S8c Ax. (4.3d)

The grid points P, £, and W are shown in Fig. 3.2, where various distances are
o H > X X
also indicated. The control-volume faces ¢ and w are placed between the grid

HEAT CONDUCTION 43

point P and its corresponding neighbors. The exact locations of these faces
can be considered to be arbitrary. Many practices for their placement are
possible, some of which will be discussed in Section 4.6-1. For the time being,
we shall simply regard the locations of e and w as known in relation to the
grid points P, E, and W. The quantities S¢ and Sp arise from the source-term
linearization of the form

S = SC + SPTP . (44)

As to the profile assumptions, the gradient dT/dx has been evaluated from a
piecewise-linear variation of T with x, while for the linearized source term the
value Tp is assumed to prevail throughout the control volume. It should, of
course, be remembered that other choices of profiles are possible and
permissible, as long as the four basic rules are not violated. The policy here is
to adopt rather simple profiles within the constraints of these rules and to
introduce sophistication only where it is needed.

Many important aspects of the one-dimensional heat-conduction problem
still remain to be discussed. It is to these topics that we now turn,

4.2-2 The Grid Spacing

For the grid points shown in Fig. 3.2, it is not necessary that the distances
(8x)e and (8x),, be equal. Indeed, the use of nonuniform grid spacing is often
desirable, for it enables us to deploy computing power effectively. In general,
we shall obtain an accurate solution only when the grid is sufficiently fine.
But “there is no need to employ a fine grid in regions where the dependent
variable T' changes rather slowly with x. On the other hand, a fine grid is
required where the 7"~ x variation is steep.

A misconception seems to prevail that nonuniform grids lead to less
accuracy than do uniform grids. There is no sound basis for such an assertion.
The grid spacing should be directly linked to the way the dependent variable
changes in the calculation domain. Also, there are no universal rules about
what maximum (or minimum) ratio the adjacent grid intervals should main-
tain,

Since the T~x distribution is not known before the problem is solved,
how can we design an appropriate nonuniform grid? First, one normally has
some qualitative expectations about the solution, from which some guidance
can be obtained. Second, preliminary coarse-grid solutions can be used to find
the pattern of the T'~x variation; then, a suitable nonuniform grid can be
constructed. This is one of the reasons why we insist that our method should
give physically meaningful solutions even for coarse grids. An exploratory
coarse-grid solution would not be useful if the method gave reasonable
solutions only for sufficiently fine grids.

The number of grid points needed for given accuracy and the way they
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should be distributed in the calculation domain are matters that depend on
the nature of the problem to be solved. Exploratory calculations using only a
few grid points provide a convenient way of learning about the solution. After
all, this is precisely what is commonly done in a laboratory experiment.
Preliminary experiments or trial runs are conducted, and the resulting
information is used to decide the number and locations of the probes to be
installed for the final experiment.

4.2-3 The Interface Conductivity

In Eq. (4.3), the conductivity k, has been used to represent the value of &
pertaining to the control-volume face e; similarly, k., refers to the interface w.
When the conductivity k is a function of x, we shall often know the value of
k only at the grid points W, P, £, and so on. We then need a prescription for
evaluating the interface conductivity, say k., in terms of these grid-point
values. The following discussion is, of course, not relevant to situations of
uniform conductivity.

Nonuniform conductivity can arise from nonhomogeneity of the material,
as in a composite slab. Even in a homogeneous material, the temperature
dependence of conductivity can lead to a conductivity variation in response to
the temperature distribution. In_the treatment of the general differential
equation for ¢, the diffusion coefficient I" will be handled in the same way as
the conductivity k. Significant variations of I' are frequently encountered, for
example, in turbulent flow, where I' may stand for the turbulent viscosity or
turbulent conductivity. Thus, a proper formulation for nonuniform k¥ or I'is
highly desirable.

The most straightforward procedure for obtaining the interface con-
ductivity k. is to assume a linear variation of & between points P and F.

“Then,

.

Tl ke = fokp (1 L)k “.5)

where the interpolation factor f, is a ratio defined in terms of the distances
shown in Fig. 4.1:

— (Sx)e-i-
fe G (4.6)
If the interface e were midway between the grid points, f, would be 0.5, and
ke would be the arithmetic mean of kp and kg.

We shall shortly show that this simple-minded approach leads to rather
incorrect implications in some cases and cannot accurately handle the abrupt
changes of conductivity that may occur in composite materials. Fortunately, a
much better alternative of comparable simplicity is available. In developing
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-~ bxlfy ————

(5X)e——’i<“‘-(5x)e+——-—

@]
E

v 0

Figure 4.1 Distances associated with the interface .

this alternative, we recognize that it is not the local value of conductivity at
the interface e that concerns us primarily. Our main objective is to obtain ;‘
_good representation for the heat flux q. at the interface via

qe = M s (4 7)

(62, '
which has, in effect, been used in deriving the discretization equation (4.2).
The desired expression for %, is the one that leads to a “correct” ¢,.

Let us consider that the control volume surrounding the grid point P is
filled with a material of uniform conductivity kp, and the one around £ with
a material of conductivity kg. For the composite slab between points P and
E, a steady one-dimensional analysis (without sources) leads to

Tp — T

Yo = BxveThp ¥ Gog iy (4.38)

Combination of Eqs. (4.6)~(4.8) yields

-

A T
k, = [—_1¢ + ‘e P : . .
¢ < kp k5> AR ) ‘FV*‘ [ ’ (49) v

When the interface e is placed midway between P and E, we have fe=0.5; then‘

ko' = 05(kp" + k') (4.10a)
: Ykpky
01 k, = “LPME
e kp +kp (4.10b) -

Equations (4.10) show that k, is the harmonic mean of kp and kg, rather
than the arithmetic mean which Eq. (4.5) would give when £, = 0.5,
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The use of Eq. (4.9) in the coefficient definitions (4.3) leads to the
following expression for ag:

_—

-1 ST e
ap = | OFem G| TS e 411
kp kg A T
A similar expression can be written for ay. Clearly, ag represents the
conductance of the material between points P and £. . .
The effectiveness of this formulation can be quickly seen in the following

two limiting cases:
v1. Let kg — 0. Then, from Eq. (4.9),
ke > 0. (4.12)

This implies that the heat flux at the face of an insulator becomes zero, as
it should. The arithmetic-mean formulation, on the other hand, would have
given a nonzero flux in this situation,

2. Let kp >kE Then

L

ke > 55 . (4.13)
Je
This result has two implications; one is easy to understand, and the other
is more obscure. Equation (4.13) indicates that the interface conductivity
ke is not at all dependent on kp. This is to be expected because the
high-conductivity material around point P would offer negligible resistance
in comparison with the material around E. (The arithmetic-mean formula
would have retained the effect of kp on k,..) The other implication is that
) k. is not equal to kg, but rather 1/f, times it. A little reflection will show
the appropriateness of this. Our purpose is to get a correct value of g, via
Eq. (4.7). The use of Eq. (4.13) yields

~ k(T = Tp)

(4.14)
(5x)e+

de

When kp > kg, the temperature Tp will prevail right up to the interface e,
and the temperature drop 7p— Tg will actually take place over the
distance (6x)e+. Thus, the correct heat flux will be as given by Eq. (4.14).
In other words, the factor f, in Eq. (4.13) can be seen to compensate for
the use of the nominal distance (6x), in Eq. (4.7).

Consideration of these two limiting cases shows that the formulation can
handle abrupt changes in the conductivity without requiring an excessively
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fine grid in the vicinity of the change. This is not only convenient for
conduction calculations in composite slabs, but it has other quite fascinating
implications. These have been described in Patankar (1978) and will be
explained in later chapters.

The recommended interface-conductivity formula (4.9) is based on the
steady, no-source, one-dimensional situation in which the conductivity varies

[eEtuinthecs

in a stepwise fashion from one control volume to the next. Even in situations
with nonzero sources or with continuous variation of conductivity, it performs
much better than the arithmetic-mean formula. This is demonstrated in

Patankar (1978) for some cases for which exact analytical solutions can be
found.

4.2-4 Nonlinearity

The discretization equation (4.2) is a linear algebraic equation, and we shall
solve the set of such equations by the methods for linear algebraic equations.
We shall, however, frequently encounter nonlinear situations even in heat
conduction. The conductivity k may depend on T, or the source § may be a

nonlinear funztion, of T. Then, the coefficients in tllgvrgi§g‘r¢ti‘za‘tignﬁgggation

will themselves depend on T. We shall handle such situations by iteration. This
process involves the following steps:

i. Start with a guess or estimate for the values of 7 at all grid points.

2. From these guessed 77s, calculate tentative values of the coefficients in the
discretization equation.

3. Solve the nominally linear set of algebraic equations to get new values of
T.

4. With these T7s as better guesses, return to step 2 and repeat the process
until further repetitions (called iterations) cease to produce any significant
changes in the values of 7.

This final unchanging state is called the convergence of the iterations.® The
converged solution is actually the correct solution of the nonlinear equations,
although it is arrived at by the methods for solving linear equations.

It is, however, possible that successive iterations would not ever converge
to a solution. The values of T may steadily drift or oscillate with increasing
amplitude. This process, which is the opposite of convergence, is called
divergence. A good numerical method should minimize the possibilities of
divergence. As we shall see later, adherence to our four basic rules promotes

*Sometimes, the term convergence is used for the process by which successive grid
refinement brings the numerical solution closer to the exact solution. We shall refer to
this aspect as the “accuracy™ of the numerical solution, and reserve the word convergence
for the convergence of iterations.
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convergence; we shall also discuss other strategies for avoiding divergence. At
this point, it is sufficient to note that our procedure is not limited to linear
problems, and that any nonlinearity can, at least in principle, be handled by
the iterative technique just outlined.

4.2-5 Source-Term Linearization

When the source S depends on 7T, we express the dependence in a linear form
given by Eq. (4.4). This is done because (1) our nominally linear framework
would allow only a formally linear dependence, and (2) the incorporation of
linear dependence is better than treating S as a constant.

When S is a nonlinear function of T, we must /inearize it, i.e., specify the
values of So and Sp, which may themselves depend on 7. During each
iteration cycle, S and Sp would then be recalculated from the new values of
T. The linearization of S should be a good representation of the S~T
relationship. Further, the basic rule about nonpositive Sp must be obeyed.

There are many ways of splitting a given expression for § into So and
SpTp. Some of these are illustrated by the following examples. The numbers
appearing in these examples have no particular significance. The symbol Th is
used to denote the guess value or the previous-iteration value of Tp.

Example 1 Given: S = 5 — 47T, Some possible linearizations are:

1. So=35, Sp=—4 This is the most obvious form and is recommended.

2. S¢=5—4Th, Sp=0. This is the approach of the lazy person who
throws the entire S into S and sets Sp equal to zero. This approach,
however, is not impracticable and is perhaps the only choice when the
expression for S is very complicated.

3. Se=5+7T%, Sp=—11. This proposes a steeper S~ T relationship
than the one actually given. The result will be that the convergence of
the iterations will slow down. However, if there are other non-
linearities in the problem, this slowdown may actually be welcome.

Example 2 Given: § = 3 + 77. Some possible linearizations are:

1. S¢ =3, Sp=7. In general this is not acceptable, as it makes Sp
positive. If the problem could be solved without iteration, this
linearization would give the correct solution, but if iteration is
employed for some reason (such as the nonlinearity of other terms),
the presence of a positive Sp may cause divergence.

2. Sc=3+7Tf, Sp=0. This is the practice one should follow when a
negative Sp is not naturally forthcoming.

3. S¢ =3+ QT;, Sp=—2. This is an artificial creation of a negative Sp.
It will, in general, slow down the convergence.
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Example 3 Given: $ = 4 — ST>. Some possible linearizations are:

1. S¢=4—5TF%, Sp=0. This is the lazy-person approach, which fails
to take advantage of the known dependence of S on T.

2. Sc=4, Sp= -—ST;Z‘ This looks like the correct linearization, but the
given § ~ T curve is steeper than this implies.

3. Recommended method:

ds\*
S=5*+ (ﬁ) (Tp—Tpy=4— ST — 15T3*(Tp — T3) .
Thus,

Se =4+ 1075,  Sp=—15T77.

This linearization represents the tangent to the S ~ T curve at T}’f.
4. Sc=4+20TF3, Sp=—25T#%. This linearization, which is steeper
than the given S ~ T curve, would slow down convergence.

These four possible linearizations are shown in Fig. 4.2 along with the
actual S~ T curve. On_such a diagram, straight lines of positive slope
would violate basic Rule 3. Among the negative-slope lines, the tangent to
the given curve is usually the best choice. Steeper lines are acceptable, but
would normally lead to slower convergence. Less steep lines are unde-
sirable, as they fail to incorporate the given rate of fall of § with T.

This discussion of the source-term linearization is adequate for present
purposes. Further considerations are given in Chapter 7.

Given curve
S=4-5T°

Figure 4.2 The four possible
T linearizations for Example 3.
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4.2-6 Boundary Conditions

Let us consider that, for the one-dimensional problem, the string of grid
points shown in Fig. 4.3 is chosen. There is one grid point on each of the two
boundaries. The other grid points will be called the inrernal points, around
cach of which is shown a conirol volume. A discretization equation like Eq.
(4.2) can be written for each such control volume. It Eq. (4.2) is regarded as
an cquation for Tp, we then have the necessary equations for all the unknown
temperatures at the internal grid points. Two of these equations, however,
involve the boundary grid-point temperatures. It is through the treatment of
these boundary temperatures that the given boundary conditions are intro-
duced into the numerical solution schenie.

Since it is not necessary to discuss the two boundary points separately,
attention will be focused on the left-hand boundary point 8, which is adjacent
to the first internal point / as shown in Fig, 4.3, Typically, three kinds of
boundary conditions are encountered in heat conduction. These are:

vi. Given boundary temperature

2. Given boundary heat tlux

/3. Boundary heat flux specified via a heat transfer coefficient and the
temperature of the surrounding fluid

If the boundary temperature is given (i.e., if the value of Tg is known),
no particular difficulty arises, and no additional equations are required. When
the boundary temperature is nof given, we need to construct an additional
equation for Tp. This is done by integrating the differential equation over the
“hal” _control volume shown adjucent to the boundary in Fig. 4.3. (This
control volume extends only on one side of the grid point B. This is why we
refer to it as the half control volume.) An enlarged view of this control
volume is given in Fig. 4.4. Integrating Eq. (4.1) over this control volume and
noting that the heat flux ¢ stands for —k dT/dx, we get

dp —Y; + (SC + SPTB) Ax =0 s (415)

b

/I'ypical control volume

Figure 4.3 Control volumes for the internal und boundary points.
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- (8x);

MY

AN

I

Figure 4.4 Half control volume near
the boundary.

where the source term has been linearized in the usual fashion. The interface
heat flux g; can be written along the lines of Eq. (4.7). The result is

_ k(T —

Ty)
+ (S + =
ap o, (S¢ +SpTg) Ax=0. (4.16)

. Further implementation of this equation depends on what is given about
the boundary heat flux gpg. If the value of gp itself is given, the required
equation for Tz becomes

— agly =a;T; + b, (4.17)
where
ki
=-——, 4.
ar 6X)i ( 18(1)
b=Sc Ax +qp, (4.18b)
ag =a; — Sp Ax. (4.18¢)

If the heat flux qg is specified in terms of a heat transfer coefficient A
and a surrounding-fluid temperature Ty such that ™

ag =n(Ty—Tg), (4.19)

then the equation for T becomes

s agTg=a,T; + b, (4.20)
where
o= i (4.210)
(6x);

*
It may be recalled that we used the symbol £ in Chapter 2 to denote the specific
enthalpy. However, no confusion with the heat transfer coefficient 4 is likely to arise.
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b=Sc Ax + Ty, (4.210)
llB:d[“Sp Ax + h. (421())

In this manner we are able to construct the required number of equations for
the unknown temperatures. We shall now describe the method for solving
them.

4.2-7 Solution of the Linear Algebraic Equations

The solution of the discretization equations for the one-dimensional situation
can be obtained by the standard Gaussian-elimination method. Because of the
particularly simple form of the equations, the elimination process turns into a

delightfully convenient algorithm. This is sometimes called the Thomas

algorithm or the TDMA (7riDiagonal-Matrix Algorithm). The designation
TDMA refers to the fact that when the matrix of the coefficients of these
equations is written, all the nonzero coefficients align themselves along three
diagonals of the matrix.

For convenience in presenting the algorithm, it is necessary to use
somewhat different nomenclature. Suppose the grid points in Fig. 4.3 were
numbered 1, 2, 3, ..., N, with points 1 and &V denoting the boundary points.
The discretization equations can be written as

4Ty =0Ty Ty Hd; (4.22)

fori=1, 2,3, ..., N. Thus, the temperature T} is related to the neighboring
temperatures T;4, and T;_;. To account for the special form of the
boundary-point equations, let us set

¢y =0 and by =0, (4.23)

so that the temperatures 7y and T4 will not have any meaningful role to
play. (When the boundary temperatures are given, these boundary-point
equations take a rather trivial form. For example, if 7, is given, we have
a; =1,by =0, ¢; =0, and d; = the given value of T,.)

These conditions imply that 7, is known in terms of T,. The equation
for i =2 is a relation between Ty, T, and T3. But, since 7, can be expressed
in terms of T,, this relation reduces to a relation between T, and T5. In
other words, T, can be expressed in terms of T5. This process of substitution
can be continued until T is formally expressed in terms of Tp4 . But,
because T 4, has no meaningful existence, we actually obtain the numerical
value of T, at this stage. This enables us to begin the “back-substitution”
process in which Ty, is obtained from Tp, Ty ftom Ty, ..., Ty
from T3, and T, from T,. This is the essence of the TDMA.
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Suppose, in the forward-substitution process, we seek a relation
T; =PiTisy T O (4.24)
after we have just obtained
Ty =P T+ Qi (4.25)
Substitution of Eq. (4.25) into Eq. (4.22) leads to
@ Ty =b;Tiyy + (P Ti + Qi) t d;, (4.26)

which can be rearranged to look like Eq. (4.24). In other words, the
cocfficients P; and Q; then stand for

b:
po=_ 2 _
gy ePiy (4.274)
di +¢; Qi
i TG o)
o 2 — P (4.27b)

These are recurrence relations, since they give P; and Q; in terms of P;_y and
Q;_ . To start the recurrence process, we note that Eq. (4.22) for i=1 is
almost of the form (4.24). Thus, the values of P, and Q; are given by

d
Py = b and 0, ==, (4.28)
ay a;
[It is interesting to note that these expressions do follow from Eg. (4.27)
after the substitution ¢; = 0.]
At the other end of the P;, Q; sequence, we note that by = 0. This leads

to Py = 0, and hence from Eq. (4.24) we obtain
Ty =0n. (4.29)

Now we are in a position to start the back substitution via Eq. (4.24).
Summary of the algorithm.

—

. Calculate P; and Q, from Eq. (4.28).

. Use the recurrence relations (4.27) to obtain P; and Q; fori=2,3, ...,
N.

. Set Ty = Qp-

. Use Eq. (4.24) for i=N—1,N—2, ..., 3,2, 1 to obtain Ty_y, Ty—o,
o, 3, Ty, T

%)

RSN
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The tridiagonal-matrix algorithm is a very powerful and convenient
cquation solver whenever the algebraic equations can be represented in the
form of Eq. (4.22). Unlike general matrix methods, the TDMA requires
computer storage and computer time proportional only to N, rather than to
N%oor N3,

4.3 UNSTEADY ONE-DIMENSIONAL CONDUCTION

4.3-1 The General Discretization Equation

With reference to the general differential equation for ¢, we have now seen, at
least in the one-dimensional context, how to handle the diffusion term and
the source term. Here, we turn to the unsteady term and temporarily drop the
source term, since nothing new needs to be said about it. Thus, we seek to
solve the unsteady one-dimensional heat-conduction equation

oT o [ ar
—_— = k —— .
POsr T < ax> (4.30)

Further, for convenience, we shall assume pc to be constant. (In Chapter 2, it
was shown how the heat conduction equation could be modified to take
account of the variable specific heat ¢. See Problem 2.2.)

Since time is a one-way coordinate, we obtain the solution by marching
in time from a given initial distribution of temperature. Thus, in a typical
“time step” the task is this: Given the grid-point values of T at time ¢, find
the values of T at time r + Ar. The “old” (given) values of T at the grid
points will be denoted by Tg, Tg, T(;)V, and the “new” (unknown) values at
time ¢ + Ar by Tp, Tk, T)y.

The discretization equation is now derived by integrating Eq. (4.30) over
the control volume shown in Fig. 3.2 and over the time interval from ¢ to
t + Ar. Thus,

e t+ Ar t+ Ar [
T a [, or
— drdx = — |k =) dxur, :
pc// o X / / . < ax> x (4.31)
w t t w

where the order of the integrations is chosen according to the nature of the
term. For the representation of the term 07/0r, we shall assume that the
grid-point value of T prevails throughout the control volume. Then,

e t+Ar
oc g—zj didx =peAx (Th — T§) . (4.32)

w T
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Following our steady-state practice for k 3T/0x, we obtain
t+Ar

keTe —Tp) _ kwTp = Tw) | 4 (433
(6x)e (CR

pe Ax (Tp — Tp) =
4
It is at this point that we need an assumption about how Tp, Tg, and Ty

vary with time from ¢ to ¢ + Ar, Many assumptions are possible, and some of
them can be generalized by proposing

t+ At
Tp dt = [fTp + (1 —)TP] At (4.34)
t

where f is a weighting factor between O and 1. Using similar formulas for the
integrals of T and Ty, we derive from Eq. (4.33)

AX oy oy _ o | ke(TE = Tp) _ ky(Tp — Tw)
pc AL (TP‘ Tpy =1 [ 52), %) :]

0 0 _ 40
(1) [ke(?gx; Te) — kw(%’x)wTw)i\ L (435)

¢

While rearranging this, we shall drop the superscript 1, and remember that Tp,
Tg, Tw henceforth stand for the new values of T at time ¢ + Af. The re-
sult is

apTp = ag [[Tp + (1 = )TR] +ay [fTw + (1 — /) Ty]

+ [ap — (1 = Nag — 1 = ay] Tp , (4.36)
where
ke
a ) (4.37a)
£ (%)
kW
ay = ; (4.37b)
M ex)w
p=LEBX 4.37c¢
ap A7 ( )
ap = fug + fay +ap . (4.37d)
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4.3-2 Explicit, Crank-Nicolson,
and Fully Implicit Schemes

For certain specific values of the weighting factor f, the discretization
equation reduces to one of the well-known schemes for parabolic differential
equations. In particular, f=0 leads to the explicit scheme, f=10.5 to the

Crank-Nicolson scheme, and f=1 to the fully implicit scheme. We shall
briefly discuss these schemes and finally indicate the fully implicit scheme as
our preference.

The different values of f can be interpreted in terms of the Tp~¢
variations shown in Fig. 4.5. The explicit scheme essentially assumes that the
old value Tlg prevails throughout the entire time step except at time ¢ + Atf.
The fully implicit scheme postulates that, at time ¢, Tp suddenly drops from
TP to Tp and then stays at Tp over the whole of the time step; thus the
temperature during the time step is characterized by T’p, the new value. The
Crank-Nicolson scheme assumes a linear variation of Tp. At first sight, the
linear variation would appear more sensible than the two other alternatives.
Why then would we prefer the fully implicit scheme? The answer will emerge
very shortly.

For the explicit scheme (f = 0), Eq. (4.36) becomes

KIPTP = (lETg‘ + (le;)V + (ag —dp — lZw)Tg . (438)

This means that Tp is not related to other unknowns such as Ty or Ty, but

is explicitly obtainable in terms of the known temperatures Tg, T2, T?V. This
is why the scheme is called explicit. Any scheme with f# 0 would be implicit;

/ Explicit
Tp bp———— ® —{
t
|
i
: I Crank-Nicolson
Tp II
Th————— T ( T
|
| Fully implticit :
i
i I
| |
| |
| |
| |
L i
1
t t+ At

Figure 4.5 Variation of temperature with time for three different schemes.
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that is, 7p would be linked to the unknowns T and Ty, and the solution of
a set of simultaneous equations would be necessary. The convenience of the
explicit scheme in this regard is, however, offset by a serious limitation. If we
remember the basic rule about positive coefficients (Rule 2) and examine Eq.
(4 38), we note that the coefficient of Tp can become negative. (We consider
TP as a neighbor of Tp in the time direction.) Indeed, for this coefficient to
be positive, the time step Af would have to be small enough so that 4
exceeds ag +ayp. For uniform conductivity and Ax—(éx)e (6x),,, this
condition can be expressed as o

pc(Ax)?

Ar < %

(4.39)

If this condition is violated, physically unrealistic results could emerge,
because the negative coefficient implies that a higher T§ results in a lower Tp.
Equation (4.39) is the well-known stability criterion for the explicit scheme.
It is interesting to note that we have been able to derive this from physical
arguments based on one of our basic rules. The troublesome feature about
condition (4.39) is that, as we reduce Ax to improve the spatial accuracy, we

are forced to use a much smaller Az,

The Crank-Nicolson scheme is usually described as unconditionally stable.
An inexperienced user often interprets this to imply that a physically realistic
solution will result no matter how large the time step, and such a user is,
therefore, surprised to encounter oscillatory solutions. The “‘stability” in a
mathematical sense simply ensures that these oscillations will eventually die
out, but it does not guarantee physically plausible solutions. Some examples
of unrealistic solutions given by the Crank-Nicolson scheme can be found in
Patankar and Baliga (1978).

In our framework this behavior is easy to explain. For f=0.5, the
coefficient of Tp in Eq. (4.36) becomes ap—(ag + ay)/2. For uniform
conductivity and uniform grid spacing, this coefficient can be seen to be pc
Ax/At — k[Ax. Again, whenever the time step is not sufficiently small, this
coefficient could become negative, with its potential for physically unrealistic
results. The seemingly reasonable linear profile in Fig. 4.5 is a good
representation of the temperature-time relationship for only small time
intervals. Over a larger interval, the intrinsically exponentxafdecay of tempera-
ture is akin to a steep drop in the beginning, followed by a flat tail. The
assumptions made in the fully implicit scheme are thus closer to reality than
the linear profile used in the Crank-Nicolson scheme, especially for large time
steps.

“If we require that the coefficient of T3 in Eq. (4.36) must never become
negative, the only constant value of f that ensures this is 1. (Of course, it is
not meaningful for f to be greater than 1.} Thus, the fully implicit scheme

(f=1) satisfies our requirements of simplicity and physically satisfactory
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behavior. It is for this reason that we shall adopt the fully implicit scheme in
this book.

It must be admitted that tor small time steps the fully implicit scheme is
not as accurate as the Crank-Nicolson scheme. Again, the reason can be seen
from Fig. 4.5; the temperature-time curve is nearly linear for small time
intervals. It is tempting to seek a scheme that combines the advantages of
both schemes and shares the disadvantages of neither. Indeed, this has been
done, and the result, called the exponential scheme, has been described by
Patankar and Baliga (1978). That scheme, however, is somewhat complicated,
and its inclusion in this book, in which many other themes are to be
presented, would have made the treatment quite intricate.

4.3-3 The Fully Implicit Discretization Equation

Here we record the fully implicit form of Eq. (4.36). In doing so, we shall
introduce the linearized source term, which we had temporarily dropped. The
result is

KIPTP = aETE + awTW + b 5 (440)
where

ke

ap = s 4.41a

E (6x)e ( )
_ _kw

dy @x)y (4.41b)

- Ax

af = pcm , (4.41¢)

b=Sc Ax +apT}, (4.41d)

(lp:(lE"f‘aw +a£‘Sp AXx . (4416)

It can be seen that, as Af —>eo this equation reduces to our steady-state

discretization equation.

The main principle of the fully implicit scheme is that the new value Tp
prevails over the entire time step. Thus, if the conductivity kp depended on
temperature, it should be iteratively recalculated from Tp, exactly as in our
steady-state procedure. Other aspects of the steady-state procedure, such as
boundary conditions, source-term linearization, and the TDMA, are also
equally applicable to the unsteady situation.

Our detailed consideration of the one-dimensional problem has now set
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the stage for extension to two and three dimensions. The extension is
surprisingly easy.

4.4 TWO- AND THREE-DIMENSIONAL SITUATIONS

4.4-1 Discretization Equation for Two Dimensions

A portion of a two-dimensional grid is shown in Fig. 4.6. For the grid point
P, points £ and W are its x-direction neighbors, while ¥ and S (denoting north
and south) are the y-direction neighbors. The control volume around P is
shown by dashed lines. Its thickness in the z direction is assumed to be unity.
The nomenclature introduced in Fig. 3.2 for distances Ax, (6x),, etc. is to be
extended to two dimensions here. The question of the actual location of the
control-volume faces in relation to the grid points is still left open. Locating
them exactly midway between the neighboring grid points is an obvious
possibility, but other practices can also be employed, some of which will be
discussed in Section 4.6-1. Here we shall derive discretization equations that
will be applicable to any such practice.

We have seen how to calculate the heat flux g, at the control-volume face
between P and £. We shall assume that q., thus obtained, prevails over the
entire face of area Ay X 1. Heat flow rates through the other faces can be
obtained in a similar fashion. In this manner, the differential equation

o o oT 0 aT
—=— |k =)+ =[{k==]+S
pe ot ox < ax> oy < ay> (4.42)

Control volume

Figure 4.6 Control volume
for the two-dimensional
situation.
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can be instantly turned into the discretization equation

(IPTP = [IETE + (IWT;V + aNTN + asTS + b 5 (443)
where
ap = k(%x?y , (4.442)
€
k,, Ay
="w 2 4.44p
N (4:440)
k, Ax
ay = (gy) , (4.44¢)
- n
ko Ax
ag = (%f‘)\ ; (4.44d)
S
@ = BC—%—AX, (4.44¢)
b=Sc Ax Ay +apTp (4.441)
ap=ap +ay +ay +ag +ap —Sp Ax Ay . (4.44g)

The product Ax Ay is the volume of the control volume.

4.4-2 Discretization Equation for Three Dimensions

Finally, we add two more neighbors T and B (top and bottom) for the z
direction to complete the three-dimensional configuration. The discretization
equation can easily be seen to be

apTp = apTe tayTy tayTy +agly +apTy +agTy +0, (4.45)

where
ke Ay Az
S Ze = T 4.46

ag ), (4.46a)
k,, Ay Az

= e 4.46b

WG (4.460)
_ k, Az Ax

a > 4.46¢)

) ¢
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ke Az Ax
ag = ——— "= (4.46d)
5T )y
k, Ax Ay
=L 4.46
ar (62), ( €)
kb Ax Ay
=2 4.46
ag 62, (4.467)
c Ax Ay Az
a})» = p_hAtym , (4.46g)
b =S¢ Ax Ay Az + adTH | (4.46h)

ap=ag tay +tay +agtap+ag +ap—Sp Ax Ay Az . (4.460)

At this point, it is interesting to examine the physical significance of the
various coefficients in the discretization equation. The neighbor coefficients
ag, ay, ay, .. ., ag represent the conductance between the point P and the
corresponding neighbor. The term aPT0 is the internal energy (divided by
At) contained in the control volume at time 7. The constant term b consists
of this internal energy and the rate of heat generation in the control volume
resulting from S¢. The center-point coefficient ap is the sum of all neighbor
coefficients (including a?,, which is the coefficient of the “time neighbor” Tg)
and contains a contribution from the linearized source term.

4.4-3 Solution of the Algebraic Equations

It should be noted that, while constructing the discretization equations, we
cast them into a linear form but did not assume that a particular method
would be used for their solution. Therefore, any suitable solution method can
be employed at this stage. It is useful to consider the derivation of the
equations and their solution as two distinct operations, and there is no need
for the choices in one to influence the other. In a computer program, the two
operations can be conveniently performed in separate sections, and either
section can be independently modified when desired.

So far, we have obtained the multidimensional discretization equations by
a strajghtforward extension of the one-dimensional situation. One procedure
that cannot so easily be extended to multiple dimensions is the tridiagonal-
matrix algorithm (TDMA). Direct methods (i.e., those requiring no iteration)
for solving the algebraic equations arising in two- or three-dimensional
problems are much more complicated and require rather large amounts of
computer storage and time. For a linear problem, which requires the solution
of the algebraic equations only once, a direct method may be acceptable: but
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in nonlinear problems, since the equations have to be solved repeatedly with

shall, therefore, exclude direct methods from further consideration, except to
say that a computer program for the direct solution of discretization
cquations in two dimensions has been published by King (1976).

The alternative, then, is iterative methods for the solution of algebraic
equations. These start from a guessed field of T (the dependent variable) and
use the algebraic equations in some manner to obtain an improved field.
Successive repetitions of the algorithm finally lead to a solution that is
sufficiently close to the correct solution of the algebraic equations. Iterative
methods usually require very small additional storage in the computer, and
they are especially attractive for handling nonlinearities. In a nonlinear
problem, it is not necessary or wise to take the solution of the algebraic
equations to final convergence for a fixed set of coefficient values. With a
given set of these values, a few iterations of the equation-solving algorithm are
sufficient before the updating of the coefficients is performed. It seems that,
in general, there should be a certain balance between the effort required to
calculate the coefficients and that spent on solving the equations. Once the
coefficients are calculated, we must perform sufficient iterations of the
equation solver to extract substantial benefit from the coefficients, but it is
unwise to spend an excessive amount of effort on solving equations that are
based on only tentative coefficients.

There are many iterative methods for solving algebraic equations. We shall
describe only two methods; the first will set the background, and the second
is recommended for use.

The Gauss-Seidel point-by-point method The simplest of all iterative methods
is the Gauss-Seidel method in which the values of the variable are calculated
by visiting each grid point in a certain order. Only one set of 7’s is held in
computer storage. In the beginning, these represent the initial guess or values
frem the previous iteration. As each grid point is visited, the corresponding
value of T in the computer storage is altered as follows: If the discretization
equation is written as

apr =2 (Iannb +b s (447)

where the subscript nb denotes a neighbor point, then Tp at the visited grid
point is calculated from

b2 o+
Tp = —f’ﬂ%‘vbvl’- , (4.48)

where T, stands for the neighbor-point value present in the computer
storage. For neighbors that have already been visited during the current
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iteration, T:b is the freshly calculated value; for yet-to-be-visited neighbors,
T is the value from the previous iteration. In any case, Tpap is the latest
available value for the neighbor-point temperature. When all grid points have
been visited in this manner, one iteration of the Gauss-Seidel method is
complete.

To illustrate the method, we shall consider two very simple examples.

FEquations:
T, =04T, + 0.2, (4.490)
T, =T, +1. (4.49b)
Solution:
Iteration no. 0 1 2 3 4 5 cee oo
T, 0 0.2 0.68 0.872 0.949 0.980 s 1.0
T, 0 1.2 1.68 1.872 1.949 1.980 --- 2.0

It can be seen that, starting with an arbitrary guess, we have been
able to approach the correct solution of the equations. An interesting
feature of iterative methods is that the accuracy of the calculations may
not be very high in the intermediate stages. Approximate calculations, and
even errors, tend to be wiped out, since the intermediate values are used
simply as guesses for the next iteration. We can gain further insight from
the following example.

Equations:
Tl = T2 —1 N (450[1)
T, =2.5T, —05. (4.50b)
Solution:
Iteration no. 0 1 2 3 4
T, 0 -1 —4 —11.5 3025
T, 0 -3 —10.5 —29.25 —76.13

This does not look very hopeful. Here the iteration process has
diverged. What is more surprising is that Eqs. (4.50) are simply rearranged
versions of Eqgs. (4.49), for which we did get convergence.
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We thus conclude that the Gauss-Seidel method does not always converge.
Indeed, a criterion has been formulated by Scarborough (1958) that, when
satistied, guarantees the convergence of the Gauss-Seidel method. We shall
state it without proof and discuss its implications.

The Scarborough criterion. A sufficient condition for the convergence of
the Gauss-Seidel method is

. <1 for all equations 4.51a
Zl{lnbl d ( )

lap] <1 for at least one equation . (4.51b)

Comments. (1) The criterion is a sufficient condition, not a necessary
one. This means that we can, at times, violate the criterion and still obtain
convergence. (2) Although we shall not advocate the use of the Gauss-Seidel
method, it seems desirable that our discretization equations should satisfy the
Scarborough criterion so that convergence is assured by at least one iterative
method. (3) Some of our basic rules, which have been motivated by physical
considerations, can now be seen to fulfill the demands of the Scarborough
criterion. For example, the presence of a negative Sp leads to 2 ap,/ap <1.
Our requirement of positive coefficients can also be viewed in this light. If
some of the coeflicients were negative, then ap (which often equals Z a,y)
could have a magnitude less than Zlagp!l (since 2 ayy, < Zlay,,l), thus leading
to a violation of the criterion. (4) When ap equals Za,, and all the
coefticients are positive, we obtain, for all equations, Zia,pl/lepl = 1. Where,
then, is the equation at least for which Zlagpl/lepl would become less than
unity? The answer lies in the boundary conditions. For the problem to have a
determinate solution, the temperature must be specified for at least one
boundary point. The discretization equation in which this point appears as
one of the neighbors does imply Zla,pl/lepl < 1. This is so because Zlaypl
should be calculated, for the purpose of using the Scarborough. criterion, as
the sum of the coefficients of only the unknown neighbors; ap, on the other
hand, is the sum of all neighbor coefficients including the boundary-point
coefficient.

A major disadvantage of the otherwise attractive Gauss-Seidel method is
that its convergence is too slow, especially when a large number of grid points
are involved. The reason for the slowness is easy to understand; the method
transmits the boundary-condition information at a rate of one grid interval per
iteration.

‘A line-by-line method A convenient combination of the direct method (TDMA)
for one-dimensional situations and the Gauss-Seidel method can now be
formed. We shall choose a grid line (say, in the v direction), assume that the
T’s along the neighboring lines (i.e., the x- and z-direction neighbors of the
points on the chosen line) are known from their “latest” values, and solve for
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the T’s along the chosen line by the TDMA. We shall follow this procedure
for all the lines in one direction and repeat the procedure, if desired, for the
lines in the other direction(s). Although the method is equally applicable to
two or three dimensions, we shall, for convenience, conduct the following
discussion for two-dimensional situations.

Discussion. (1) The line-by-line scheme can be easily visualized with
reference to Fig. 4.7. The discretization equations for the grid points along a
chosen line are considered. They contain the temperatures at the grid points
(shown by crosses) along the two neighboring lines. If these temperatures are
substituted from their latest values, the equations for the grid points (shown
by dots) along the chosen line would look like one-dimensional equations and
could be solved by the TDMA. This procedure is carried out for all the lines
in the y direction and may be followed by a similar treatment for the x
direction. (2) The convergence of the line-by-line method is faster, because the
boundary-condition information from the ends of the line is transmitted az
once to the interior of the domain, no matter how many grid points lie along
the line. The rate of transmission of information in the other direction is
similar to that of the point-by-point method. (3) By alternating the directions
in which the TDMA traverse is employed, we can quickly bring the informa-
tion from all boundaries to the interior. (4) Often the geometry and other
properties of the situation result in, for example, the y-direction coefficients
being much larger than the x-direction coefficients (see Fig. 4.8). In such a
case, especially fast convergence is obtained when the TDMA traverse is
employed in the y direction (the direction of larger coefficients). This is
because the guess values substituted for the temperatures along the

]

y k Chosen line

X

Figure 4.7 Representation of the line-by-line method.
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Figure 4,8 Situation in which the y-direction coefficients are much larger than the x-
direction coectficients.

neighboring lines have insignificant influence on the discretization equations.
(5) In addition to the traverse direction, the sweep direction (ie., the
sequence in which lines are chosen) is also important in some cases. For the
boundary conditions shown in Fig. 4.9, a left-to-right sweep (i.e., choosing the
left boundary of the domain as the first line and then moving successively to
the lines to the right) would transmit the known temperature on the left
boundary into the domain; on the other hand, since no temperatures are given
on the right boundary, a right-to-left sweep would bring no such useful
informatjon. (The same consideration applies to the sequence in which points
are visited in a point-by-point scheme.) The sweep direction is especially
important when convection is present. Quite clearly, a sweep from upstream
to downstream would produce much faster convergence than a sweep against
the stream.

Other iterative methods A commonly used line-by-line method known as ADI

(Alternating-Direction /mplicit) was introduced by Peaceman and Rachford”

(1955). Another iterative technique for solving multidimensional discretization
equations is the Strongly /mplicit Procedure (SIP) described by Stone (1968).
A detailed study of these methods is left to the interested reader.

T=T,
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Figure 4.9 Boundary conditions that make a left-to-right sweep more advantageous,
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4.5 OVERRELAXATION
AND UNDERRELAXATION

In the iterative solution of the algebraic equations or in the overall iterative
scheme employed for handling nonlinearity, it is often desirable to speed up
or to slow down the changes, from iteration to iteration, in the values of the
dependent variable. This process is called overrelaxation or underrelaxation,
depending on whether the variable changes are accelerated or slowed down.
Overrelaxation is often used in conjunction with the Gauss-Seidel method, the
resulting scheme being known as Successive Over-Relaxation (SOR). With the
line-by-line method, the use of overrelaxation is less common. Underrelaxation
is a very useful device for nonlinear problems. It is often employed to avoid
divergence in the iterative solution of strongly nonlinear equations.

There are many ways of introducing overrelaxation or underrelaxation.
Some practices will be described here. We shall work with the general
discretization equation of the form

dep =z aannb +5b. (452)

Further, T4 will be taken as the value of T'p from the previous iteration.
Use of a relaxation factor. Equation (4.52) can be written as

7p = 2o Ton ¥ 0 (4.53)
ap
If we add T3 to the right-hand side and subtract it, we have
Tp = TE + <M - T;,") , (4.54)
ap

where the contents of the parentheses represent the change in Tp produced by

the current_iteration. This change can be modified by the introduction of a

relaxation factor «, so that

+
Tp=Th +a <M — T;‘> , (4.551)
ap
or % Tp =3 apyToy + b + (1 —0) %“ T . (4.55b)

At first, it should be noted that, when the iterations converge, that is, Tp
becomes equal to Tp, Eq. (4.554) implies that the converged values of T do
satisfy the original equation (4.52). Any relaxation scheme, of course, must
possess this property; the final converged solution, although obtained through
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the use of arbitrary relaxation factors or similar devices, must still satisfy the
original discretization equation.

When the relaxation factor « in Eq. (4.55) is between O and 1, its effect
is underrelaxation; that is, the values of Tp stay closer to T5. For a very small
value of «, the changes in Tp become very slow. When « is greater than 1,
overrelaxation is produced.

There are no general rules for choosing the best value of . The optimum
value depends upon a number of factors, such as the nature of the problem,
the number of grid points, the grid spacing, and the iterative procedure used.
Usually, a suitable value of a can be found by experience and from
exploratory computations for the given problem.

There is no need to maintain the same value of a during the entire
computation. The value can be changed from iteration to iteration. Indeed, it
is permissible, though not very convenient, to choose a different value of «
for each grid point.

Relaxation through inertia. Another technique of overrelaxation or under-
relaxation is to replace the discretization equation (4.52) with

(ap +DTp =L an,Top + b +iTh, (4.56)

where 1 is the so-called inertia. For positive values of i, Eq. (4.56) has the
effect of underrelaxation, while negative values of i produce overrelaxation.

Again, there are no general rules for finding the optimum value of the
inertia /; it must be determined from experience with a particular problem.
From Eq. (4.56), we can deduce that i should be comparable to ap, and the
greater the magnitude of / the stronger will be the effect of the relaxation.

Sometimes, the solution of a steady-state problem is obtained through the
use of the discretization equations for a corresponding unsteady situation.
Then the ““time steps” become the same as iterations, and the “old” value T‘g
simply represents the previous-iteration value T;;. In this sense, the term a?aTg
in Eq. (4.46h) acts in the same way as the term iT;< in Eq. (4.56). Thus, the
inertia I is analogous to the coefficient ag in the unsteady formulation. This
analogy suggests one way of deciding on a reasonable value of i. On the other
hand, the practice of solving a steady-state problem via the ‘unsteady
formulation can now be recognized as simply a particular kind of under-
relaxation procedure. The smaller the time step chosen, the stronger is the
resulting underrelaxation. Incidentally, a negative value of the time step Ar
would produce overrelaxation.

4.6 SOME GEOMETRIC CONSIDERATIONS

4.6-1 Location of the Control-Volume Faces

So far, no specific information has been provided as to where the control-
volume faces are to be located in relation to the grid points. The derivation of
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the discretization equation has been conducted in general terms so that it will
be applicable to any particular way of locating the control-volume faces.
Among the many possible practices, we shall look at two different alternatives
and discuss their relative merits. The two practices will be called Practice A
and Practice B. For convenience, the description will refer to a two-
dimensional situation, although the concepts involved are applicable to one-
and three-dimensional situations as well.

Practice A:_faces located midway between the grid points. The most
obvious way of constructing the control volumes is to place their faces
midway between neighboring grid points. This is shown in Fig. 4.10, where
the dashed lines indicate the control-volume faces. The grid is deliberately
drawn to be highly nonuniform; one consequence is that a typical grid point
P, it can be observed, does not lie at the geometric center of the control
volume that surrounds it.

Practice B: grid points placed at the centers of the control volumes.
Another practice, illustrated in Fig. 4.11, is to draw the control-volume
boundaries first and then place a grid point at the geometric center of each
control volume. In this scheme, when the control-volume sizes are non-
uniform, their faces do not lie midway between the grid points.

Discussion. (1) It should be noted that for uniform grids (or uniform
control-volume sizes) the two practices become identical. Therefore, a com-
parison of the two practices is meaningful only in the context of nonuniform
grid spacing. (2) The “midway” faces in Practice A do provide greater
accuracy in calculating the heat flux across the face. As noted in Section 3.4,
the slope of the piecewise-linear temperature profile happens to be the same
as the slope of any parabolic profile evaluated midway between the grid
points. Thus, even though a linear profile is used, the results effectively
correspond to a less crude parabolic profile. (3) On the other hand, the fact
that the grid point £ in Fig. 4.10 may not be at the geometric center of the
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Figure 4.11 Locations of the control-volume faces for Practice B.

control volume represents a disadvantage. The temperature Tp then cannot be
regarded as a good representative value for the control volume in the
calculation of the source term, the conductivity, and similar quantities.
Further, even in the calculation of the heat fluxes at the control-volume faces,
Practice A is not free from objections. The point e in Fig. 4.10, for example,
is not at the center of the control-volume face on which it lies. Then, to
assume that the heat flux at e prevails over the entire face entails some
inaccuracy. (4) Practice B does not have these shortcomings, since the point P
lies, by definition, at the center of the control volume, and points such as e
lie at the center of their respective faces (see Fig. 4.11). The faces,
however, do not lie midway between the grid points, and therefore, unlike
Practice A, Practice B does not benefit from the fortuitous property of the
parabola. (5) Perhaps the decisive advantage of Practice B is the convenience it

offers. Since the control volume tums out to be the basic unit of the

discretization method developed so far, it is more convenient to draw the
control-volume boundaries first and let the grid-point locations follow as
a consequence. For a composite solid, for example, we can locate the
control-volume faces where the discontinuity in the material properties occurs
(see Fig. 4.12). Similarly, discontinuities in boundary conditions can be
conveniently handled. If a part of the boundary is adiabatic and the rest
isothermal, the control volume can be designed so as to avoid the presence of
the discontinuity within a control-volume face; this is shown in Fig. 4.12. In
Practice A, it is much more difficult to arrange that the control-volume faces
fall at the desired locations, because one must first specify the positions of
the grid points. (6) The design of the control volumes near the boundaries of
the calculation domain requires additional consideration. As shown in Fig.
4.13, Practice A leads to the “half” control volumes (introduced in Section
4.2-6) around the boundary grid points. In Practice B, it is convenient to
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completely fill the calculation domain with regular control volumes and to
place the boundary grid points on the faces of the near-boundary control
volumes. This arrangement is shown in Fig. 4.14. A typical boundary face 7 is
not located between the boundary point B and the internal point /, but
actually passes through the boundary point. If a control volume of zero
thickness is imagined around point B, the location of the face i in relation to
the grid points B and 7 can be seen to conform to the general pattern of
Practice B. With such an_arrangement, there is no need for the special
discretization equation for the near-boundary control volume; the available
boundary-condition data, such as given temperature or heat flux, can be
directly used at the boundary face i.

4.6-2 Other Coordinate Systems

So far, we have formulated the discretization equations by using a grid in the
Cartesian coordinate system. In the rest of the book, we shall continue to
employ the same coordinate system for nearly all the treatment. This provides
convenience of presentation and ease of understanding. However, the method
being developed is not limited to Cartesian grids but can be used with a grid
in any orthogonal coordinate system. To illustrate the derivation of the
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discretization equation in other coordinate systems, we shall consider a
two-dimensional situation in polar coordinates, namely r and 6.
The rf counterpart of Eq. (4.42) is

oT 10 [, 0T o [k oT
A N 2 Ry L P
ST r<kar> r89<r ae>

The grid and the control volume in r6 coordinates are shown in Fig. 4.15. The
z-direction thickness of the control volume is assumed to be unity. To obtain
the discretization equation, we multiply Eq. (4.57) by r and integrate with
respect to r and 8 over the control volume. (This operation gives the volume
integral, since 7 dr df represents a volume element of unit thickness.)

Figure 4.15 Control volume in
polar coordinates.

4.57) v
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Following the same procedure as in Section 4.4-1, we obtain the discretization
equation

lIPTp:dETE+HwTW+ZINTN+(ZSTS+b, (458)/
where
k. Ar
ag (0, (4.59q)
_ k, Ar
aw = o (50), (4.59b)
_ kyr, A8
ay @), > (4.59¢)
_ kerg A8
ag 6r, (4.59d)
o _pc AV
Ar (4.59¢)
b=Sc AV +apTp, (4.599)
ap=ag +ay +ay +ag +ap—Sp AV . (4.59g) -

Here AV is the volume of the control volume: it is equal to 0.5(r, +r,) A8
Ar. (It should be noted that AV is not necessarily equal to rp A8 Ar, unless P
lies midway between n and s.)

The foregoing illustration shows that the additional features introduced

by a new coordinate system are_mainly geometric. As long as the required:

lengths, areas, and volumes are properly calculated, no new principles are’

needed. Discretization equations in any orthogonal coordinate system can now !

be derived along the same lines. The requirement of orthogonahty, however, is
essential if profiles defined by just two grid points are to be used. The fact

that the control-volume face e in Fig. 4.15 is perpendicular to the line PE ‘

enables us to calculate the flux across the face from Tp and Tg alone. A more B

complex discretization formula would be needed for nonorthogonal grids.
In the remainder of the book, we shall use only Cartesian coordinates for
all algebraic derivations. The entire treatment, however, is equally applicable

to any orthogonal coordinate system when the obvious geometric changes are
introduced.

4.7 CLOSURE

This chapter marks the first major step in the development of the numerical
method for the general differential equation (2.13). Heat conduction presents
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a physical situation that embodies all the ingredients of the general equation
except convection. Thus, whereas we have nearly completed the construction
of the method, the remaining ingredient, namely convection, does give rise to
many interesting and important considerations. The treatment of convection is
not as straightforward as one would at first expect, and yet a proper
treatment is crucial for handling situations with fluid flow. The next chapter
is devoted to the special features that convection brings into the discretization
method.

PROBLEMS

4.1 TFor the situation shown in Fig. 4.3, if the boundary temperature T'g were given,
explain how you would obtain the heat flux g g at the boundary, affer the calculation of
all the grid-point temperatures. (Note that an attempt to approximate dT/dx at the
boundary is not consistent with the control-volume procedure; the half-control-volume
equation should be used to find ¢pg.)

4.2 When the boundary temperature T in Fig. 4.3 is given, we do not use the half-
control-volume equation for obtaining the temperature ficld. Does this mean that we do
not satisfy energy conservation over the whole calculation domain for the given-
boundary-temperature condition? (See the note for Problem 4.1.)

4,3 The boundary condition expressed by Eq. (4.19) can be thought of as the most
general condition. It is then possible to obtain the two other types of boundary
conditions (namely, given temperature and given heat flux) as limiting cases of this
general condition. Explain how this can be achieved.

4.4 Consider the differential equation

Define a new variable n such that dn = (1/k) dx. Derive the discretization equation by
assuming that 7T is linear in n in a piecewise manner. Express n in terms of x and the
grid-point conductivities by postulating that the conductivity at a grid point prevails
throughout the control volume surrounding it. Verify that the resulting expression for ap
agrees with Eq. (4.11).

4.5 Derive the discretization equation from Eq. (4.1) for the situation in which
S=a+bT, where ¢ and b are constants. Use a piecewise-linear profile for T for
calculating both d7T/dx and S. Comment on the resulting discretization equation with
reference to Rule 2.

4.6 Repeat the derivation in Section 4.3-1 by assuming a piccewise-linear T ~ x profile
also for the a7T/at term. For f=1 (that is, the fully implicit scheme), examine the
neighbor coetficients ag and ayy with reference to Rule 2. [Have you noticed that, with
reference to Eq. (4.40), the 3T/or term behaves much like S (=S¢ + SpTp) and that
aT/at, if regarded as a part of S, would give a negative Sp as desired?}

4.7 In a combined conduction-radiation problem the source term is given by
S=a(T} —T*), where ¢ and T, are constants and g is positive. Write an appropriate
linearization tor the source term.

4.8 The source term for a dependent variable ¢ is given by S = A — Biglg, where 4 and
B ure positive constants. If this term is to be lincarized as S¢ + Spgp, comment on the
tollowing practices ((p; denotes the previous-iteration value):
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@) Sc=A—Bigbl¢p, Sp=10
(b) S¢ = 4, Sp= —Blgpp!
) Sc=A + Bleplep, Sp= --2Bi6pl
@) Sc=A + 9Bi¢plop, Sp= —10BIppl
4.9 Consider a one-dimensional heat conduction situation with S =2 and k =1 every-
where. If four grid points at x =0, 1, 2, 3 are used to span the domain of length 3, write
the four discretization equations (including the half-control-volume equations) using the
following boundary conditions: At x =0, the heat flux into the domain is 5; at x = 3,
the heat flux leaving the domain is 11.
Solve the four discretization equations by:
(@) The TDMA
(b) The Gauss-Seidel iteration
(c) Setting the temperature at the first grid point equal to 100 and applying the TDMA .
to the remaining three equations
(d) Same as (c), but solving the equations by the Gauss-Seidel method
[Comments: With the given boundary conditions, the values of 7 are not uniquely
defined—the differences between temperatures are meaningful, but their absolute values
are not. Hence, by method (¢), no solution can be obtained. The solutions obtained in
(b) and (c) will, in general, differ by a constant. Also, the convergence in (b) will be
faster than in (d). It is, therefore, better to let the solution seek its own level than to
insist on a definite value at a particular grid point.}
4.10 For the explicit scheme, Eq. (4.39) gives the stability criterion for one-dimensional
problems. Derive the criteria for two- and three-dimensional situations from the require-
ment that the coefficient of TI% must remain positive,
4.11 An infinite slab of thickness 8 units has its faces maintained at a temperature of
100. The temperature field is governed by Eq. (4.1) with Xk =5 and S = 50 everywhere.
Using only a few grid points, obtain a numerical solution by the method developed in
this chapter. Compare the values of T from the solution with those from the exact
solution. (If the grid is designed according to Practice A, the agreement with the exact
solution will be perfect. Why?)

4.12 Formulate the following problem in terms of appropriate dimensionless variables:
The governing equation is

aT

k
dx?

+S5S=0,

where k and S are constant. The boundary conditions are

x =0 Ak—dx =h(Tp—T,),
p— ,dT_ i
x =1L —k——dx —hL(TLfl‘f),

where hy and s are the heat transfer coefficients, and T, and T, are the corresponding
boundary temperatures. Solve the problem numerically for the case hOL/kzl and
hLL/k = 2, and compare the results with the exact solution.

4.13 A number of simple fully developed flows are governed by conductionlike
equations. [For example, the fully developed flow between parallel plates obeys the

equation
d du dp
— e —=)-—=0,
dy dy dx
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where « is the velocity, u is the viscosity, and dp/dx is the constant pressure gradient.

Noting that this equation is essentially identical to Eq. (4.1), we can use the discretiza-

tion method developed in this chapter for calculating fully developed flows.

(2) Compute the velocity distribution in the fully developed flow between stationary
parallel plates.

() Let one of the plates be stationary, while the other is moving with velocity
U. Calculate the fully developed flow between the plates for various values of the
parameter L? (dp/dx)/(uU), where L is the distance between the two plates.

(¢) Calculate the velocity field for the fully developed flow in a circular pipe.

4.14 The thermally fully developed region in a duct is characterized by a temperature

ficld that, when expressed in appropriate dimensionless form, remains unchanged with the

streamwise distance. Calculate the fully developed temperature field and the Nusselt
number in a fully developed flow between two parallel plates, assuming that the velocity
profile is parabolic, one plate is adiabatic, and there is a uniform heat flux across the
other plate. [A large variety of fully developed flow and heat transfer problems can now
be solved by the method developed in this chapter. You may wish to verity some of the

results presented in Sparrow and Patankar (1977).]

4.15 Consider unsteady heat conduction in an infinite slab. One face of the slab is

insulated, while a constant heat flux enters the slab through the other face. After the

initia}l transient, the temperature profile will acquire a fixed shape, and all the
temperatures will rise with time at the same rate. Further, this rate will be related to the
amount of heat tlux through the face. Formulate and solve the problem by the
techniques of sready-state heat conduction. [Such “fully developed” regime in unsteady

heat conduction is discussed more fully in Patankar (19790).]

4.16 Consider the one-dimensional heat conduction problem in a rod that is bent into a

circular shape to form an endless loop. It thus has no exposed ends and no meaningful

boundary conditions. Indeed, all grid points will be the internal grid points. The
discretization equations will still have the form (4.22), but the conditions given by Eq.

(4.23) will not apply. Instead, T4 will be interpreted as T,, and T, as Tp. Derive a

solution algorithm (which we shall call the circular TDMA) for such a set of equations.

[This algorithm will be usetul in applying the line-by-linc method in 76 coordinates,

because the grid points forming a 6-direction line may be arranged in an endless loop.

Another application of the circular TDMA, and the details of its derivation, can be found

in Patankar, Liu, and Sparrow (1977).]

4.17 Consider two dependent variables f and g, which are governed by coupled equations

of the form

aif; =bifi+y teifi tdp t e,
and A& = Bigiv1 + Cigi + D + Eify

fori=1,2,3,..., N. Also, ¢, =0, byy=0, ; =0, and By = 0. Using the basic ideas
of the TDMA, derive an algorithm for solving these equations.

4.18 Compare Egs. (4.56) and (4.55b) to show that the inertia / that is implicit in the
use of a relaxation factor « is given by i = (1 — a)ap/a.

4.19 A slab of thickness L has a linear temperature distribution within it trom 7= T, at
x=0t T=7T, at x = L. At time ¢t =0, the face at x = L is made adiabatic, while the
face at x = 0 is still held at 7= T,. Calculate the distribution of (T —T)/(T, —T,) as a
function of x/L and ar/L?, where « is the thermal diffusivity. Continue the computations
until the value of (T — T))/(T, —T,) at x = L falls below 0.5.

4.20 Consider the stecady one-dimensional conduction in a constant-arca fin governed by
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d (AT B2
ax \ax) a4 ST

where A is the heat transfer coefficient between the fin surface and the surrounding fluid
at temperature Ty, A is the cross-sectional area of the fin, and P is the perimeter of the
cross section. The boundary conditions are: At x =0, T'= T, (the base temperature), and
at x =L, k dT/dx =0 (insulated tip). Find the numerical solution for the dimensioniess
temperature (7 — Tf)/(T0 —Tp as a function of x/L for hPL* kA =2, and compare it
with the exact solution. For a uniform grid, find the number of grid points needed to
predict the heat flux at the base within 1% of the exact value. (Note that the proper
linearization of the source term in the given equation is quite obvious. However, if you
attempt to solve the problem iteratively by expressing the entire source term as S and
setting Sp =0, you will observe that the iterations successively produce unrealistic results
and make the convergence difficult to attain.)




CHAPTER

FIVE
CONVECTION AND DIFFUSION

5.1 THE TASK

So far, in the guise of heat conduction, we have seen how to formulate the
discretization equation from the general differential equation containing the
unsteady term, the diffusion term, and the source term. (The description in
the last chapter in terms of temperature T and conductivity k can easily be
recast in terms of the general variable ¢ and its diffusion coefficient I'.) The
only omission has been the convection term, which we shall now include. We
have also dealt with the methods of solving the algebraic equations; as long as
the addition of the convection term does not alter the form of the
discretization equation, the same methods continue to apply.

The convection is created by fluid flow. Qur task in this chapter is to
obtain a solution for ¢ in the presence of a given flow field (ie., the velocity
components and the density). How we know the flow field is a question we
do not ask at this stage. It could have come from experiment, be given as an
analytical solution, be obtained by the method described later in Chapter 6,
or simply be guessed. The origin of the flow-field information is immaterial
here. Having somehow acquired the flow field, we wish to calculate the
temperature, concentration, enthalpy, or any such quantity that is represented
by the general variable ¢.

Although convection is the only new term introduced in this chapter, its
formulation is not very straightforward. The convection term has an in-
separable connection with the diffusion term, and therefore, the two terms

79
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peed_to be handled as one unit. This is why the words “convection and
diffusion’ form the title of this chapter; other terms can also be present, but
only in the background.

It should be remembered that the word diffusion is used here in a
generalized sense. It is not restricted only to the diffusion of a chemical
species caused by concentration gradients. The diffusion flux due to the
gradient of the general variable ¢ is —[' 0¢/0x;, which, for specific meanings
of ¢, would represent chemical-species diffusion flux, heat flux, viscous
stress, etc. The general differential equation (2.15) contains the term
(0/0x;) (T 8¢fox;), which is designated as the diffusion term. Actually, this
expression denotes the sum of three terms for the three coordinate directions;
yet it is convenient to refer to them collectively as the diffusion term. The
same is true of the convection term, which is (3/9x;) (pu;¢).

One feature of the convection-diffusion situation may be noted at this
point. Since the given flow field must satisfy the continuity equation

op 0
— t — ) =0 .
et e ) =0, (5.1)
the general differential equation
i} il ] ¢
— + — (pu;¢py = — (L —| +S .
or (94)) an (P ](1)) ax]' < aX]> (S 2)
can also be written as
¢ a¢ d filo] ,
= otpu o = [T} + 8. 5.3)
Par TP g T ey < o, ) ° 3)

From this form of the equation, it follows that, for given distributions of p,
u;, I, and S, any solution ¢ and its variant (¢ plus a constant) would both
satisfy Eq. (5.3). Under these circumstances, the basic rule about the sum of
the coefficients (Rule 4) continues to apply.

5.2 STEADY ONE-DIMENSIONAL
CONVECTION AND DIFFUSION

As in the last chapter, much can be learned from consideration of the simplest
possible case. Here we shall consider a steady one-dimensional situation in
which only the convection and diffusion terms are present. The governing
differential equation is

L pug) = (F@>, (5.4)
X

dx dx

e

s
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where u rtepresents the velocity in the x direction. Also, the continuity
equation becomes

% (pu)=20 or pu = constant . (5.5)

For deriving the discretization equation, we shall use the three-grid-point
cluster shown in Fig. 5.1. Although the actual location of the control-volume
faces e and w would not influence our final formulation, it is convenient to
assume that e is located midway between P and £, and w midway between W
and P.

5.2-1 A Preliminary Derivation

Integration of Eq. (5.4) over the control volume shown in Fig. 5.1 gives

(pue)e — (pug)yy = <r gf) - (r %“’) . (5.6)

We saw in the last chapter how to represent the term I' d¢/dx from a
piecewise-linear profile for ¢. For the convection term, the same choice of
profile would at first seem natural. The result is

b =13 (g +¢p) and ¢, =73 (9p + Sw) . (5.7

The factor % arises from the assumption of the interfaces being midway; some
other interpolation factors would have appeared for differently located
interfaces. Now, Eq. (5.6) can be written as

o)+ 00) = Sou G0y + ) = HEE—00) - Dl —tw)
(5.8)

where the values of I, and I',, are to be obtained by the prescription
presented in Section 4.2-3. (This applies throughout the book, although such
references to previous sections may not be repeated.)

Control volume

Ve £
I,
|

e
e 6x)y ! (6x)e ———l

Figure 5.1 Typical grid-point cluster for the one-dimensional problem.
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To arrange the equation more compactly, we define two new symbols F
and D, as follows: :

o . i
il

F=pu, DEF

5x

(5.9)

Both have the same dimensions; F indicates the strength of the convection (or
{flow), while D is the diffusion conductance. It should be noted that, whereas
D always remains positive, F can take either positive or negative values
depending on the direction of the fluid flow. With the new symbols, the
discretization equation becomes

appp = apdp tawoy (5.10)
where
ag = D 1;9 , (5.11a)
ay =Dy, + gw ; (5.115)
ap =D, +€5 +Dw—£2”3
=ag tay +(F.—F,) . (5.11¢) v

Discussion. (1) Since by continuity F, =F,,, we do get the property
ap =ap +ay. Further, it is interesting to note from Eq. (5.11¢) that the
discretization equation has this property only if the flow field satisfies
continuity, just as Eq. (5.3) can be derived from Eq. (5.2) only if the
continuity equation is satisfied. (2) The discretization equation (5.10) repre-
sents the implications of the piecewise-linear profile for ¢. This form is also
known as the central-difference scheme and is the natural outcome of a
Taylor-series formulation. (3) It is instructive to consider a simple example in
which

D, =D, =1 and F,=F,=4.

Further, if the values of ¢g and ¢y are given, we can obtain ¢p from Eq.
(5.10). Consider two sets of values:

50!
200, the result is ¢p = 250!

(¢) 11 ¢ = 200 and ¢y, = 100, the result is ¢p
(b) It ¢E 100 and ¢W
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Since ¢p, in reality, cannot fall outside the range of 100-200 established by
its neighbors, these results are clearly unrealistic. (4) Indeed, we could have
anticipated these unrealistic results, because Egs. (5.11) indicate that the
coefficients could, at times, become negative. When |F| exceeds 2D, then,
depending on whether F is positive or negative, there is a possiblity of ag or
aw becoming negative. This will be a violation of one of the basic rules, with
a possible disastrous outcome. (5) Also, the negative coefficients would imply
that ap, which equals X aqy, is less than Zlag,l, which fails to satisfy the
Scarborough criterion. Then, a point-by-point solution of the discretization
equations may diverge. This is why all the early attempts to solve convective
problems by the central-difference scheme were limited to low Reynolds
numbers (i.e., to low values of F/D). (6) For the case of zero diffusion (that
is, ' =0), the scheme leads to ap = 0. Then, Eq. (5.10) becomes unsuitable
for solution by a point-by-point method, and by most other iterative methods.

Since the foregoing preliminary formulation has resuited in an un-
acceptable discretization equation, we must seek better formulations. Some
such possibilities are described in the following subsections.

5.2-2 The Upwind Scheme

A well-known remedy for the difficulties encountered is the upwind scheme,
which is also known as the upwind-difference scheme, the upstream-difference
scheme, the donor-cell method, etc. It was first put forward by Courant,
Isaacson, and Rees (1952) and subsequently reinvented by Gentry, Martin,
and Daly (1966), Barakat and Clark (1966), and Runchal and Wolfshtein
(1969).

The upwind scheme recognizes that the weak point in the preliminary
formulation is the assumption that the convected property ¢, at the interface

is the average of ¢p and ¢p, and it proposes a better prescription. The
formulation of the diffusion term is left unchanged, but the convection term
is calculated from the following assumption:

The value of ¢ at_an interface is equal to the value of ¢ at the grid point
on the upwind side of the face. T

Thus,
b = Op if F, >0, (5.12a)
and b = Og if F, <0, (5.12b)

The value of ¢, can be defined similarly.
The conditional statements (5.12) can be more compactly written if we

b . ~ - e
™ 7‘> \‘FQ = AV\" ‘VI \(r } I2EY / -
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define a new operator.” We shall define [[4, B] to denote the greater of A
and B. Then, the upwind scheme implics

Fe¢e:¢PuFesOﬂ *‘l)gll*Fe,OH . (513)

- =N ST I N .
RS- !

. ComS L E ) LT D
When Eq. (5.7) is replaced by this concept, the discretization equation
becomes

apdp = apdp taydw , (5.14)
where
ag = Do + [—F,, 0], (5.154)
a4y =D, +[F,, 0], (5.15b)

ap =D, t [[Fe,o]] +D,, + [[”FW,OU

:aE+aW+(Fewa)- (5-150)\/

Discussion. (1) 1t is evident from Eqgs. (5.15) that no negative coefficients
would arise. Thus, the solutions will always be physically realistic, and the
Scarborough criterion will be satisfied. (2) What is, however, the rationale for
the main idea underlying the upwind scheme? More insight will be obtained in
the next subsection, but, in the meantime, a lucid physical picture of the
upwind scheme would offer some satisfaction. The scheme is sometimes said
to be based on the *tank-and-tube” model (Gosman, Pun, Runchal, Spalding,
and Wolfshtein, 1969). As shown in Fig. 5.2, the control volumes can be
thought to be stirred tanks that are connected in series by short tubes. The
flow through the tubes represents convection, while the conduction through
the tank walls represents diffusion. Since the tanks are stirred, each contains a
uniform temperature fluid. Then, it is appropriate to suppose that the fluid
flowing in each connecting tube has the temperature that prevails in the tank

Ho
This new operator (4, B]l is equivalent to AMAXI1(A, B) in the computer
lunguage FORTRAN.,

i, b

1

Figure 5.2 Tank-and-tube model.
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N
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on the upstream side. Normally, the fluid in the tube would not know
anything about the tank toward which it is heading, but would carry the full

legacy of the tank from which it has come. This is the essence of the upwind
scheme.

5.2-3 The Exact Solution
Fortunately, the governing equation {5.4) can be solved exactly if I is taken
to be constant [pu is already constant, as given by Eq. (5.5)]. If a domain
0 <x <L is used, with the boundary conditions
At x=0 o= ¢, (5.16a)
At x=L ¢=¢p, (5.16b)
the solution of Eq. (5.4) is

$—¢o _exp(Px/L)—1

¢ —¢o  exp(P)—1 (.17)
where P is a Peclet number defined by
=
p=fL - (5.18)

It can be seen that_P is the ratio of the strengths of convection and diffusion.
The nature of the exact solution (5.17) can be understood from Fig. 5.3
where the ¢ ~ x variation has been plotted for different values of the Peclet
number. In the limit of zero Peclet number, we get the pure-diffusion (or
conduction) problem, and the ¢~ x variation is linear. When the flow is in
the positive x direction (i.e., for positive values of P), the values of ¢ in the
domain seem to be more influenced by the upstream value ¢,. For a large
positive value of P, the value of ¢ remains very close to the upstream value ¢
over much of the domain. The picture is reversed for negative values of P.
When the fluid flows in the negative x direction, ¢; becomes the upstream
valuc, which dominates the values of ¢ in the domain. For a large negative P,
the value of ¢ over most of the region is very nearly equal to ¢y..
Implications. For constructing the discretization equation, we can now
obtain guidance from Fig. 5.3 regarding the appropriate ¢ ~ x profile between
grid points. (1) It is easy to see why our preliminary derivation failed to give
a satisfactory formulation. The ¢ ~x profile is far from being linear except
for small values of |P|. (2) When |P]is large, the value of ¢ at x =L/2 (the
interface) is nearly equal to the value of ¢ at the upwind boundary. This is
precisely the assumption made in the upwind scheme; but there it is used for
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—P » 1
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!
i Figure 5.3 Exact solution for the
) n one-dimensional convection-diffu-
X sion problem.

all values of |P, not just for large values. (3) When |P| is large, d¢/dx is nearly
zero at x =L/2. Thus, the diffusion is almost absent. The upwind scheme
always calculates the diffusion term from a linear ¢ ~x 'prbfile'ziﬁdifhus
overestimates diffusion at large values of |P|.

If the discretization equation were to be obtained directly from the exact
solution shown in Fig. 5.3, the resuiting scheme would not have any of these
defects. Let us proceed to derive such a scheme, which we shall name the
exponential scheme. It is based on the formulation first presented by Spalding
(1972) and is one of the schemes proposed and employed by Raithby and
Torrance (1974).

5.2-4 The Exponential Scheme

[t is useful to consider a total flux J that is made up of the convection flux
pu¢ and the diffusion flux —I d¢/dx. Thus,

do
J pmnd —
pu¢ — I O (5.19)

With this definition, Eq. (5.4) becomes

SIS
I
o

, (5.20)

which, when integrated over the control volume shown in Fig. 5.1, gives
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Jo—J,=0. (5.21)

Now the exact solution (5.17) can be used as a profile between points P and
E, with ¢p and ¢g replacing ¢, and ¢, and the distance (6x), replacing L.
The substitution of this profile into Eq. (5.19) would give the expression for
Je:

- bp — b _
Jo = F, <¢P + a[;TPe) = l> > (5.22)

where

(pu). (6x), e
Pop="— ==, 2
e lﬂe De (5 3)
and F, and D, are as defined™ by Eq. (5.9). It should be noted that J, does
not depend on the location of the interface between points P and F. Qf
course, an exact solution that obeys Eq. (5.20) must exhibit this behavior.

Finally, substitution of Eq. (5.22) and a similar expression for J,, into Eq.
(5.21) leads to

p — P& _ Sw — ¢p _ 5
F, <¢>P oy 1> F, <¢w e 1> 0, (5.24)

which can be cast into our standard form

apdp = apdr * awdw , (5.25) .
where

1;'8

T p FulDy =1

(5.264)

Fu exp (FrlDy) (5.26b)
exp (F\,/Dy) — 1" .

ap=ag tay +(F, —F,) . (5.260)

*Here [p is to be obtained in the same manner as k, was derived in Eq. (4.9). This
may seem like a neat way in which the exact solution for constant I is boldly modified s
to accept a nonuniform [. Although there would be no objection to such a practice, the
prescription for k. given by Eq. (4.9) (which was derived for the conduction situation)
happens to be the exact formula for T'; even in the convection-diffusion case (see
Problem 5.5).
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These coefficient expressions define the exponential scheme. When used
for the steady one-dimensional problem, this scheme is guaranteed to produce
the exact solution for any value of the Peclet number and for any number of
;:,rld points. Despite its hlmhly desirable behavior, it is not widely used because
(1) exponentials are expensive to compute, and (2) since the scheme is not
exact for two- or three-dimensional situations, nonzero sources, etc., the extra
expense of computing the exponentials does not seem to be justified.

What we really need is an easy-to-compute scheme that has the qualitative
behavior of the exponential scheme. Two such schemes will now be presented;
the second of these is recommended for use.

5.2-5 The Hybrid Scheme

The hybrid scheme was developed by Spalding (1972); it also appears in the
book by Patankar and Spalding (1970) under the name ‘‘high-lateral-flux
modification.”

To appreciate the connection between the exponential scheme and the
hybrid scheme, we shall plot the coefficient ag, or rather its dimensionless
form ag/D,, as a function of the Peclet number P,. From Eq. (5.26) we
deduce that

g _ Pe

D, exp BT (5:27)
The variation of ag/D, with P, is shown in Fig. 5.4. For positive values of P,
the grid point £ is the downstream neighbor, and its influence is seen to
decrease as P, increases. When P, is negative, £ is the upstream neighbor and
has a large influence. Certain specific properties of the exact variation of
a;/D, (shown by the solid line in Fig. 5.4) can be seen to be:

1. For P, = oo,

4E 0
. (5.28a) v
2. For P, & —oo,
ZE , _p,; (5.286) v
-4
3. At P, = 0, the tangent is
4g _ — Pe
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Figure 5.4 Variation of the coefficient 4 g with Peclet number.

The three straight lines representing these limiting cases are also shown in Fig.
5.4. They can be seen to form an envelope of, and represent a reasonable
approximation to, the exact curve. The hybrid scheme is indeed made up of
these three straight lines, so that o

For P, <2,
ag
D, P, , (5.294)
For -2 <P, <2,
ag Pe
2 =] — =
D, 5 (5.29b)
For P, > 2,
ag _
D, 0. (5.29¢)

These expressions can be combined into a compact form by the use of the
special symbol § [, which stands for the largest of the quantities contained

within it. Thus,
_ Pe i)
agp = D¢ || =P, 1 — - af . (5.30a)

or ag = [[—Fe, D, i , OII

(5.300)
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The significance of the hybrid scheme can be understood by observing
that (1) it is identical with the central-difference scheme for the Peclet-
number range —2 <P, <2, and (2) outside this range it reduces to the
upwind scheme in which the diffusion has been set equal to zero. Thus, the
shortcomings of the upwind scheme listed at the end of Section 5.2-3 are not
shared by the hybrid scheme. The name hybrid is indicative of a combination
of the central-difference and upwind schemes, but it is best to consider the

hybrid scheme as the three-line approximation to the exact curve, as shown in

Fig. 5.4,
The convection-diffusion discretization equation for the hybrid scheme
can now be written as

apdp = ap¢p T awdw , (5.31)

ag = [[_Fe: D, — > 0]] (5.32q)
dy = [[Fwa Dw + J] (532b)
—F,)

(5.32¢)

where

“i«?v

ap =ag tay + (Fe —
[t should be remembered that this formulation is valid for any arbitrary
location of the interfaces between the grid pomts and is nor limited to
midway interfaces.

5.2-6 The Power-Law Scheme

It can be seen from Fig. 5.4 that the departure of the hybrid scheme from the
exact curve is rather large at P, = *2; also, it seems rather premature to set
the diffusion effects equal to zero as soon as |P,| exceeds 2. A better
approximation to the exact curve is given by the power-law scheme, which is
described in Patankar (1979a). Although somewhat more complicated than the
hybrid scheme, the power-law expressions are not particularly expensive to
compute, and they provide an extremely good representation of the
exponential behavior.
The power-law expressions for ag can be written as

For £, <—10

b—‘i =P, , (5.33a)
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For —10 < P, < 0,

oo = (1 01P)* =P, (5.33b)
e
For 0 < P, < 10,
2E = (1-0.1P,)°, (5.33¢)
D,
For P, > 10,
aE — inlal
D—e =0. (5.33d)

Comparing these expressions with Egs. (5.29), we observe that, for [P, > 10,
the power-law scheme becomes identical with the hybrid scheme. A compact
form for Eqs. (5.33) can be written as

ag =D, [0, <1 - O'SF 'ﬂ] + [0, —=F.] . (5.34)

The closeness of the power-law scheme to the exact exponential scheme
can be judged from Table 5.1; the difference between the two schemes is too

Table 5.1 Comparison of coefficient values
given by power-law and exponential schemes

Values of a /D,

P, Power-law scheme Exponential scheme
-20 20.00 20.00
—10 10.00 10.00
—$ 5.031 5.034
-4 4.078 4.075
-3 3.168 3.157
—2 2.328 2.313
-1 1.590 1.582
-0.5 1.274 1.271
0 1 1
0.5 0.7738 0.7707
1 0.5905 0.5820
2 0.3277 0.3130
3 0.1681 0.1572
4 0.07776 0.07463
S 0.03125 0.03392
10 0 0.00045
20 0 4.1x 10"
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small for a useful graphical comparison. As mentioned before, the power-law
scheme is the recommended convection-diffusion formulation in this book,
although the hybrid scheme should serve just as well in many situations.

5.2-7 A Generalized Formulation

To obtain further insight into the convection-diffusion formulation and to
construct a general framework into which the various schemes considered so
far can be fitted, we shall now explore some general properties of the
coefticients involved. Let us consider the grid points i and i + 1 separated by
a distance &, as shown in Fig. 5.5. We are interested in representing the roral
flux J crossing an interface between these grid points. By use of Eq. (5.19),
we write

Jé _ _de¢
r Fo d(x/8)’

i

J* (5.35)

where P is the Peclet number, pud/I". The value of ¢ at the interface will be
some weighted average of ¢; and ¢; 4, while the gradient d¢/d(x/6) will be
some multiple of ¢; 4+, — ¢;. Thus, we propose

J¥=Plag; + (1 ~ )¢ 4,1 —B@is1 — 60, (5.36)

where « and § are dimensionless multipliers that depend on P. In this manner,
J" can be expressed as

T =B — APy s (5.37)
where 4 and B are dimensionless coefficients that are functions of the Peclet
number P. (The coefficient A is associated with the grid point i + 1, which is

Ahead of the interface, while B is connected with the grid point 7, which is
Behind the interface, as seen from the chosen coordinate direction.)

1

N
N

o

i+

N
~
i

—-

X

Figure 5.5 Total tflux J between two grid points.
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Figure 5.6 Variation of 4 and B with Peclet number.

Properties of A and B. Two properties of the coefficients 4 and B are
particularly useful in studying their dependence on the Peclet number. First,
we note that if ¢; and ¢; 4+, are equal, the diffusion flux must be zero, and J
would then simply be the convection flux pu¢;. Thus, under these conditions,
we have

JE =Py =Py . (5.38)
Combination of Eqs. (5.37) and (5.38) leads™ to

B=4+pP. _ (5.39)
The second property of A and B is a kind of symmetry between them. If we
reverse the coordinate axis, then P will appear as —P, and 4 and B will
interchange their roles. Thus, the functions A(P) and B(P) must be related by

A(—P) = B(P) (5.40a)
or B(—P) = A(P) . (5.40b)

Implications of the properties. The exact variation of 4 and B with the
Peclet number P, which can be deduced from Eq. (5.22), is shown in Fig. 5.6,
where the aforementioned properties can be observed. The vertical distance
between the A and B curves can be seen to be equal to P; also, the two curves
exhibit symmetry about the P =0 location. The main implication of the two

* .
Alternatively, from Egs. (5.36) and (5.37), we obtain B=Pa+§ and
A = Pa + g — P; these expressions lead to the relationship stated in Eq. (5.39).

B S N N
CHRS

v I : R
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properties is_that the complete A(P) and B(P) functions can be specified once
the function A(P) for only positive values of P is known (Le., the curve shown

as a thick line in Fig. 5.6). This follows since, for P <0,

A(Py= By —P from (5.39)
=A—P)— P from (5.40a)
= A(PYH—P. o (5.41)

Thus, for all values of P, positive and negative, we can write

APy = AP + [P, O, v (5.42)
and then, by use of Eq. (5.39), we get

B(P) = A(P) + [P, 0] . (5.43)

Also, we shall record here, for future use, the following two relations obtained
by combining Egs. (5.37) and (5.39):

S5 Py = A Girn) s 7 (5.44)

JE =Py =B — biv1) - v (5.45)

If we now apply the flux relationship (5.37) to the interfaces e and w
and use Egs. (5.42) and (5.43), we obtain the following general convection-
diffusion formulation:

appp = apdg + aywoéw, (5.46)
where
ap = DA(IP,) + [—F,, 0l , (5.47a)
ay = D, AP + {[F,, 0], (5.47b)
ap=ag +tay T (F, —F,) . (5.47¢)-

The various schemes derived so far can now be thought of as merely
different choices of the function A(|P{). Expressions for A(IP) for the
schemes considered so far are listed in Tuble 5.2 and shown graphically in Fig.
5.7. The degree of satisfactoriness of each function can be judged by
comparison with the exact tunction,

~N
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Table 5.2 The function A(|P|) for different

schemes

Scheme Formula for A(|P})
Central difference 1 —0.51P4

Upwind 1

Hybrid 10,1 —0.5P1]
Power law [0, (1 —0.11PD* ]
Exponential (exact) {Pl/[exp (1P — 1]

5.2-8 Consequences of the Various Schemes

Before leaving the one-dimensional problem, we shall examine the values of ¢p
predicted by the various schemes for given values of ¢p and ¢y. Let us sct,
without loss of generality, the values ¢z =1 and ¢y = 0. Further, let the
distances (6x), and (5x), be equal; then ¢p will be a function of P
(= pudx/TY). The values of ¢p given by the different schemes for various values
of P are shown in Fig. 5.8. (The results of the power-law scheme and the
exact solution are too close to be plotted as separate curves.) All schemes
except the central-difference scheme give what may be termed a physically
realistic solution; the central-difference scheme, on the other hand, produces
some values that lie outside the O-1 range established by the boundary values.

Since it is the grid Peclet number that decides the behavior of the
numerical schemes, it is, in principle, possible to refine the grid (i.e., to use
smaller 5x) until P is small enough (<2) for the central-difference scheme to
yield reasonable solutions. In most practical problems, however, this strategy

1.0
b \ Upwind
Y L
I 0.5 Exponential {exact)
- \\
i X Power law
\\/
I Hybrid
L | 1 . L
° 2 4 6 8
Central difference 1Pl

Figure 5.7 The function A(|P1) for various schemes.
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———
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—0.2¢ | \ 1
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Figure 5.8 Prediction of ¢p by the various schemes for a range of Peclet numbers.

requires excessively fine grids, which are usually not feasible on economic
grounds; in any case, we could not accept such a constraint while seeking
procedures that would give physically realistic solutions even for coarse grids.

5.3 DISCRETIZATION EQUATION
FOR TWO DIMENSIONS

Now we have all the ingredients needed for writing the discretization equation
corresponding to the general differential equation (5.2). At first, we shall
derive only the two-dimensional form, but the same procedure would apply to
three dimensions.

Let us consider the control volume shown in Fig. 5.9. If we employ our
one-dimensional practice of obtaining the total flux J,, and assume that it
prevails over the control-volume face of arca Ay X 1, we shall be in a position
to write the complete discretization equation at once. This is given in Section
5.3-2, to which the reader with no need for the finer details of the derivation
may sately jump.

5.3-1 Details of the Derivation

One subtle detail of the derivation will now be given some attention. Even in
the one-dimensional situation we have seen that ap turned out to be ag + ap

only when the continuity equation was satisfied. Thus, our basic rule about
the sum of the neighbor coefficients (Rule 4) can be satisfied only when we
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involve the continuity equation in the derivation. This practice is illustrated in
the following.
The two-dimensional form of Eq. (5.2) can be written as

0 8J 0J
it + X 4 X =8 .
TR PRl (5.48)

where J,, and J,, are the total (convection plus diffusion) fluxes defined by

- . 9¢
J =pup — 1 P (5.49)
d
and J, =pvp — T 5% , (5.49b)

where u and v denote the velocity components in the x and y directions. The
integration of Eq. (5.48) over the control volume shown in Fig. 5.9 would
give

_ 0,0
(rde —prdr) BXBY 4 g, — g\, 40, = Jy = (Sc + Spép) Ax &y, (5.50)

where the source term has been linearized in the usual manner and, for the
unsteady term, pp and ¢p are assumed to prevail over the whole control
volume. The “old” values (i.e., the values at the beginning of the time step)

X

Figure 5.9 Control volume for the two-dimensional situation.
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are denoted by p% and @?a. In conformity with the fully implicit practice, all
other values (i.e., those without a superscript) are to be regarded as the “new”
values. The quantities J,, J,,, J,,, and J; are the inregrated total fluxes over
the control-volume faces; that is, J, stands for fJ, dy over the interface e,
and so on.

In a similar manner, we can integrate the continuity equation (5.1) over
the control volume and obtain

0-
- Ax Ay . - - -
@p = pe) BXBY | p g bR —F =0, (5.51)
At
where F,, £, F,, and F| are the mass flow rates through the faces of the
control volume. If pu at point e is taken to prevail over the whole interface e,
we can write

A

<

<

F, = (pu), Ay . (5.52a)
Similarly,

Fy, = (pu)y, Ay, (5.25b)

Fy = (pv), Ax, (5.52¢)

Fy = (pv)y Ax . . (5.524)

[f we now multiply Eq. (5.51) by ¢p and substract it from Eq. (5.50), we
obtain

0
Ay - .
(QbP - (tb?’) ££-/A_\:—i + (Je _Fe(pP) _(Jw _f’wq)P) + (']n “Fn‘z)P)
— s — Fsgp) = (Sc + Spop) Ax Ay . (5.53)

This manipulation of Egs. (5.51) and (5.50) to obtain Eq. (5.53) is the
discretization analogue of the combination of Egs. (5.1) and (5.2) to derive

“Eq. (5.3). An alternative would have been to start the derivation of the

discretization equation from Eq. (5.3); but this alternative is not as con-
venient.

The assumption of uniformity over a control-volume face enables us to
employ our one-dimensional practices for the two-dimensional situation. At
this point, we recall that Egs. (5.44) and (5.45) provided a way of expressing

terms such as J, —F,¢p and J,, —F\,,¢p. We use this here in the following
manner:
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Jo — Fepp = ag(dp — 08) , (5.544)
Jyw = Fuwép = ay(dw — ¢p), (5.54b)

where
ag = D, A(|P,]) + [—F,, 0] , (5.554q)
aw = D AP + [Fw, 0] . (5.55b)

Here D, and D,,, like their counterparts F, and F,,, contain the area,Ay of
the faces e and w [see Egs. (5.58) in Section 5.3-2]. With similar expressions
for J,, — F,¢p and J,— Fopp, we are in a position to write the final form of
the discretization equation. Because of the nature of the expressions in Egs.
(5.54), the rule about the sum of the neighbor coefficients is readily satisfied.
When the given velocity and density fields do satisfy the continuity
discretization equation, the foregoing derivation and a derivation based on Eq.
(5.50) alone will yield identical discretization equations. However, when the
given flow field does not satisfy the continuity equation, the two formulations
give different equations and lead to different solutions. We prefer the
formulation that satisfies our basic rule, for the reasons given in Chapter 3.

How could we encounter flow fields that do not satisfy continuity? The
possibility arises because often the flow field is not really given but is

iteratively calculated, just as the temperature-dependent conductivity is up-

dated in a conduction problem. Before the final convergence is attained, the

imperfect flow field at intermediate stages of iteration may not satisfy the

continuity equation. It is for this reason that we have taken special care to
satisfy Rule 4.

5.3-2 The Final Discretization Equation

The two-dimensional discretization equation can now be written as

appp = agdp tawoéw taydy tasés T, (5.56)
where
ag = D A(|P,)) + [—F,, 0] , (5.574)
aw = D, A(P,l) + [F,, 0] , (5.57b)
ay = DyA(IP,1) + [—F,, 0], (5.57¢)

as = DyA(IP) + [[F,, 0], (5.57d)
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0 D?) Ax Ay

dp = =" " > (5.57¢)

b=Sc Ax Ay +apop (5.57)

ap=a5+aw+aN+aS+a?>—SprAy. (557g)

Here ¢p and o refer to the known values at time ¢, while all other values
(6p, 0p, O, dn, Os, and so on) are the unknown values at time 7 + Ar. The
flow rates F,, F,,, F,, and F, have been defined in Egs. (5.52). The

corresponding conductances are defined by
.= ngil , (5.584)
W= {;V)Awy , (5.58b)
D, = Izgy?: , (5.58¢)
Dy = 1;%;};: , (5.58d)

e v Iy g
— P o= P = P = .
P, = ‘De w T n = D_n- s D, (5.59) .

The function A(|P{) can be selected from Table 5.2 for the desired scheme.
The power-law scheme is recommended, for which

A(PD = [0, (1 —0.11P)°] . (5.60)

It can be appreciated that even at this stage the physical significance of
the varicus coefficients in Eq. (5.56) is easy to understand. The neighbor
coefficients ag, a4y, ay, and ag represent the convection and diffusion
“nfluence at the four faces of the control volume, in terms of the flow rate
_and the conductance D. The term 4243 is the known ¢ content of the control
volume (at time ¢) divided by the time step. The remaining terms can be
similarly interpreted.

CONVECTION AND DIFFUSION 101

5.4 DISCRETIZATION EQUATION
FOR THREE DIMENSIONS

At last, we have arrived at our destination. We set out to write a discretization
equation based on the general differential equation (5.2). Now, here it is in
three dimensions (with T and B representing the “top” and “bottom”
neighbors in the z direction):

apdp =agdp +aywoy +ayoy +asés +arpr +agds b, (5.61)

where

ag = D A(IP,) + [—F,, O] , (5.624)
ay = D,A(P,) + [F,, O, (5.62b)
ay = DpA(IP,)) + [—Fy, O], (5.62¢)
ag = DA(IPl) + [Fs, O (5.62d)
ap = DA(PN) + [, O, (5.62¢)
ag = DyA(1Pl) + [[Fp, O] , (5.62f)
= pp Ax Ay Az AZ tAy Az (5.622)

b=Sc Ax Ay Az + apdp , (5.62h)

ap=ag +ay +ay +tag +ap+ag +ap—Sp Ax Ay Az, (5.62)

The flow rates and conductances are defined as

F, = (pu)e Ay Az D, = %%.::ﬂ , (5.634a)
* F,, = (pu)y, Ay Az D, = %%Wﬁ i (5.63b)
F, = (pv), Az Ax D, = %Al , (5.63¢)
F, = (pv); Az Ax p, = s A2 A% (5.63d)

(6¥)s ’
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Iy Ax Ay

Fr=(ow) Ax Ay D= 1t2XAY (5.63¢)
(82),

F, = (ow)y Ax Ay D, = 1p 8X AV (5.63/)
(82)y

The Peclet number P is to be taken as the ratio of F and D; thus, P, = F,/D,,
and so on. The function A(|Pl) is listed in Table 5.2 for various schemes. The
power-law formulation is

AGPYH = [0, (1 — 0.1iPD°] . (5.64)

5.5 A ONE-WAY SPACE COORDINATE

In Chapter 2 we noted that coordinates can be classified as one-way and
two-way, and that the identification of a one-way coordinate offers some
computational advantages. Time is a one-way coordinate, and we have used it
as such in formulating a marching procedure in time. The convection-diffusion
formulation reveals that a space coordinate can also become one-way.

5.5-1 What Makes a Space Coordinate One-Way

We have seen from Fig. 54 or 5.6 that the coefficient of a downstream
neighbor becomes small when the Peclet number is large. When the Peclet
number exceeds 10, the power-law scheme will set the downstream-neighbor
coefficient equal to zero. (The hybrid scheme does this for a Peclet number
greater than 2.) Suppose that, in the two-dimensional situation shown in Fig.
5.10, there is a high flow rate in the positive x direction. Then, for all the
grid points P along a y-direction line, the coefficients ag will be zero. In other
words, ¢p will be dependent on ¢y, ¢y, and ¢g, but not on ¢g. Thus, the x
coordinate will become a one-way coordinate since the ¢ value at any point
will be uninfluenced by any of the downstream values. A marching solution
procedure would then be possible in the x direction.

Even when a space coordinate is not one-way over the whole calculation
domain, its Jocal one-way behavior is often useful in formulating the boundary
_conditions, This is discussed next.

5.5-2 The Outflow Boundary Condition

We described the treatment of the boundary conditions in some detail in
Chapter 4. It has been tacitly assumed that the same treatment applies to the
convection-diffusion problem. However, at an “outflow” boundary, i.e., where
the fluid /eaves the calculation domain, one normally knows neither the value
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Figure 5.10 Situation with a one-way space coordinate.

of ¢ nor its flux. At the outflow boundary shown in Fig. 5.11, for example,
one may not know the temperature or the heat flux. How can we then solve
the problem? The answer is surprisingly simple: No boundary-condition
information is needed at an outflow boundary. Consider the grid shown in the
inset of Fig. 5.11. For all grid points P next to the outflow boundary, the
coefficient ap will be zero if the Peclet number is sufficiently large. Thus, the
coefficients multiplying the boundary values will all be zero, and hence no
boundary values will be needed. In other words, the region near the outflow
boundary exhibits, for large Peclet numbers, local one-way behavior; since the
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Figure 5.11 Example of the outflow boundary.
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boundary points are downstream of the calculation domain, they do not
influence the solution.

It is true that the above argument is based on the Peclet number being
sufficiently large. But, in the absence of any other boundary-condition
information, we can always assume the diffusion coefficient T" at an outflow
boundary to be small and thus work with a large Peclet number. An
assumption such as this, which is a slight distortion of reality, is what we
must resort to if we are to get meaningful solutions in the absence of any
further information about the outflow boundary. The resulting inaccuracy, if
there is any at all, is the price we pay for the freedom to isolate the
calculation domain from the universe that lies downstream of the outflow
! boundary.

‘ If the neglect of the diffusion at an outflow boundary appears, for some
\rcason, to be serious, then we should conclude that the analyst has placed
i the outflow boundary at an inappropriate location. A repositioning of tbe
n boundary would normally make the outflow treatment acceptable. A pgrtlc-
% ularly bad choice of an outflow-boundary location is the one in which there is an
|| “inflow™ over a part of it. An example of this is shown in Fig. 5.12. For such a
I bad choice of the boundary, no meaningful solution can be obtained.
, This may be a convenient place to review the boundary-condition
fipractices for convection-diffusion problems. Whenever there is no fluid flow
across the boundary of the calculation domain, the boundary flux is purely a
diffusion flux, and the practices described in Chapter 4 apply. For those parts
lof the boundary where the fluid flows info the domain, usually the values of
+ {l¢ are known. (The problem is not properly specified if we do not know the
’ avalue of ¢ that a fluid stream brings with it.) The parts of the boundary
lwhcre the fluid Jeaves the calculation domain form the outflow boundary,
twhich we have already discussed.
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Figure 5.12 Good and bad choices of the location of the outflow boundary.
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5.6 FALSE DIFFUSION

In this section, we shall discuss a topic that has caused considerable
controversy, confusion, and misunderstanding among the practitioners of
numerical analysis. There is something called “false diffusion,” which is quite
commonly misinterpreted, but which, in its proper meaning, represents a
major weak point of most convection-diffusion formulations.

5.6-1 The Common View of False Diffusion

It is very common to encounter, in the literature, statements such as (1) the
central-difference scheme has second-order accuracy, while the upwind scheme
is only first-order accurate; or (2) the upwind scheme causes severe false
diffusion. The implication is that the central-difference scheme is better than
the upwind scheme.

It is true that from a Taylor-series expansion one can show that the
central-difference scheme has a truncation error of the order of (Ax)?, while
the upwind scheme has an error of the order of (Ax). However, since the
¢ ~ x variation arising in the convection-diffusion problem is exponential, a
truncated Taylor series ceases to be a good representation of it for anything
but extremely small values of Ax (or, rather, of the corresponding Peclet
number). At larger values of Ax, which is all one can afford in most practical
problems, the Taylor-series analysis is misleading; there, as we have seen, it is
the upwind scheme that gives more reasonable results than the central-
difference scheme.

If we compare the coefficients for the central-difference and upwind
schemes {Egs. (5.11) and (5.15)}, it can be shown that the upwind scheme is
cquivalent to replacing I' in the central-difference scheme with I + puéx/2. In
other words, the upwind scheme seems to augment the true diffusion
coefficient T" by a [ictitious (and hence false) diffusion coefficient pudx/2.
This introduction of an artificial diffusion coefficient is then considered to be
inaccurate, a wrong representation of reality, and hence bad. Again, the
trouble in the argument lies in assuming the central-difference scheme as
accyrate and standard (or the underlying Taylor-series expansion as reliable)
and then viewing the upwind scheme from this frame of reference. In this
manner, one would discover some false diffusion even in the exponential
scheme, which is the exact solution itself. On the other hand, the theory
presented in this chapter leads to the conclusion that the so-called false
diffusion coefficient pudx/2 is indeed a desirable addition at large Peclet
numbers, for it actually tends to correct the wrong implications that would
otherwise follow from the central-difference scheme.

There is no doubt that, for very small Peclet numbers, the central-
difference scheme is more accurate than the upwind scheme. This has already
been shown in a number of diagrams; and our favored schemes such as the
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exponential, the hybrid, and the power-law scheme indeed conform to the
central-difference scheme at very low Peclet numbers. In any case, the
question of false diffusion is never serious at low Peclet numbers, because
then the real diffusion is quite large by comparison. It is for large Peclet
numbers that the matter of false diffusion attains importance. There the
central-difference scheme has little to offer, and all the other schemes that we
have considered show almost identical behavior. It is for this reason that our
remaining discussion will concentrate on very large Peclet numbers and on
the upwind scheme; however, the conclusions will be equally applicable to the
exponential, hybrid, and power-law schemes.

5.6-2 The Proper View of False Diffusion

Having seen that the common view of false diffusion is indeed misleading, we
now turn to what can be truly described as false diffusion. The first thing to
recognize is that false diffusion is a multidimensional phenomenon; it has
absolutely no counterpart in_steady one-dimensional situations. “(Unsteady
one-dimensional situations do suffer from a kind of false diffusion; we shall,
however, confine our attention to steady situations.)

To visualize what is correctly meant by false diffusion, let us consider the
situation shown in Fig. 5.13. Two parallel streams of equal velocity but
unequal temperatures come in contact. If the diffusion coefficient I' is
nonzero, a mixing layer will form in which the temperature gradually changes
from the higher value to the lower one, and the cross-stream width of this
layer will grow in the downstream direction. If, on the other hand, the
diffusion coefficient I' were zero, no mixing layer would form and the
temperature discontinuity would persist in the streamwise direction. The best
situation for observing false diffusion is the one in which tHe real diffusion is
set to zero. If the numerical solution for the I' =0 case produces a smeared

temperature profile (which is characteristic of a nonzero I'), we can conclude
that the numerical scheme entails false diffusion.

(a) (b)

Figure 5.13 Temperature distributions in the presence and absence of diffusion. (@) T # 0;
b)yr=0.
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Cold —»

Figure 5.14 Situation with flow along the x direction.

For ' =0, the central-difference scheme would lead to ap = 0. Therefore,
the usual iterative methods for solving the algebraic equations cannot be used.
If an attempt is made to solve the equations by a direct method, then either a
unique solution is not found or the solutions turn out to be highly unrealistic.

Implications of the upwind scheme. We shall now try to solve the
problem shown in Fig. 5.13b by the upwind scheme for two orientations of
the grid.

1. Uniform flow in the x direction. Let us consider the situation shown
in Fig. 5.14. The flow is aligned in the x direction, and the left-hand
boundary has known temperatures with a sharp discontinuity. Since I' is Zero
and there is no flow in the y direction, the coefficients ay and ag Will be
zero. The coefficient ag of the downstream neighbor will also be zero. Thus,
ap must be equal to ay, and this leads to

op = ¢y . (5.65)

As a result, the given upstream value on each horizontal line will become
established at all points on that line. The temperature discontinuity in the
upstream profile will then be preserved. No false diffusion is, thercfore,
encountered here.

2. Uniform flow at 45° to the grid lines. The situation changes gredtly
when the same problem is solved on a grid in which the grid lines are inclined
at 45° to the flow direction. Let us, for convenience, use a uniform grid With
Ax = Ay. The flow velocities in the x and y directions are equal. The restlt is
while those of the downstream neighbors, ¢g and ap, turn out tope ZEro.
Thus, we have -
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For the grid shown in Fig. 5.15, the temperature discontinuity is represented
by setting the left-boundary temperatures”< equal to 100, and the bottom-
boundary temperatures equal to zero. The resulting solution at the interior
points is written adjacent to each grid point. If there were no false diffusion,
we would have obtained a value of 100 above the diagonal through the lower
left corner, and a value of zero below the diagonal. On the other hand, the
actual solution obtained does represent a smeared temperature profile, much
like the one in Fig. 5.13a.

Remarks. (1) The false diffusion occurs when the flow is oblique to_the
grid lines and when there is a NONZero gradient of the dependent variable in
the direction normal to the flow. (2) An approximate expression for the false
diffusion coeflicient for a two-dimensional situation has been given by de
Vahl Davis and Mallinson (1972); it is

poU Ax Ay sin 20
Miae = - , 5.67
false ™ 4(Ay sin3 0 + Ax cos? 6) (567

where U is the resultant velocity, and 6 is the angle (between O and 90°%)
made by the velocity vector with the x direction. It is easy to see from this
equation that no false diffusion is present when the resultant flow is along
one of the sets of grid lines; on the other hand, the false diffusion is most
serious when the flow direction makes an angle of 45° with the grid lines. (3)
The amount of false diffusion can be reduced by using smaller Ax and Ay
and, whenever possible, by orienting the grid such that the grid lines more or
less align with the flow direction. (4) Since real diffusion is present in many
problems, it is then sufficient to make the false diffusion small in comparison
with the real diffusion. (5) The use of the central-difference scheme is no
remedy for false diffusion. As mentioned earlier, the central-difference scheme
gives highly unrealistic solutions when large Peclet numbers are involved. (6)
The basic cause of false diffusion is the practice of treating the flow across
each control-volume face as locally one-dimensional. For the situation shown
in the inset of Fig. 5.15, the value of ¢ convected by the oblique {low to the
grid point P actually comes from the corner grid point SW. However, this
convection is represented as the effect of two separate streams coming from
the grid points W and S. (7) Schemes that would give less false diffusion
should take account of the multidimensional nature of the flow. It would also

*lt may appear that the temperatures along the lett and bottom boundaries of the
grid in Fig. 5.15 are not really known from the problem specification of Fig. 5.13b.
However, once the exact solution for a problem is known, any domain over which the
exact solution is valid can be chosen, and the boundary values can be prescribed from the
exact solution. This method of constructing test problems that have known exact
solutions has been used by Runchal (1972).
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Figure 5.15 Situation with flow at 45° to the grid lines.

be necessary to involve more neighbors in the discretization equation.
Although a few such schemes have been worked out [for example, Raithby
(1976b)] and have shown an impressive reduction in false diffusion, they are
significantly more complicated and so far insufficiently tested. For these
reasons, we shall not discuss them here. (8) A more detailed discussion of
false diffusion has been given by Raithby (1976a).

5.7 CLOSURE

In this chapter, we have completed the construction of the general discretiza-
tion equation for the dependent variable ¢. The convection term was the only
addition that we made here, but it led to a number of interesting considera-
tions. Our formulation ensures physically realistic behavior and thus holds the
key to successful computation in the presence of fluid flow. The flow field
itself, of course, must also be calculated in most cases. It is to this matter that
we turn our attention in the next chapter.

PROBLEMS

5.1 In a steady two-dimensional situation, the variable ¢ is governed by

div (pug) = div (I grad ¢) +a — bo,
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Figure 5.16 Boundary conditions for
x Problem 5.1.

where p=1, I'=1, a =10, and b =2. The flow feld is such that u=1 and v=4
everywhere. For the uniform grid shown in Fig. 5.16, ax = Ay = 1. The values of ¢ are
given for the four boundarics. Adopting the control-volume design according to Practice
A in Section 4.6-1, calculate the values of ¢, , ¢,, ¢, and ¢, by use of:

(@) The central-difference scheme

(b) The upwind scheme

(¢) The hybrid scheme

(d) The power-law scheme

5.2 Obtain the exact solution of the equation

d e I
—oup—1 =) =8,
dx pH® dx

where pu, T, and § are all constant; thc boundary conditions are ¢ = ¢, at x =0, and
¢ =¢y at x =L, Use the exponential scheme to obtain a numerical solution of the
problem for various values of pul/I' and (SL*IT)/(¢f, — ¢o). Do you get perfect
agreement with the exact solution? Why?

5.3 A parallel-flow heat exchanger is governed by

ar, _ua dT, UA
mpcp -21‘;— = _ZA (T, — Tw) and mece E;_ —

(Tp — To) s

where m, ¢, and T stand for the mass flow rate, the specific heat, and the temperature,
respectively; the subscripts # and ¢ denote the hot and cold fluids, respectively; U is the
overall heat transfer coefficient between the two fluids; 4 is the total heat transfer area;
and L is the length of the heat exchanger. The inlet temperatures T iy and Tg i are
given. Obtain a numerical solution for the dimensionless temperatures (Ty, — T i)/ AT
and (T, — Tgin)/AT as functions of x/L for the conditions mpcp =mc, and uA/
mpey, = 1. The temperature difference AT equals Th,in— T¢ in- Compare the numerical
results with the exact solution. (Although the two coupled equations can be handled
iteratively by sequential solution for T} and T, a direct simultaneous solution is often
advantageous for such a case. This can be achieved by use of the algorithm for two
coupled variables, which was outlined in Problem 4.17.)

5.4 Consider the one-dimensional distribution of a variable ¢ governed by convection and
diffusion. The flow ficld is created by the flow in a porous-walled duct; my denotes the
«-direction mass flow rate along the duct at any location x, and my, is the rate of mass
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leakage through the porous walls per unit length of the duct. Obviously, dm,./dx = —m
The variable ¢ is governed by ’ o o

—g () + m — T4 d’e =
dx x LPL “‘&;2' =0,

where A4 is the duct cross section. When my, is positive (i.e., fluid is leaking out) ¢r, is to
be 1.aken as ¢ within the duct; when my is negative (i.e., fluid is leaking into t’hc duct)
¢r, is to be taken as ¢,, which is the value of ¢ in the ambient outside the duct. For a’
duct length of I, the boundary values are ¢ =¢, at x =0 and ¢ = ¢, at x =1, Assume
mg and T'A to be constant. Use the central-difference and power-law schemes to find the
dimensionless distribution of ¢ for the following two cases:

(@) Atx =0, my /T4 = 40;at x =1, my,, =0

(6) At x =0, my = 0;at x =1, m,I/T4 = 40,

5.5 Write Eq. (5.4) by replacing x with n, where 7 is defined as

Hence show. that, just as Eq. (5.17) is the solution of Eq. (5.4) for the case of uniform
I, the solution for nonuniform T is given by

[N __ exp (oun) — 1

oL — by oxp (punp) — 1’

wh(.are .nL is the value of n at x =L. Note that puny is the Peclet number. If the
derivation on these lines is continued, we get Eq. (5.22), where P, must be defined as
Pg = (ptt)e(6n)e. Assuming that a grid-point value of T prevails throughout the control

Yolume surrounding it, we can express (6n), in terms of the I”s and the distance
increments (shown in Fig. 4.1). Hence, we have

Py = (pu), (é—f‘)ﬁl + BX)es )

g




CHAPTER

SIX

CALCULATION OF THE FLOW FIELD

6.1 NEED FOR A SPECIAL PROCEDURE

6.1-1 The Main Difficulty

In Chapter 5, we formulated the procedure for solving the general differential
equation for ¢ in the presence of a given flow field. However, except in some
very special circumstances, it is not possible to specify the flow field; rather,
we_must calculate_the local velocity components and the density field from
_the appropriate governing equations. The velocity components are governed by
the momentum equations, which are particular cases of the general differential
equation for ¢ (with ¢ =u, I'=y, and so on). Thus, we are tempted to
conclude that we already have developed the method for solving the momen-
tum equations, thereby getting the velocity field. Where, then, is the
difficulty?

If the nonlinearity of the momentum equations appears to be a difficulty,
we only have to remind ourselves that, while treating heat conduction, we saw
how to handle nonlinearity by iteration. In particular, the convection co-
efficient pu being a function of the dependent variable u of the momentum
equation is no different from the conductivity k being a function of the

temperature 7. Starting with a guessed velocity field, we could iteratively

solve the momentum equations to arrive at the converged solution for the
velocity components.

The real difficulty in the calculation of the velocity field lies in the
unknown pressure field. The pressure gradient forms a part of the source term

113
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for a momentum equation. Yet, there is no obvious equation for obtaining

pressure. For a given pressure field, it is true, there is no particular difficulty
in solving the momentum equations. But, the way to determine the pressure
field seems rather obscure.

The pressure field is indirectly specified via the continuity equation. When
the correct pressure field is substituted into the momentum equations, the
resulting velocity field satisfies the continuity equation. This indirect specifica-
tion, however, is not very useful for our purposes unless we attempt a direct
solution of the whole set of the discretization equations resulting from the
momentum and continuity equations. Since we have preferred iterative
methods of solving the discretization equations even for a single dependent
variable, the direct solution for the entire set of velocity components and
pressure seems out of the question.*

6.1-2 Vorticity-based Methods

The difficulty associated with the determination of pressure has led to
methods that eliminate pressure from the governing equations. Thus, in two
dimensions, the elimination of pressure from the two momentum equations by
cross differentiation leads to a vorticity-transport equation. (This derivation is
outlined in Problem 6.1.) This, when combined with the definition of a
stream function for steady two-dimensional situations, is the basis of the
well-known “stream-function/vorticity method” described by, among others,
Dix (1963), Fromm and Harlow (1963), Pearson (1965), Barakat and Clark
(1966), and Runchal and Wollshtein (1969) and made easily accessible
through the book by Gosman, Pun, Runchal, Spalding, and Wolfshtein (1969).

The stream-function/vorticity method has some attractive features. The
pressure makes no appearance, and, instead of dealing with the continuity
equation and two momentum equations, we need to solve only two equations
to ‘obtain the stream function and the vorticity. Some of the boundary
conditions can be rather easily specified: When an external irrotational flow
lies adjacent to the calculation domain, the boundary vorticity can con-
veniently be set equal to zero. There are, however, some major disadvantages
to the stream-function/vorticity method. The value of vorticity at a wall is
difficult to specify and is often the cause of trouble in getting a converged
solution. The pressure, which has been so cleverly eliminated, frequently
happens to be an important desired result or even an intermediate outcome
required for the calculation of density and other fluid properties. Then, the

*Some methods, especially those dealing with compressible flows, regard the density
p as the dependent variuble of the continuity equation and then extract the pressure
from it via an equation of state. This approach is, however, inapplicable to constant-
density or incompressible tlows. In such situations, it is the effect of pressure on velocity,
and not on density, that is of primary importance.
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effort of extracting pressure from vorticity offsets the computational savings
obtained otherwise. But, above all, the major shortcoming of the method is
that it cannot easily be extended to three-dimensional situations, for which a
stream function does not exist. Since most practical problems are three-
dimensional, a method that is intrinsically restricted to two dimensions suffers
from a serious limitation.

For three dimensions, an approach based on vorticity uses six dependent
variables, namely, the three components of the vorticity vector and the three
components of the velocity-potential vector [see Aziz and Hellums (1967), for
example] . Thus, the complexity is actually greater than that of treating the
three velocity' components and pressure directly. Also, the vorticity vector and
the velocity-potential vector involve concepts that are harder to visualize and
interpret than the meanings of the velocity componenis and pressure. In
keeping with our desire to formulate physically meaningful and illuminating
approaches, we seek a method that uses the so-called primitive variables,
namely the velocity components and pressure.

Thus the main task in this chapter is to convert the indirect information
in the continuity equation into a direct algorithm for the calculation of
pressure. A few minor difficulties arise, which we shall discuss before we begin
this task.

6.2 SOME RELATED DIFFICULTIES

6.2-1 Representation of the Pressure-Gradient Term

If we begin to construct the discretization form of the x-direction momentum
equation for the one-dimensional situation shown in Fig. 6.1, the only new
feature is the representation of the term —dp/dx integrated over the control
volume. The resulting contribution to the discretization equation is the
pressure drop p,, — pe, which is the net pressure force exerted on the control
volume of unit cross-sectional area. To express p,, —p, in terms of the
grid-point pressures, we may assume a piecewise-linear profile for pressure.
Further, if the control-volume faces ¢ and w are chosen to lie midway
between the respective grid points, we have

_pwtpp _PptPE_ Pw PE
. . —E (6.1)

Pw — Pe

*This assumption is made here only for algebraic convenience. When the control-
volume faces are nor midway, the difficulties being discussed here do not go away, but
appear in a less clear form. Thus, the assumption of midway faces is not a cause of the
difficulties, but makes the discussion easy to follow.
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e Control volume
Figure 6.1 Three-grid-point cluster.

This means that the momentum equation will contain the pressure difference
between two alternate grid points, and not between adjacent ones. The
implication is that the pressure is, in effect, taken from a coarser grid than the
one actually employed. This would tend to diminish the accuracy of the
solution. But, there is another implication that is far more serious. It can be
best seen from Fig, 6.2, where a pressure field is proposed in terms of the
grid-point values of pressure. Such a zig-zag field cannot be regarded as
realistic; but, for any grid point P, the corresponding py, — pg can be seen to
be zero, since the alternate pressure values are everywhere equal. Thus, the
devastating consequence is that such a wavy pressure field will be felr like a
uniform pressure field by the momentum equation.

The difficulty can be seen more dramatically in a two-dimensional
situation. Just as the x-direction momentum is influenced by py — pg, the
y-direction momentum is affected by pg— pp; then the pressure pp has no
role to play. With this in mind, we can conclude that the pressure field shown
in Fig. 6.3, which is made up of four arbitrary values of pressure arranged in a

p =100 500 100 500 100 500
-O- O— O o— Figure 6.2 Zigzag pressure field.

100 300 100 300 100 300

100 300 100 300 100 300

100 300 100 300 100 300

&’ Figure 6.3 Checkerboard pressure
X field.
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checkerboard pattern, would produce no pressure force in the x or y
direction. Thus, a highly nonuniform pressure field would be treated as a
uniform pressure field by the particular discretized form of the momentum
equations. Should such pressure fields arise during the iterative solution
procedure, there would be nothing to stop them from being preserved till
convergence, since the momentum equations would be oblivious to their
presence.

It should be noted that the actual numbers used in Figs. 6.2 and 6.3 do
not have any particular significance; they simply indicate a pattern that can be
constructed from any arbitrary numbers. It is easy to imagine that the
three-dimensional situation would allow an even more complex pattern, which
the momentum equations would still interpret as a uniform pressure field.

If a certain smooth pressure field is obtained as a solution, any number of
additional solutions can be constructed by adding a checkerboard pressure
field to that solution. The momentum equations would remain unaffected by
this addition, since the checkerboard field implies zero pressure force. A
numerical method that allows such absurd solution$ is certainly undesirable,

6.2-2 Representation of the Continuity Equation

A similar kind of difficulty arises when we try to construct the discretization
form of the continuity equation. For the steady one-dimensional constant-
density situation, the continuity equation is simply

= =0. (6.2)

If we integrate this over the control volume shown in Fig. 6.1, we have
Ue — Uy = 0. (6.3)

Once again, the use of a piecewise-linear profile for u and of the midway
locations of the control-volume faces leads to

Up tug  uy +tup
2 2

=0 (6.4)

or ug —uy = 0. (6.5)

Thus, the discretized continuity equation demands the equality of velocities at
alternate grid points and not at adjacent ones, A consequence is that velocity
fields of the type shown in Fig. 6.4, which are not at all realistic, do satisfy
the discretized continuity equation (6.5). In two- and three-dimensional
situations, similar patterns for all the velocity components can be created;
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Figure 6.4 Wavy velocity field.

they will satisfy the continuity equation but can hardly be accepted as
reasonable or meaningful solutions.

These difficulties must be resolved before a numerical method involving
the velocity components and pressure can be formulated. In the literature,
some methods can be found that pay no special attention to these difficulties.
There, the possible unrealistic solutions are avoided by some special treat-
ment at the boundaries, by overspecification of the boundary conditions, by
underrelaxation with respect to a smooth initial guess, or by good fortune.
But most such methods would accept pressure and velocity fields of the type
shown in Figs. 6.2-6.4 as satisfactory solutions, and, in absence of special
tricks, there is always the danger of arriving at such solutions.

Before we proceed to describe a way out of these difficulties, it is
interesting to note that the troublesome hurdles in numerical analysis seem to
be associated with the first derivatives. The second derivative is always well
behaved and creates no difficulties. On the other hand, all the complications
encountered in Chapter S can be attributed to the first derivative representing
the convection term; and here, the first derivatives of pressure (in the
momentum equations) and of velocity (in the continuity equation) cause
considerable nuisance.

6.3 A REMEDY: THE STAGGERED GRID

The difficulties described so far can be resolved by recognizing that we do not
have to calculate all the variables for the same grid points. We can, if we wish,
employ a different grid for each dependent variable. Of course, we would not
exercise this freedom if there were no benefit to be derived. But, in the case
of the velocity components, there is a significant benefit to be obtained by
arranging them on grids that are different from the grid used for all other
variables. The benefit is that the difficulties described in Section 6.2 will
totally disappear.

Such a displaced or “staggered” grid for the velocity components was first
used by Harlow and Welch (1965) in their MAC method and has been used in
other methods developed by Harlow and co-workers. It forms the basis of the
SIVA procedure of Caretto, Curr, and Spalding (1972) and the SIMPLE
procedure of Patankar and Spalding (1972a).

In the staggered grid, the velocity components are calculated for the
points that lie on the faces of the control volumes. Thus, the x-direction

CALCULATION OF THE FLOW FIELD 119

= S g— P 1:» L
|
{ {

I i et it bt i
e o I S
| | I
_.4.___{..__._,____1_.___.___4',.__...‘.._

|
—— e
{ |
e L___]._
| : |
1 = = .
B S S G S 1

Y Figure 6.5 Staggered locations

X for u.

velocity u is calculated at the faces that are normal to the x direction. The
locations for u are shown in Fig. 6.5 by short arrqws, while the grid points
(hereafter called the main grid points) are shown by small circles; the dashed
lines indicate the control-volume faces. It will be noticed that, with respect to
the main grid points, the u locations are staggered only in the x direction. In
other words, the location for u lies on the x-direction link joining two
adjacent main grid points. Whether the u location is exactly midway between
the grid points depends upon how the control volumes are defined. The u
location must lie on the control-volume face, irrespective of whether the latter
happens to be midway between the grid points.

" Tt is easy to see how the locations for the velocity components v and w
are to be defined. In Fig. 6.6, a two-dimensional grid pattern is shown, with

Figure 6.6 Staggered locations for
uandv. > =u; t = v; 0 = other
variables.
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the locations for u and v placed on the respective control-volume faces. A
corresponding three-dimensional pattern can be imagined in a straightforward
manrer.

An immediate consequence of the staggered grid is that the mass flow
rates across the control-volume faces (the F’s encountered in Chapter 5) can
be calculated without any interpolation for the relevant velocity component.
However, this feature, although it offers some convenience in setting up the
general discretization equation for ¢, is not an important advantage of the
staggered grid.

The important advantages are twofold. For a typical control volume
(shown shaded in Fig. 6.6) it is easy to see that the discretized continuity
equation would contain the differences of adjacent velocity components, and
that this would prevent a wavy velocity field, such as the one in Fig. 6.4,
from satisfying the continuity equation. In the staggered grid, only “reason-
able” velocity fields would have the possibility of being acceptable to the
continuity equation. The second important advantage of the staggered grid is
that the pressure difference between two adjacent grid points now becomes
the natural driving force for the velocity component located between these
grid_points. Consequently, pressure fields such as those in Figs. 6.2 and 6.3
would no longer be felt as uniform pressure fields and could not arise as
possible solutions.

The difficulties described in Section 6.2 can thus be attributed to the
practice of calculating all variables for the same grid points; with the
staggered grid, these difficulties are entirely eliminated.

This freedom from difficulties has its own price. A computer program

" based on the staggered grid must carry all the indexing and geometric

‘7 information_about the locations of the velocity components and must perform

© certain rather tiresome mterpolatlons But the benefits of the staggered grid
<4 are well worth the additional trouble.

6.4 THE MOMENTUM EQUATIONS

We again remind the reader that, if the pressure field is given, the solution of
the momentum equations can be obtained by employing the formulation
completed in Chapter 5 for the gencral variable ¢. In the momentum
equation, ¢ stands for the relevant velocity component, and I' and S are to be
given their appropriate meanings. The adoption of the staggered grid does
make the discretized momentum equations somewhat different from the
discretization equations for the other ¢’s that are calculated for the main grid
points. But this difference is one of detail and not of essence. It arises from
the use of staggered control volumes for the momentum equations.

A staggered control volume for the x-momentum equation is shown in
Fig. 6.7. If we focus attention on the locations for u only, there is nothing
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x
Figure 6.7 Control volume for u,
~

unusual about this control volume. Its faces lie between the point e and the
corresponding locations for the neighbor u’s. The control volume is, however,
staggered in relation to the normal control volume around the main grid point
P. The staggering is in the x direction only, such that the faces normal to
that direction pass through the main grid points P and E. This layout realizes
one of the main advantages of the staggered grid: The difference pp —pp can
be used to calculate the pressure force acting on the control volume for the
velocity u.

The calculation of the diffusion coefficient and the mass flow rate at the
faces of the u control volume shown in Fig. 6.7 would require an appropriate
interpolation; but essentially the same formulation as described in Chapter 5
would be applicable. The resulting discretization equation can be written as

Aoty = X appttny, + b+ (pp — pglA. . (6.6)

Here the number of neighbor terms will depend on the dimensionality of the
problem. For the two-dimensional situation in Fig. 6.7, four u neighbors are
shown outside the control volume; for a three-dimensional case, six neighbor
w's would be included. The neighbor coefficients ag, account for the
combined convection-diffusion influence at the control-volume faces. The term
b is defined in the same manner as in Eq. (5.57) or (5.62), but the pressure
gradient is not included in the source-term quantities Sc and Sp. The pres-
sure gradient gives rise to the last term in Eq. (6.6). Since the pressure
field is also to be ultimately calculated, it would be inconvenient to bury the
pressures in the momentum source term. The term (pp—pg)d, is the

pressure force acting on the u control volume, 4, being the area on which the

pressure difference acts, For two dimensions, A, will be Ay X 1, while in the
three-dimensional case A, will stand for Ay Az.
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x Figure 6.8 Control volume for v.

The momentum equations for the other directions are handled in a similar
manner. Figure 6.8 shows the control volume for the y-direction momentum
equation; it is staggered in the y direction. The discretization equation for v,
can be seen to be

Uy = X appUyp H b F Pr—pMAn, 6.7)

where (pp—py)A4, is the appropriate pressure force. For the three-
dimensional case, a similar equation for the velocity component w can be
written.

The momentum equations_can be solved only when the pressure field is
given or is somehow estimated. Unless the correct pressure field is employed,
the resulting velocity‘_f““x.éfd ‘will not satisfy the continuity equation. Such an
imperfect velocity field based on a guessed pressure field p™ will be denoted
by u*, v*, w*. This “starred” velocity field will result from the solution of

the following discretization equations:

geul = X agpuny + b+ (05 — PE)Ae (6.8)
anuz =Z anbU:b +b+ (P;; - p!ﬁ\‘l)An > (69)
awi =T agwhp + b+ (PP —pPA, . (6.10)

In these equations, the velocity components and pressure have been given the
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superscript *. The location ¢, it can be noted, lies on the z-direction grid line
between the grid points P and 7.

6.5 THE PRESSURE AND VELOCITY CORRECTIONS

Our aim is to find a way of improving the guessed pressure p* such that the
resulting starred velocity field will progressively get closer to satisfying the
continuity equation. Let us propose that the correct pressure p is obtained
from

p=p*+p, (6.11)
where p' will be called the pressure correction. Next, we need to know how

the wvelocity components respond to this change in pressure. The cor-
responding velocity corrections u', v, w' can be introduced in a similar manner:

w=u*+u v=0"+v w=w'+w. (6.12)
If we subtract Eq. (6.8) from Eq. (6.6), we have
ae“,e =z anbu:\b + (p;’ - pIE)Ae - (6.13)

At this point, we shall boldly decide to drop the term I a,pipp from the
equation. An extensive discussion of this action will be presented in Section

6.7-2. For the time being, it is best to pay no attention to this move or to

regard it simply as a computational convenience. The result is

aeuty = (Pp — Pp)de (6.14)
or e =de(Pp — PE) 5 ety (615)
Cyyyt T“,x 4
where
_ A
d,=—% . (6.16)
Qe

Equation (6.15) will be called the velocity-correction formula, which can also
be written as

e = ug +do(pp — p) . (6.17)

This shows how the starred velocity u; is to be corrected in response to the
pressure corrections to produce u,.
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The correction formulas for the velocity components in other directions
can be written similarly:

Up = U: t+d, (p.,P - p.’/‘l) > (618)
w, = wi + di(pp — P77 . (6.19)

Thus, we now have all the preparation needed for obtaining a discretization
equation for p’. It is to this task that we now turn.

6.6 THE PRESSURE-CORRECTION EQUATION

We shall now turn the continuity equation into an equation for the pressure
correction. For the purpose of this derivation, we shall assume that the
density p does not directly depend on pressure. Later, the implications of this
assumption will be discussed. The derivation is given here for the three-
dimensional situation; the one- and two-dimensional forms can easily be
obtained.

The continuity equation is

op  Apu) | dlpy) | Apw) _ o
ar ox ay 0z

(6.20)

We shall integrate this over the shaded control volume shown in Fig. 6.9.
(Only a two-dimensional view is shown for convenience.) The same control
volume, it will be remembered, was used for deriving the discretization
equation for the general variable ¢. For the integration of the term 3p/d¢, we

Figure 6.9 Control voiume for the
continuity equation.
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shall assume that the density pp prevails over the control volume. Also, a
velocity component such as u, located on a control-volume face will be
supposed to govern the mass flow rate for the whole face. In conformity with
the fully implicit practice, the new values of velocity and density (i.e., those
at time ¢+ Ar) will be assumed to prevail over the time step; the old density
o9 (i.e., the one at time f) will appear only through the term 9p/0r.

With these decisions, the integrated form of Eq. (6.20) becomes

(pp = pp) Bx by Az
At

[(pu)e — (p11)yy] Ay Az

+ [(ov), — (pv)s] Az Ax + [(pw); — (pw)p] Ax Ay = 0. (6.21)

If we now substitute for all the velocity components the expressions given by

the velocity-correction formulas [such as Egs. (6.17)-(6.19)], we obtain, after
rearrangement, the following discretization equation for p':

appp = appg T awpy +aypy +asps +appr +agpp + b,  (6.22) vio

where
ag = ped, Ay Az, (6.23a)
ay = pyd, Ay Az, (6.23b)
ay = ppd, Az Ax (6.23¢)
ag = pgdy Az Ax, (6.23d)
ar = p.d; Ax Ay, (6.23¢)
ag = ppdp Dx Ay, (6.231)
ap=ag tay +ay tagtapr+ag, (6.23¢)
p= PR A DY B2y ]y

Ar

+ [(pv™)s = (v™)n] Az Ax + [(pw™)y — (ow™),] Ax Ay . (6.23h)

Since the values of the density p will normally be available only at the main
grid points, the interface densities such as p, may be calculated by any
convenient interpolation. Whatever the method of interpolation, the value of
pe must be consistently used for the two control volumes to which the
interface belongs (see basic Rule ! in Chapter 3).
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It can be seen from Eq. (6.23h) that the term b in the pressure-correction
equation is essentially (the negative of) the left-hand side of the discretized
continuity equation (6.21) evaluated in terms of the starred velocities. If b is
zero, it means that the starred velocities, in conjunction with the available
value of (p% —pp), do satisfy the continuity equation, and no pressure
correction is needed. The term b _thus represents a “mass source,” which the

pressure_corrections (through _their associated velocity corrections) must

annihilate.

By now we have formulated all the equations needed for obtaining the
velocity components and pressure. We are in a position to take an overall look
at the entire solution algorithm.

6.7 THE SIMPLE ALGORITHM

The procedure that we are developing for the calculation of the flow field has
been given the name SIMPLE, which stands for Semi-/mplicit Method for
Pressure-Linked Equations. We shall discuss the significance of the name a
little later. The procedure has been described in Patankar and Spalding (1972),
Caretto, Gosman, Patankar, and Spalding (1972), and Patankar (1975).

6.7-1 Sequence of Operations

The important operations, in the order of their execution, are:

1. Guess the pressure field p*.

2. Solve the momentum equations, such as Eqs. (6.8)-(6.10), to obtain u®,

v, wr

. Solve the p' equation.

. Calculate p from Eq. (6.11) by adding p’ to p*.

5. Calculate u, v, w from their starred values using the velocity-correction
formulas (6.17)-(6.19).

6. Solve the discretization equation for other ¢’s (such as temperature,
concentration, and turbulence quantities) if they influence the flow field
through fluid properties, source terms, etc. (If a particular ¢ does not
influence the flow field, it is better to calculate it after a converged
solution for the flow field has been obtained.)

7. Treat the corrected pressure p as a new guessed pressure p*, return to step
2, and repeat the whole procedure until a converged solution is obtained.

S

6.7-2 Discussion of the Pressure-Correction Equation

It will be recalled that in Section 6.5 we decided to drop the term Z Appting
on our way to the velocity-correction formula (6.17). It is now time to
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explain the motivation for this and to affirm that no ultimate harm is entailed
by this action.

1. If expressions such as auuuy, were retained, they would have to be
expressed in terms of the pressure corrections and the velocity corrections at
the neighbors of uy,. These neighbors would, in turn, bring their neighbors,
and so on. Ultimately, the velocity-correction formula would involve the
pressure correction at all grid points in the calculation domain, and the
resulting pressure-correction equation would become unmanageable. We would,
in effect, be going toward the direct solution of the whole set of momentum
and continuity equations—a route that we decided not to follow. The
omission of the = a,pihy term enables us to cast the p’ equation in the same
form as the general ¢ equation, and to adopt a sequential, one-variable-at-a-
time, solution procedure.

2. The words semi-implicit in the name SIMPLE have been used to
acknowledge the omission of the term S a,pun,. This term represents an
indirect or implicit influence of the pressure correction on velocity; pressure
corrections at nearby locations can alter the neighboring velocities and thus
cause a velocity correction at the point under consideration. We do not
include this influence and thus work with a scheme that is only partially, and
not totally, implicit.

3. The omission of any term would, of course, be unacceptable it it
meant that the ultimate solution would not be the true solution of the
discretized forms of the momentum and continuity equations. It so happens
that the converged solution given by SIMPLE does not contain any error
resulting from the omission of T appitnp. In the converged solution, we
acquire a pressure field such that the corresponding starred velocity field does
satisfy the continuity equation. The details of the construction of the p'
equation then become irrelevant to the correctness of the converged solu-
tion. .

4. Tt is useful to focus attention on the operations during the “final”
iteration, after which we are going to declare convergence. We have, as a result
of all the previous iterations, come to possess a certain pressure field. Using
this as ;g*, we solve the momentum equations fo get u*, v*, w*. Fiom this

velocity field, we calculate the mass source b for the pressure-correction
equation. Since this is going to be the final iteration, the value of b will come
out to be practically zero for all the control yolumes. Then, p' =0 at all grid
points will be an acceptable solution of Eq. (6.22), and the starred velocities
and pressure will themselves be the correct velocities and pressure. Thus, the
fact that the mass source b is zero everywhere is sufficient evidence that we
have acquired the correct pressure field, and the actual solution of the p'
equation is not needed during the final iteration. Obviously, the converged
solution is then uninfluenced by any approximations made in deriving the p'
equation—an equation that we really did not use in the final iteration.

5. The mass source b thus serves as a useful indicator of the convergence
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of the fluid-flow solution. The iterations should be continued until the value
of b everywhere becomes sufficiently small,

6. With this understanding, the pressure-correction equation can be seen
to be merely an intermediate algorithm that leads us to the correct pressure
field, but that has no direct cffect on the final solution. As long as we get a
converged solution, all formulations of the p' equation will give the same final
solution.

7. The rate of convergence of the procedure will, however, depend on the
particular formulation of the p' equation. If too many terms are omitted,
divergence may result.

8. The pressure-correction equation derived in Section 6.6 is also prone
to divergence unless some underrelaxation is used. Many different under-
relaxation practices can be devised. A generally successful practice can be
described as follows: We underrelax u™, v*, w* (with respect to the previous
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10. In the derivation of the p' equation, we considered the density p as
known; the effect of pressure on density was not included. This can be
regarded as a further approximation in the p' equation and justified in a
similar manner. After all, this is the essence of any iterative method, which
focuses attention on a few significant influences in the equation and regards
many other quantities as tentatively known but to be recalculated for the
next iteration. The density p is, in general, to be calculated from an
appropriate equation of state. This may involve a dependence on temperature,
concentration, and even pressure. As long as a converged solution can be
obtained, our approximate p' equation is sufficient. For highly compressible
(especially supersonic) flows, however, the dependence of density on pressure

iteration values of u, v, w) while solving the momentum equations {with a
relaxation factor e, introduced in Eq. (4.55), set equal to about 0.5]; further,
we_add only a fraction of p' to p*. In other words, instead of using Eq.

(6.11), we employ

p=p"+app, (6.24)

with o, set equal to about 0.8, The task of Eq. (6.24) is to calculate p, which
will be used as p* in the next iteration; we can, in the interest of
convergence, take any liberties in adjusting p*. (The values of the relaxation
factors that are mentioned here, namely a=0.5 and a, = 0.8, have been
found to be satisfactory in a large number of fluid-flow computations.
However, it is not implied that these values are the optimum ones or will even
produce convergence for all problems. It should be recognized that matters
such as the optimum relaxation-factor values are usually problem-dependent.
Although experience from previous computations is helpful, new problems
sometimes require different relaxation practices.)

9. It will be noticed that during each iteration the velocities are not left
in their starred condition but are corrected using the velocity-correction
formulas. The resulting velocity fleld exactly satisfies the discretized con-
tinuity equation, irrespective of the fact that the underlying pressure correc-
tions are only approximate. Thus, the computations proceed to convergence
via a series of continuity-satisfving velocity fields. This feature of SIMPLE has
many advantages. A continuity-satisfying velocity f{ield is likely to be more
reasonable than the starred velocities. The use of underrelaxation with respect
to these reasonuable velocities helps in keeping the starred velocities also
reasonable, and the mass sources small, Furthermore, the solution of the other
¢ equations in every iteration can be based on a flow field that satisfies a mass
balance. To realize these advaniages, one precaution is necessary: The velocity
corrections should not be underrelaxed.

is so significant that there is a strong possibility of divergence. For such
situations, it is desirable to derive a “compressible” form of the p’ equation.
This derivation has been set aside as an exercise (Problem 6.6).

11. It can be observed that the p' equation is very much like the
discretization equation for heat conduction. In the velocity-correction formula
(6.15), the velocity correction ul, can be regarded as a heat flux caused by the
temperafure difference pp —pg.

12. The conductionlike nature of the p' equation implies that it does not

exhibit one-way behavior in any space coordinate. It is well known that the
influence of pressure is two-way or elliptic. The one-way behavior in
boundary-layer flows is achieved by making an additional assumption about
the pressure field; for example, the pressure variation normal to a wall is
ignored in" a wall boundary layer. Supersonic flows do exhibit one-way
behavior in that the downstream pressure does not alter the upstream
conditions. Computationally, we should use the compressible form of the p'
equation (Problem 6.6) for supersonic flows. The coefficients in this form are
similar to those in our convection-diffusion formulation, and then they do
imply one-way behavior under appropriate Mach-number conditions.

It is interesting to note such close correspondence between theoretically
established behavior and computational implications.

6.7-3 Boundary Conditions
for the Pressure-Correction Equation

The momentum equations are special cases of the general ¢ equation, and
therefore our general boundary-condition treatment applies to them as well.
However, since the p’ equation is not one of the basic equations, some
comments on the handling of its boundary conditions are appropriate.
Normally, there are two kinds of conditions at a boundary. Either the

_pressure _at the boundary is given (and the velocity is unknown) or the

velocity component normal to the boundary is specified.
Given pressure_at_the boundary. If the guessed pressure field p* is
arranged such that at a boundary p” = pye,, then the value of p’ at the
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Figure 6.10 Boundary control volume for
the continuity equation.

boundary will be zero. This is then akin to the given-temperature boundary
condition in a heat-conduction problem.

Given normal velocity at the boundary. If the grid is designed such that
the boundary “coincides with a control-volume face, the situation will look like
the one shown in Fig. 6.10. The velocity u, is given. In the derivation of the
p' equation for the control volume shown, the flow rate across the boundary
face should not be expressed in terms of uy and a corresponding correction,
but in terms of u, itself. Then, pg will not appear, or ag will be zero in the
p' equation. Thus, no information about pj will be needed.

6.7-4 The Relative Nature of Pressure

The foregoing description of the p' boundary conditions leads to a subtle but
important issue. Let us consider a consrant-density steady situation, in which
the normal velocities are given at al/ boundary locations. Since no boundary
pressure is specified and all the boundary coefficients such as ag will be zero,
the p' equation is left without any means of establishing the absolute value of
p'. The coefficients of the p’ equation are such that ap =2 a,, [see Eq.
(6.23¢)]; this means that p" and p' + C(C is an arbitrary constant) would both
satisfy the p' equation.

The situation, however, presents no real difficulty. For such a problem (in
which the density is unaffected by pressure), the absolute value of pressure—
and hence of pressure correction—is not relevant at all; only differences in
pressure are meaningful, and these are not altered by an arbitrary constant
added to the p' field. Pressure is then a relative variable, not an absolute one.
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If the absolute value of p' is not unique, would the computations
converge at all? Fortunately, an iterative method of solving the algebraic
equations does converge to a solution, the absolute value of which is decided
by the initial guess. A direct method, “however, would encounter a singular
matrix and refuse to give a solution. The remedy then is to arbitrarily assign
the value of p' in one control volume and solve the p' equations for the
remaining control volumes. The same technique can be used in an iterative
method, but letting p’ seek its own level gives faster convergence than insisting
on a definite value at a certain point (see Problem 4.9).

Another way of looking at the mdetern}irulﬁig"ﬁglg is to note that the
continuity equations for all the control volumes do not represent a linearly
independent set. Since, in a properly specified problem, the given boundary
velocities must satisfy overall mass conservation, the continuity equation for
the last control volume does not convey any information that is not already
contained in the continuity equations for all other control volumes. Thus,
even if one of the control-volume equations is discarded (and the value of p'
is prescribed there), the resulting corrected velocity field would satisfy
continuity for all control volumes.

In many problems, the value of the absolute pressure is much larger than
the local differences in pressure that are encountered. If the absolute values of
pressure were used for p, round-off errors would arise in calculating differ-
ences like pp — pg. It is, therefore, best to set p =0 as a reference value at a
suitable grid point and to calculate all other values of p as pressures relative to
the reference value. Similarly, before the p' equation is solved during each
iteration, it is useful to start from p' =0 as the guess for all points, so that
the solution for p' does not acquire a large absolute value.

_When the pressure_at some boundary points is specified, or when the
den81ty depends on pressure, the indeterminancy of the pressure level does not
arise.

6.8 A REVISED ALGORITHM: SIMPLER

The SIMPLE algorithm has been extensively used and has served well. For
example, all the fluid-flow calculations to be presented in Chapter 9 were

performed using this algorithm. However, in attempts _to improve its rate of
convergence, a revised version has been worked out. It is called SIMPLER

which stands for SIMPLE Revised (Patankar, 1979a).

6.8-1 Motivation

The approximation introduced in the derivation of the p' equation (the
omission of the term Z a,p,uy,) leads to rather exaggerated pressure correc-
tions, and hence underrelaxation becomes essential. Since the influence of the
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(neighbor-point velocity corrections is removed from the velocity-correction
| formula, the pressure correction has the entire burden of correcting the
velocities, and this results into a rather severe pressure-correction field. In
most cases, it is reasonable o suppose that the pressure-correction equation
idoes a fairly good job of correcting the velocities, but a rather poor job of
i correcting the pressure.

To appreciate this argument, let us consider a very simple problem, one in
which there is one-dimensional constant-density flow with the velocity given
at the inlet boundary. It is easy to see that the velocity in this problem is
governed only by continuity, and hence the continuity-satisfying velocity field
obtained at the end of the first iteration will itself be the final answer. The
predicted pressure, however, will be far from the final solution, owing to the
approximate nature of the p' equation. It would take many iterations before a
converged pressure field were established, although the correct velocity field is
obtained very early in the process.

If _we employ the pressure-correction equation only for the task of
_correcting_the _velocities and provide some other means of obtaining an
improved pressure field, we construct a more efficient algorithm. This is the
essence of SIMPLER,

6.8-2 The Pressure Equation

An equation for obtaining the pressure field can be derived as follows: The
momentum equation (6.6) is first written as

Zdgpliny T b
Uy = “=R2

+d.(pp — PE) . (6.25)

de

where @, has been defined in Eq. (6.16). Now we define a pseudovelocity U,
by COVE OCTlY He,

o Z dnplnb +b
Up = —— .

(6.26)

de

It can be noted that 1, is composed of the neighbor velocities uy, and
contains no pressure. Equation (6.25) now becomes

Ue = LAle + de(pP o pE) . (627)
Similarly, we can write
Up = 6n +d, (pP - pN) B (6-28)

w, =w, +d(pp — 7). (6.29)
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It is easy to see the similarity between these equations and Egs. (6.17)~(6.19).
Here, &, v, w appear in place of TR w™, and the pressure p itself takes the
place of p'. It then follows that, if the derivation in Section 6.6 were worked
out with the new velocity-pressure relations containing &, 0, W, an_equation
for pressure would result. This can be written as

appp = agpg + awpw + aypy tagps tappr tagpp + b, (6.30)
where ag, ay, ay, ds, g, ag, and ap are given by Egs. (6.232)-(6.23¢), and b

is given by

0
pp — Ax Ay Az ~ o
b = (op pP)A[ 34 + [(pu)w - (,Dll)e] Ay Az

+ [(p0)s — (p9)n] Az Ax + [(pW), — (pW),] Ax Ay (631)

It should be noted that the expression for b is the only difference between
the pressure equation (6.30) and the pressure-correction equation (6.22).
Expression (6.31) for b uses the pseudovelocities u, v, w, while b for the p’
equation was calculated in terms of the starred velocities.

Although the pressure equation and_the pressure-correction equation are

almost identical, there is one major difference: No approximations have been

introduced in the derivation of the pressure equation. Thus, if a_ correct

velocity field were wsed to calculate the pseudovelocities, the pressure

equation would at once give the correct pressure.

6.8-3 The SIMPLER Algorithm

The revised algorithm consists of solving the pressure equation to obtain the
pressure field and solving the pressure-correction equation only to correct the
velocities. The sequence of operations can be stated as:

1. Start with a guessed velocity field.

2. Calculate the coefficients for the momentum equations and hence calculate
i, 0, w from equations such as Eq. (6.26) by substituting the values of the
neighbor velocities uyy,.

3. Calculate the coefficients for the pressure equation (6.30), and solve it to
obtain the pressure field.

4. Treating this pressure field as p”, solve the momentum equations to obtain
u*, vt wh

5. Calculate the mass source b [Eq. (6.23h)] and hence solve the p' equation.

6. Correct the velocity field by use of Egs. (6.17)-(6.19), but do not correct
the pressure.

7. Solve the discretization equations for other ¢’s if necessary.

8. Return to step 2 and repeat until convergence.
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"' . 6.8-4 Discussion !
RO PROBLEMS

1. It is easy to see that, for the one-dimensional problem discussed in Section
6.8-1, the SIMPLER algorithm would at once give a converged solution. In
general, since the pressure-correction equation produces reasonable velocity
fields, and the pressure equation works out the direct consequence (without
approximation) of a given velocity field, convergence to the final solution
should be much faster.

2. In SIMPLE, a guessed pressure {ield plays an important role. On the
other hand, SIMPLER does not use guessed pressures, but extracts a pressure
field from a given velocity field.

3. If the given velocity field happens to be the correct velocity field, then
the pressure equation in SIMPLER will produce the correct pressure field, and
there will be no need for any further iterations. If, on the other hand, the
same correct velocity field and a guessed pressure field were used to start the
SIMPLE procedure, the situation would actually deteriorate at first. The use
of the guessed pressure would lead to starred velocities that would be
different from the given correct velocities. Then, the approximations in the p'
equation would produce incorrect velocity and pressure flelds at the end of
the first iteration. Convergence would take many iterations, despite the fact
that we did have the correct velocity field at the beginning.

4. Because of the close similarity between the pressure equation and
the pressure-correction equation, the discussion in Section 6.7-3 about
boundary conditions for the p’ equation is also relevant to the pressure
equation. Furthermore, the relative nature of the pressure discussed in Section
6.7-4 could have been described by reference to the pressure equation.

5. Although SIMPLER has been found to give faster convergence than
SIMPLE, it should be recognized that one iteration of SIMPLER involves
more computational effort. First, the pressure equation must be solved in
addition to all the equations solved in SIMPLE; and second, the calculation of
u, U, w represents an effort for which there is no counterpart in SIMPLE.
However, since SIMPLER requires fewer iterations for convergence, the
additional effort per iteration is more than compensated by the overall saving
of effort.

6.9 CLOSURE

In this chapter, we have completed the final step in constructing our
numerical method. A number of miscellaneous, but important, topics still
remain to be discussed. Although these could have been included in the first
six chapters, they can be better appreciated at this stage, when the reader has
a complete view of the procedure. The next chapter is devoted to these
topics.

6.1 A two-dimensional flow with constant density and viscosity is governed by

u du Ju o*'u- 2'u ap
p§+pua‘+pu~:u + o],

X oy ax? 3y 3x
v D) D) a'v v ap
p—tpu —Ftpo —=pl—t )} 7—,
or ax oy ox ay? oy
and —ai 2 0.
ox oy

Eliminate p from the first two equations by differentiating the first with respect to y and
the second with respect to x and subtracting one from the other. Express the resulting
equation with w as the dependent variable, where w, the vorticity, is defined by
w = 0ufdy — ov/ox. Show that the result is

dw dw dw w  w
P — +pU— + pu — =4 + .

ax? oy?
6.2 Define a stream function ¢ as

Y 3y
— = and —=u.
ox ay

Show that y identically satisfies the continuity equation given in Problem 6.1. Further,
use the definition of w in Problem 6.1 to show that

6.3 In the steady, one-dimensional, constant-density situation shown in Fig. 6.11, the
velocity u is calculated for locations 4, B, and C, while the pressure p is calculated for
locations 1, 2, and 3. The velocity-correction formula is

u=u"+@;—pid,

where the locations i and i + 1 lie on cither side of the location for u. The value of d is
2 everywhere, The boundary conditions are u4 = 10 and p' = 0. If, at a given stage in
the iteration process, the momentum equations give u} = 8§ and uz-: 11, calculate the
values of p; and p),. Explain how you would obtain the values of p| and p) if the
right-hand boundary condition were given as u¢ = 10 instead of p’, = 0.

6.4 A one-dimensional tflow through a porous material is governed by clulu + dp/dx = 0,
where ¢ is a constant. The continuity equation is d(uAd)/dx = 0, where A4 is the effective

—
Ia) - -

A 1 B 2 (o

0
3

Figure 6.11 Situation for Problems 6.3 and 6.4.
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area for the flow. Use the SIMPLLE procedure for the grid shown in Fig. 6.11 (where you
may ignorc point A) to calculate p,, ug. and u from the following data:

X, — X, =Xy TX, =2
cg = 0.25 cc =02 Ag=>5 Ac=4 p, = 200 p, = 38

As an initial suess, set ug = ug = 15 and p, = 120.
6.5 The one-dimensional flow in the nozzie shown in Fig. 6.12 can be described by
dp

d d
21__; (puA) =0 and d‘x (pud)u = —A i

where A is the cross-sectional area. The given conditions are
p = 1 everywhere Ayq =3 Ag=1 p, = 28 p, =0.

Assume that the fluid upstream of point 1 has negligible momentum. Formulate the
discretization equations for « and p', and hence obtain the values of u 4, upg, and p,.
(Use the initial guesses puA =5, so that uy =§ and uB:5, and p, = 25. Employ
appropriate underrelaxation if necessary.)

6.6 Considar the steady, one-dimensional, compressible flow for which the continuity
equation is d(pu)/dx = 0. With reference to Fig. 6.1, write the discretization form of this
equation in terms of pe, Py, Ues and u,,. Further, assume the density-correction formula
p=p" + Kp’, which can be derived from the appropriate equation of state. Assuming a
piccewisc-linear profile for p', derive the discretization equation for pressure correction.
Hint: use the approximation

i = G+ o) W +u) ofut + ot otu.

Note that the resulting coefficients have a convective part and a diffusive part, and that
there is a possibility that the coefficients may become negative when the Mach number is
large. Can you suggest an upwindlike scheme to prevent the coefficients from becoming
negative?

6.7 A portion of a water-supply system is shown in Iig. 6.13. The flow rate Q in a pipe

Figure 6.12 Grid points for Prob-
lem 6.5.
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o2

b4 05
Figure 6.13 Water-supply system considered in Problem 6.7,

is given by Q: C Ap, where Ap is the pressure drop over the length of the pipe, and C is
the hydraulic conductance. We have the following data: '

p, =215 p, =270 p, =0 ps =40 Qp =20

Cy=04 Cg=Cp=Cr=0.2 Co=Cg=0.1.
gxstd.p;,, zﬁ, 04. 0B, @ @p, and Qg by the following procedure: Guess p, and p,.
ain Q7 values based on the guessed pressures. Construct the pressure-correctiosn

equations and solve for p and pj. Corre
6- ct the guessed pressures and the Q*
you need to iterate? Why? g © 07 values. Do




CHAPTER

SEVEN
FINISHING TOUCHES

7.1 THE ITERATIVE NATURE
OF THE PROCEDURE

The calculation procedure described in this book is aimed at solving coupled
nonlinear equations by an _iterative scheme. At this point, we shall take an

overall look at the iterative process.
1. The iteration technique plays two different roles:

a. Our equations are, in general, nonlinear and interlinked. We cast them into
nominally linear form and calculate the coefficients from the previous-

iteration values of the variables.

b. The nominally linear algebraic equations for one dependent variable at a
time are solved by an iterative method (such as the line-by-line method)
rather than by a direct method.

2. The iterative solution of the algebraic equations need not be taken to
complete convergence, because we are, at any intermediate stage, working
with only tentative coefficients. After the discretization equations have been
iterated to a certain extent, one must return to the recalculation of the
coefficients. A sense of proportion is appropriate here. After having spent a
certain amount of effort on calculating the coefficients, we must extract a
fairly good solution of the algebraic equations, but refrain from doing an
excessive amount of work with coefficient values that we know well to be
only tentative. A direct solution method used for multidimensional problems

139
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usually results in a disproportionately large amount of work spent in the
equation-solving activity.

3. A similar consideration has been used in Chapter 6 in choosing a
sequential, rather than simultaneous, procedure for calculating fluid flow. The
momentum equations and the pressure-correction equation are solved se-
quentially. The alternative, which Is commonly adopted in most finite-element
methods for fluid flow, is to obtain a simultaneous solution of the linearized
forms of the continuity equation and all the momentum equations. Such a
simultaneous solution by a direct method requires large amounts of computer
time and storage. Since the momentum equations are nonlinear, these large
amounts of effort must be spent at every iteration. Further, the continuity
and momentum equations may not be the only equations governing the
situation. These equations are often coupled with the energy equation
(through fluid properties and buoyancy forces), with the equations for
turbulence parameters (through the turbulent viscosity), with the equations
for chemical-species concentration, and so on. Obviously, it would not be
practicable to attempt a simultaneous solution of all these equations; these
additional equations would normally be solved in a sequential manner. Under
these circumstances, the expenditure of large amounts of computing effort for
the simultaneous solution of the continuity and momentum equations seems
out of proportion.

4. In the numerical method presented in this book, there is no funda-
mental difference between solving a steady-state problem and performing one
time step in an unsteady problem. In a steady problem, we start with guessed
values for the variables ¢ and proceed to obtain the steady-state solution. For
an unsteady situation, the problem is this: Given the values of ¢ at time ¢ and
a guess for ¢ at ¢+ Ar, find the values of ¢ at t + Ar. As in the steady-state
problem, we must perform a number of iterations at each time step for an
unsteady problem. Further, many such time steps must be sequentially
executed to cover the desired time period.

5. Thus, the solution of an unsteady problem seems to involve an effort
that is equivalent to the task of solving a succession of steady-state problems.
This is partially true, but there is one consolation. For reasonable values of
At, the known ¢ values at time ¢ can be used as a guess for the unknown ¢
values at time f + Ar. Since this is a relatively good guess (compared with a
rather arbitrary guess, which one must make in a steady-state situation), only
a few iterations are normally needed to obtain a converged solution for the
time step. Sometimes, the number of iterations per time step can be as small
as one. Thus, when a method for a nonlinear unsteady problem is claimed to
be noniterative, it is, in fact, accepting the solution at the end of one iteration
as a sufficiently converged solution for that time step. Such methods must
employ rather small time steps, whereas the use of multiple iterations for a
time step would allow larger values of At.

6. Such a one-iteration-per-time-step method is sometimes used to obtain

et s
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the steady-state solution at the end of many time steps. Such time steps are
truly iterations, with the unsteady term in the equations providing a kind of
underrelaxation.

7. A computer program that employs iteration within a time step should
provide storage for the values of ¢ at time r and for the ¢ values at 7 + Az, A
steady-state program, on the other hand, requires storage for only one set of ¢
values, which are continually overwritten until convergence is attained.

8. The iterative technique greatly simplifies the construction of the
numerical method and provides a way in which, at least in principle, one can
handle any nonlinearity and interlinkage. Of course, the technique is of no
value if a converged solution cannot be reached. It is useful at this stage to
examine the prospects of convergence.

a. The four basic rules (introduced in Section 3.4) have enabled us to obtain
such discretization equations as would, for fixed values of the coefficients,
ensure convergence of the point-by-point or line-by-line solution procedure.

b. If the coefficients do not remain fixed but change rather slowly, it seems
reasonable that we shall still obtain convergence. A proper linearization of
the source term and an appropriate underrelaxation of the dependent
variables would, in general, slow down the changes in the variables and
hence in the coefficients.

¢. In addition to the dependent variables, other quantities can be under-
relaxed with advantage. For example, the density p is often the main link
between the flow equations and the equations for temperature, concentra-
tion, etc. An underrelaxation of p via

P = &Ppew T (1 — @)Po1 (7.1

would cause the velocity field to respond rather slowly to the changes in
temperature and concentration. A diffusion coefficient I" can be under-
relaxed to restrain, for example, the influence of the turbulence quantities
on the velocity field. The present value of T" is then calculated from ”

r= C!Fne“, + (1 - a)rold . (72)

Here, as in Eq. (7.1), « stands for the relaxation factor. Underrelaxation
requires & to be positive but less than 1. The interlinkage between different
variables often comes through the source term (for example, the buoyancy
force in a momentum equation depends on temperature). We may decide
to underrelax the source term via

S =aScpew T (1 —0)Sc o - (7.3)

Even the boundary conditions can be underrclaxed. For example, a hot
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wall or a rotating disc need not assume its final temperature or rotational
speed right from the first iteration; the boundary value may be slowly
adjusted, during the course of the iterations, to ultimately achieve the
desired value. Thus,

g = O‘¢‘B,givcn + (1 - a)d)B,old . (7-4)

Of course, the value of « appearing in Egs. (7.1)-(7.4) need not be the
same, nor is it necessary to use the same value for « for every grid point.

d. It must be remembered that there is no general guarantee that, for all
nonlinearities and interlinkages, we will*a.luways get a converged solution.
The underrelaxation procedures that are introduced here have been found
to be helpful in many cases, but special underrelaxation practices may be
needed for special problems. In the absence of an unconditional guarantee,
we can nevertheless derive hope from the fact that, for a large number of
rather complex problems, it has been possible to get converged solutions. A
sample of such solutions will be presented in Chapter 9, but many other
problems have also been solved and published.

9. As we have noted, an iterative process is said to have converged when
further iterations will not produce any change in the values of the dependent
rvarlables In practice, the iterative process is terminated when some arbitrary
convergence criterion is satisfied. An appropriate convergence criterion
depends on the nature of the problem and on the objectives of the
computation. A common procedure is to examine the most significant
quantities given by the solution (such as the maximum velocity, total shear
force, a certain pressure drop, or overall heat flux) and to require that the
iterations be continued only until the relative change in these quantitics
between two successive iterations is greater than a certain small number. Often
the relative change in the grid-point values of all the dependent variables is
used to formulate the convergence criterion. This type of criterion can

sometimes be misleading. When heavy underrelaxation is used, the change in
the dependent variables_between successive_iterations is intentionally slowed
down; this may create an illusion of convergence_although the computed
solution may be far from being converged. A more meaningful method of
inonitoring convergence is to ecxamine how perfectly the discretization
equations are satisfied by the current values of the dependent variables. For
each grid point, a residual R can be calculated from

R=Zag¢np + b —apdp . (1.5)

Obviously, when the discretization equation is satisfied, R will be zero. A
suitable convergence criterion is to require that the largest value of [R] be less
than a certain small number. Incidentally, as mentioned in Section 6.7.2, the
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quantity b in Eq. (6.22), which is the residual of the continuity equation, can
be used as one of the indicators of the convergence of the iterative process.

7.2 SOURCE-TERM LINEARIZATION

In Section 4.2-5, the concept of the linearization of the source term was

introduced. One of the basic rules (Rule 3) required that when the source
term is linearized as

S =S¢ +Spdp, (7.6)

the quantity Sp must not be positive. Now, we return to the topic of
source-term linearization to emphasize that often source terms are the cause
of divergence of iterations and that proper linearization of the source term
frequently holds the key to the attainment of a converged solution.

7.2-1 Discussion

1. It is important to watch for unintentional violations of the negative-Sp
requirement. For example, in r0z coordinates, the momentum equation for ¥,
contains a source term —pV,Vy/r. It is tempting to express this as So= 0 and
Sp=—pV,/r. However, if V, happens to be negative, this gives a positive value
of Sp. A proper formulation would be

01V s (7.7q)

v
Sp = —[prr .oll . (7.7b)

where [ T denotes the larger of the quantities listed within.

2. 1t is always possible to make Sp equal to zero, and to set S¢o=S.
However, this is often not desirable. The effect of a large negative Sp is much
like that of underrelaxation and is conducive to convergence. As described in
Section 4.2-5, probably the best linearization is one that makes the straight
line =S¢ + Spgp a tangent to the true §~¢ curve. To use a smaller

magnitude of Sp is to fail to adequately anticipate the decrease in S with an
increase in ¢. To use a larger magnitude of Sp is to be too cautious (which
may at times be a good policy) and probably slow down the convergence.

3. Because the source terms are often large, it is always useful to consider
the extreme case in which the source term alone dominates the discretization
equation. For such a case, we may write the discretization equation as
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SC + Sp(pp =0 , (78)

which leads to the solution
¢p = — = . (7.9)

Here, 513 denotes the limiting value of ¢p in the source-dominatid situfltion.
In Fig. 7.1, these ideas are graphically represented. If the value ™ pertains to
a current value ¢p, the solution of the discretization equation will be the
value (5,), which corresponds to the point where the S¢ + Spgp line* meets the
abscissa. It Sp has a larger magnitude, ¢p will be closer to ¢p. A small
magnitude of Sp would imply a larger change in ¢p from ¢p to ¢p. The
underrelaxation effect of Sp is thus obvious.

4. Sometimes, the source-dominated situation can be used to design the
linearization such that ¢p remains within reasonable limits. Suppose that, for
the current value ¢p, we desire that the next-iteration value of ¢p be close to
a given value &P. This can be arranged through the linearization

S*¢p
S = m— (7.10a)
¢ bp — 05
S*
Sp=— S (7.10b)
i op — Op

The desired value 51) should be determined from physical considerations. For
example, let ¢ stand for the mass fraction my; of a chemical species. By

§=3S5¢ +SP¢’F

?p 5,; Figure 7.1 Solutioln in. the
¢p source-dominated situation.
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definition, m; must lie between 0 and 1. At a current value ml* if $* is
positive, m; will increase and we may set 7, as 1. For negative S*, my may be
set equal to zero. We may wish to be even more conservative and require that
in one iteration m; could move only halfway toward the physical limit. Thus,
my would be set as (m; +1)/2 for positive $*, and as m*/2 for negative S*.
Because all these considerations are based on the source-dominated limit, the
next-iteration value will not be exactly dN)p, since the other terms in the
equation also influence it. Further, we are not controlling the ultimate
solution for ¢p, but simply its progress through the successive iterations. We
seek to avoid rapid changes and physically unrealistic values from arising
during the iterative process.

5. Normally, one is able to assign a known value of ¢ only at the
boundary points. However, any desired value of ¢ can be arranged to be the
solution at an internal grid point by setting S¢ and Sp for that point as

1l

Sc = 10%¢p gesired | (7.11a)

Sp

i

—10% | (7.11b)

where 10%° denotes a number large enough to make the other terms in the
discretization equation negligible. The consequence is that

Sc+Spep=~0 , (7.12)
S

¢p = _S*C = @p,desired - (7.13)
P

This procedure can be used to represent internal obstacles or islands in the
calculation domain by inserting “internal” boundary conditions.

7.2-2 Source Linearization
for Always-Positive Variables™

From the physical significance of certain dependent variables, we can conclude
that their values always remain positive. Examples of such “always-positive”
variables are mass fractions of chemical species, turbulence kinetic energy,
turbulence length scale, and radiation fluxes in a flux model of radiation,

For many readers, this seemingly minor topic may turn out to contain the most
valuable information in _this book. In practical computations, it is quite common to

encounter erroneous results such as negative mass fractions and negative turbulence
kinetic energy. These have such a devastating effect on the rest of the calculation and on
the success of the iterations that they must be prevented at all costs. Fortunately,
prevention is possible and easy.
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Since such quantities usually have both positive and negative source terms
(i.e., generation and destruction), the net source term can often become
negative. If this is not properly handled, the always-positive variable may
acquire an erroneous negative value.

The basic rule about positive coefficients (Rule 2 in Section 3.4) is crucial
to cnsuring physically realistic results. A further requirement for always-
positive variables is that S¢ must always be positive (and, of course, Sp always
negative). Strict adherence to this requirement guarantees that no negative
values of ¢ will arise.

There are many ways of ensuring that S is positive. A simple prescrip-
tion is as follows: Suppose that

S=S8; —85; S$1>0, S$,>0, (7.14)

where §; is the positive part of the source term, and —S, is the negative part.
Since

S=85 —>2 ¢y, (7.15)
¢p
we set
Sc =8, (7.16a)
S
and Sp=—"2, (7.16b)
op

where ¢p is the current value of ¢p.

7.3 IRREGULAR GEOMETRIES

We have developed our numerical method by using a grid in Cartesian
coordinates. Since practical problems do not always fit neatly into such a
coordinate system, it is necessary to discuss how the method can be applied
to irregularly shaped domains.

7.3-1 Orthogonal Curvilinear Coordinates

Qur use of Cartesian coordinates has been motivated mainly by convenience
and ease of presentation. There is, however, no essential difficulty in working
out the same numerical method in cylindrical or spherical coordinates or even
in general orthogonal curvilinear coordinates. This was briefly illustrated in
Section 4.6-2 for the r6 coordinates. More generally, one can employ an
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Figure 7.2 Control volume in an orthogonal
curvilinear grid.

orthogonal curvilinear grid as shown in Fig. 7.2} In such a grid, the calculation
of various lengths, areas, and volumes is not as straightforward as in a
Cartesian grid, but otherwise all the practices developed for Cartesian grids are
directly applicable.

The orthogonal property of the grid is, however, essential for the
application of the method. Since we calculate a diffusion flux across 4
control-volume face in terms of the ¢ values at two grid points, it is crucial
that the face is normal to the line joining the two grid points.

For an arbitrarily shaped domain, the construction of an orthogonal
curvilinear coordinate system is itself a substantial task. Some procedures for
doing this are now available [for example, Potter and Tuttle (1973)]. If the
grid can be conveniently and economically constructed, then the use of
orthogonal curvilinear coordinates is a viable method for handling irregular
geometries. '

7.3-2 Regular Grid with Blocked-off Regions

Sometimes a computer program written for a regular grid (such as the
Cartesian grid) can be improvised to handle an irregularly shaped calculation
domain. This is done by rendering inactive, or “blocking-off,” some of the
control volumes of the regular grid so that the remaining active control
volumes form the desired irregular domain. Some examples are shown in Fig.
7.3, where the shaded areas denote the inactive control volumes. It is obvious
that the irregular boundary must be approximated by a series of rectangular
steps, but often surprisingly good answers can be obtained from a rather crude
representation of the boundary.

The blocking-off operation consists of establishing known values of the
relevant_¢’s in the inactive control volumes. If the inactive region represents a
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Figure 7.3 Blocked-off regions in a regular grid.

stationary solid boundary, the velocity components in that region must be set
equal to zero. If the region is to be regarded as an isothermal boundary, the
known temperature must be established in the inactive control volumes.

There are two ways in which the desired values can be set in the inactive
control volumes. One method is the use of large source terms, as described in
Section 7.2-1. An alternative is available through our use of harmonic-mean
s for the control-volume faces (Patankar, 1978), which was explained in
Section 4.2-3. Since large discontinuities of I" can be correctly handled, a very
large value of T in the inactive zone would ensure that the value prescribed at
the (nominal) boundary of the zone prevails over the entire inactive zone.
Yet, the solution in the active zone will be unaffected by these large values of
. In particular, the velocities in the inactive zone can be set to zero by the
use of a very large viscosity for the zone and a zero value of velocity at the
nominal boundary.

It should be noted that, by these means, only rather simple boundary
conditions can be handled at an irregular boundary. More complex boundary
conditions would require modification of the source terms for the active
control volumes adjacent to the true boundary. Also, the blocking-off method
is somewhat wasteful of computer time and storage, since trivial computations
must be performed for the inactive zone, and the results have to be stored.
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Notwithstanding these considerations, the convenience of using a regular-grid
computer program for any arbitrary geometry offers a significant advantage.

A further spin-off of the harmonic-mean I’s is the ability to handle
conjugate heat transfer problems, which will be discussed next.

7.3-3 Conjugate Heat Transfer

Let us consider the situation shown in Fig. 7.4. The fluid flows through a
duct with an internal fin. The duct wall and the fin have finite thickness and
moderate conductivity. The thermal boundary condition is known at the
outer surface of the wall as, for instance, a prescribed temperature for that
surface. The situation presents a conjugate heat transfer problem in that
conduction in the solid and convection in the fluid must both be considered,

with a proper matching at the fluid-solid interface. The calculation of separate
solutions for the solid and fluid regions would require an involved iterative
procedure for matching the interface condition. The harmonic-mean practice
for T' offers a much easier alternative that has been described in Patankar
(1978). -

In this procedure, the problem is solved by using a calculation domain
that includes both the fluid and solid regions, with the outer surface of the
wall coinciding with the boundary of the domain. Thus, the boundary
conditions for both the velocity and temperature fields can easily be
supplied at the outer surface of the wall. The calculation procedure rests on
our ability to handle a large step change in the value of I'. When the velocity
equations are solved, I" for the grid points that fall in the fluid region is made
equal to the viscosity of the fluid, while for the grid points lying in the solid
region 1" is set equal to a very large number. This would ensure that the zero
velocity specified at the outer surface of the wall would prevail throughout
the solid region, and thus the fluid region would experience the correct
boundary condition,

T=Ty

G
=

\

Figure 7.4 Conjugate heat transter problem.
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For solving the temperature cquation, we specify the I' field by em-
ploying the true conductivities of the solid and of the fluid in their
respective regions. The problem is solved as a convection-conduction
problem throughout the entire calculation domain; but, since the velocities
in the solid are zero, the Peclet number there would also be zero, and, in
effect, a pure-conduction calculation would be performed in the solid region.
The resulting solution would thus give us temperature distributions in the
solid and in the fluid, and they would have been automatically matched at the
solid-fluid interface. As far as our calculation is concerned, this interface is
simply an interior location, which is treated like any other interface between
two control volumes.

7.4 SUGGESTIONS FOR COMPUTER-PROGRAM
PREPARATION AND TESTING

To perform practical computations, the numerical method must be embodied
in a computer program. It takes an organized and dedicated effort to produce
an efficient and error-free program. After a computer program has been
developed and tested, it becomes a valuable tool for the analyst. It opens up a
whole new world of possibilities for solving complex practical problems with
relative ease. The following suggestions are offered for the benefit of the
readers who wish to develop computer programs for their needs.

1. The first step in the design of a computer program is to decide on the
scope and limitations of the program. Will it handle two or three
dimensions, Cartesian or cylindrical coordinates, uniform or nonuniform
grids, constant or variable density, steady or unsteady problems? Too
much generality makes the program voluminous and inconvenient to
apply to simple problems. Too little generality restricts its use to a very
few physical situations. Initially, it is probably best to develop a rather
restricted version of the program with, however, a flexible framework so
that the scope of the program can be easily enlarged.

2. It is useful to distinguish between general operations (such as the calcula-
tion of the coefficients and the solution of the discretization equations)
and problem-dependent operations (such as the specification of I, S¢, Sp,
and the boundary conditions for the relevant variables). The general
operations should be programmed first and then tested with different
problem specifications.

3. When a computer program is developed, it must be thoroughly tested. A
program that contains errors is like a faulty instrument; it is unrealiable
and misleading. It is possible to construct error-free computer programs,
in which the analyst-programmer can take pride.

4. It is helpful to test separate parts of the program before the entire

FINISHING TOUCHES 151

assembly is put to work. For example, the subroutine for solving the
discretization equations can be independently tested by supplying
arbitrary values for the coefficients.

5. Most of the initial testing can be based on only coarse grids. This saves
computer time, and, since the resuiting fields of ¢ contain only a few
numbers, it is easy to examine and interpret them. At times, some of the
surprising results can be checked by manual calculation. Even the
coarse-grid solutions are expected to be physically realistic, since this
criterion has been the guiding principle in this book.

6. The control-volume approach ensures that the solution satisfics overall
conservation over the calculation domain. Such overall balances provide a
useful test of the computer program. In verifying overall balances, we
must use the same profile assumptions as were used in constructing the
discretization equations. Then, for a well-converged solution, overall
conservation must be perfectly satisfied for any number of grid points.
Alternatively, the overall balance may be taken as an indication of the
satisfactoriness of the convergence of iterations.

7. To confirm the internal consistency of the computer program, a number
of tests can be undertaken. One of them is to check that the converged
solution is independent of the initial guesses and the relaxation factors.

8. The orientation of the coordinate system relative to the physical problem
is, of course, arbitrary. The correctness of the computer program can be
checked by solving the same problem by interchanging, for example, the
x and y directions.

9. When the boundary conditions imply that the solution will be
symmetrical about a line (or a plane), it is sufficient to perform the
computation for only one-half of the domain lying on one side of the
symmetry line. For example, the flow in a parallel-plate channel can be
computed by using a calculation domain that extends from one plate to
the center line between the plates. While testing the computer program,
however, we can choose the whole domain (from one plate to the other)
as the calculation domain and check whether the computed solution does
exhibit the expected symmetry,® and whether the solution in each half is
identical to the one obtained by using half the region as the calculation
domain.

10. Suppose that the solution for a given problem is determined by the values
of certain dimensionless parameters. For example, the Reynolds number
Re =pUD/u may be the governing parameter. The solution for a

*There are some situations in which even with symmetrical boundary conditions the
solution may not be symmetrical. For example, jets in ducts (which are used in fluidic
devices) or sudden enlargements in duct flows often result in unsymmetrical flow
patterns. Obviously, such special situations are not to be used in testing the program for
symmetry.
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specific value of Re can be obtained by setting, in the computer
program,

p=1 D=1 u=1 U= Re,

or U=1 D=1 u=1 p = Re,
Re

or =10 U=15 =1 D= —
P M 30’

or any other combination. The dimensionless outcome of the computed
solution must be identical for all these combinations. This criterion can
be used to verify the correctness of the computer program.

. The principle of superposition, which is valid for linear heat conduction

problems, can be used to test the consistency of the computer program.
According to the superposition principle, the solutions for two rather
simple problems can be added to construct the solution for a more
complex problem. The computer program can be used directly to obtain
the solutions for all three problems, and then it can be verified that the
solution for the complex problem is indeed the sum of the solutions for
the two other problems.

Limiting behavior under appropriate conditions provides a useful test of
the computer program. A three-dimensional computer program can be
employed to solve a two-dimensional problem to confirm that the
computed solution is indeed two-dimensional. Computations for a duct
flow should exhibit the expected fully developed behavior in the far-
downstream region. A program for viscous flow should produce the
inviscid solutions when the viscosity is set equal to zero.

The tests described so far have been aimed at checking the qualitative
behavior of the computed results. Quantitative checks are also necessary,
not only to confirm the correctness of the program but also to indicate
the accuracy obtainable with a certain grid fineness. Comparison with
available exact solutions provides a useful way of testing the accuracy of
the numerical solution. It should be verified that as the grid is refined the
error in the computed solution diminishes. Since most standard exact
solutions either deal with rather simple problems or require the calcula-
tion of infinite series involving special functions and eigenvalues, a
method for constructing exact solutions is desirable. A convenient method
is to propose a solution for ¢, to provide the distributions of I', p, and u,
and then to obtain an expression for § in Eq. (2.13) by substituting the
other quantities into the equation. With this expression for S as the given
source term (and with the given variations of I, p, and u), the proposed
solution for ¢ can be regarded as the exact solution. Indeed, any domain
over which ¢ is defined can be chosen as the calculation domain, and the
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valuc; of ¢ obtained from the exact solution at the boundaries of this
domain can be used as the required boundary conditions.

- Finally, published numerical solutions can be used to verify the correct-

ness of a ngw computer program. For this purpose, the results of some of
the illustrative applications presented in Chapter 9 will be useful.




CHAPTER

EIGHT
SPECIAL TOPICS

In this book so far, a general method has been developed for the calculation
of fluid flow, heat transfer, and related phenomena. Although one-dimensional
and two-dimensional situations were used for ease of derivation and visualiza-
tion, the ultimate treatment has dealt with the unsteady three-dimensional
situation. Also, although the concept of a one-way space coordinate has been
introduced, all the derivations have been based on two-way (i.e., elliptic)
behavior for all the space coordinates.

The idea of a one-way space coordinate is, however, a very useful one,
and special procedures that take advantage of one-way behavior have great
practical utility. A few such procedures will be outlined in this chapter. Also,
a finite-element method that uses many of the principles developed in this
book will be briefly introduced. This will serve to emphasize the basic
similarity between the finite-difference and finite-element approaches, which
are often presented as entirely different methods.

This chapter is not intended as an exhaustive treatment of the topics
chosen. The purpose of the chapter is to draw the attention of the reader to
these special topics, which are closely related to the main theme of the book.
With the background of this book and the cited references, the reader should
be able to work out the required algebraic details.

8.1 TWO-DIMENSIONAL PARABOLIC FLOW

When a steady two-dimensional flow has one one-way space coordinate, it is
called a two-dimensional parabolic flow. Such a flow has a predominant velocity
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in the one-way coordinate, and hence the convection always dominates the
diffusion in that coordinate. It is this feature that imparts the one-way
character to the streamwise direction. Obviously, no reverse flow in that
direction would be acceptable. A further requirement arises from the influence
of pressure. It was indicated in Section 6.7-2 that pressure normally exerts
two-way (or elliptic) influences. For the streamwise coordinate to be treated
as one-way, the pressure variations in the crossstream direction must be
regarded as negligible.

Examples of two-dimensional parabolic flows are plane or axisymmetric
cases of boundary layers on walls, duct flows, jets, wakes, and mixing layers.
The solution for such situations is obtained by starting with a known
distribution of ¢ at an upstream station and marching in the streamwise
direction. For every forward step, the distribution of ¢ in the cross-stream
coordinate is calculated at one streamwise station. Thus, computationally only
a one-dimensional problem needs to be handled, for which the TDMA can be
used to solve the discretization equations.

The solution of the momentum and continuity equations presents no
special problem. The strecamwise pressure gradient is assumed to be known.
With this pressure gradient, the streamwise momentum equation is solved to
yield the streamwise velocity. The cross-stream velocity is then calculated
from the continuity equation. The pressure gradient for external flows comes
from the pressure field in the external irrotational stream outside the
boundary layer. For confined flows, overall mass conservation across the duct
cross section is used to adjust the streamwise pressure gradient. No counter-
part of SIMPLE or SIMPLER is needed for two-dimensional parabolic flows.

Complete details and computer programs for two-dimensional parabolic
situations are available in Patankar and Spalding (1970) and Spalding (1977).
The calculation method described therein uses a dimensionless stream function
as the cross-stream coordinate, which provides a convenient way of expanding
and contracting the width of the calculation domain in conformity with
changes in the thickness of the boundary layer.

8.2 THREE-DIMENSIONAL PARABOLIC FLOW

If in a steady three-dimensional flow there exists one one-way coordinate, the
flow can be characterized as a three-dimensional parabolic flow. Again, the
conditions under which a space coordinate becomes one-way are the existence
of a predominant unidirectional velocity in that coordinate; hence, negligible
diffusion and absence of reverse flow in that direction; and negligible pressure
variations in the cross-stream plane.

Examples of three-dimensional parabolic situations are similar to their
two-dimensional counterparts. The boundary layer over a skewed airfoil, the
flow in a duct of rectangular cross section, and a jet issuing from a
noncircular orifice are all three-dimensional parabolic flows.
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Although the apparent difference between the two- and three-dimensional
parabolic situations is slight, the solution procedure needed for three-
dimensjonal parabolic problems is far more complex than that for two-
dimensional parabolic flows. (The SIMPLE procedure, it is worth noting, was
first formulated in connection with three-dimensional parabolic flows in
Patankar and Spalding, 1972a.) The reason is that, after the streamwise
velocity has been calculated from the streamwise momentum equation, the
fwo cross-stream velocities cannot be obtained from the continuity equation
alone. To determine how the flow distributes itself in the two cross-stream
directions, both cross-stream momentum equations must be solved. The
two-dimensional parabolic procedure, on the other hand, does not employ the
cross-stream momentum equation.

Because of the direct reference to cross-stream momentum equations, an
assumption about pressure, which goes unnoticed in the procedure for
t_wo-dimensiona] parabolic flows, comes to the forefront in the three-
dimensional parabolic procedure. This assumption is that the streamwise
velocity is influenced by a cross-sectional mean pressure p, while the
cross-stream velocities are “driven” by a pressure variation p over the cross
section. This pressure “decoupling” is essential to the use of a parabolic
procedure.™

For external flows, the streamwise variation of p is obtained from the
surrounding irrotational stream. In confined flows, the p variation is adjusted
to satisfy overall mass conservation over the duct cross section. In a given
forward step, once the streamwise velocity has been obtained with the
appropriate streamwise gradient of p, the problem of calculating the two
cross=stream velocities and the cross-sectional pressure distribution is almost
identical to a two-dimensional elliptic problem, which can be solved by the
use of SIMPLE or SIMPLER. The details can be found in Patankar and
Spalding (1972a), which can be easily interpreted with the background
provided by this book.

8.3 PARTIALLY PARABOLIC FLOWS

In some practical situations there exists a predominant flow direction, and yet
the cross-stream pressure variation is hot negligible. Thus, the pressure
decoupling employed in the parabolic procedures is not appropriate for such
flows. In all other respects, the solution can be obtained by marching from
the upstream end of the domain to the downstream end, but the downstream
effects are transmitted upstream via pressure. Such situations are called

*,

Thc: cross-sectional pressurc p could be regarded as a perturbation over the mean
prcs.sure p. For the tlow to be treated as parabolic, the pressure perturbation over a cross
section should be small so that, in the streamwise momentum equation, no signitficant
error is introduced by the use of the mean pressure p instead of the actual local pressure.
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partially parabolic. Highly curved ducts, a jet in a cross stream, ducts with a
rapid change of cross section, and rotating passages are examples of partially
parabolic situations. The basic concept of this class of flows was presented by
Pratap and Spalding (1975, 1976), and has been applied to a film-cooling
situation by Bergeles, Gosman, and Launder (1976, 1978),

In the partially parabolic calculation procedure, the pressure field is
stored for the entire calculation domain, while all other variables are stored
for only one or two marching stations. For a given pressure field, the
marching procedure is employed just as in the fully parabolic situation, while
an improved pressure field is obtained from a pressure-correction equation or
a pressure equation. Many repetitions of the marching procedure are needed
before a converged solution is obtained.

Compared with the fully elliptic procedure, the fully parabolic procedure
offers savings in both computer time and computer storage. The partially
parabolic procedure saves storage, but the savings in computer time may not
be appreciable.

8.4 THE FINITE-ELEMENT METHOD

8.4-1 Motivation

The discretization method described in this book has, because of its use of
regular grids, the appearance of a finite-difference method. In stress analysis,
the finite-element method is much more commonly used than the finite-
difference method; and, even in heat transfer and fluid flow, applications of
the finite-element method have started appearing in increasing numbers.

The finite-element method subdivides the calculation domain into
elements, such as the triangular elements shown in Fig. 8.1. The discretization
equations are usually derived by the use of a variational principle when one
exists or by the Galerkin method, which is a special case of the method of
weighted residuals. In the derivation, a “‘shape function™ or profile assumption
is used to describe how the dependent variable ¢ varies over an element.

As explained in Section 3.2, the control-volume formulation is another
special case of the method of weighted residuals. We also have used shape
functions to describe the variation of ¢ between two grid points. It so
happens that these shape functions have been locally one-dimensional; it is
because of this feature that the grid lines are required to form an orthogonal
net.

From this viewpoint, the finite-element method should not be considered
as a basically different method. Its extra power lies only in its ability to use
an jrregular grid. Although we have discussed in Section 7.3 some ways of
adapting our discretization method to irregular geometries, there is no doubt
that the triangular grids shown in Fig. 8.1 provide more flexibility in fitting
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Figure 8.1 Examples of domain discreti-
zation by triangular elements.

irregular domains and in providing local grid refinement. The development of
a satisfactory finite-element method for heat transfer and fluid flow seems
highly desirable.

8.4-2 Difficulties

Although this potential of the finite-element method has been recognized for
quite some time, certain difficulties have, until recently, blocked progress:

1. The foremost difficulty concerns the upwind nature of convection. A
straightforward application of the standard finite-element method would
give a formulation that is very similar to the central-difference scheme; and
we know too well that such a formulation can lead to physically unrealistic
results. Something like the upwind or the exponential scheme is needed,
but it is not clear how to adapt such a formulation to irregular grids.

. The use of staggered grids was possible because the grid lines were laid out
along coordinate directions, and the velocity components in these direc-
tions could be appropriately displaced. The need for something like a
staggered grid is present in the triangular grid too: if all the variables were
to be calculated for the same grid points, difficulties similar to those
discussed in Section 6.2 would certainly arise.

38}

3. Most of the published applications of the finite-clement method to fluid

flow employ a direct simultaneous solution of the continuity equation and
all the momentum equations to yield the velocity components and
pressure. Since direct solutions are expensive, it is desirable to formulate a




160 NUMERICAL HEAT TRANSFER AND FLUID FLOW

SIMPLElike sequential—rather than simultaneous—solution of the momen-
tum and continuity equations.

4. For most fluid-flow-heat-transfer practitioners, the finite-element method
still has a veil of mystery about it. The variational formulation, or even the
Galerkin approach, does not have an easy physical interpretation. In
conformity with the philosophy adopted in this book, it is desirable to
produce a version of the finite-element method in which the physical
meuning of the discretization equations can be readily understood.

8.4-3 A Control-Volume-based
Finite-Element Method

The recent work of Baliga and Patankar (1979a, 1979b) has been successful in
removing the aforementioned difficulties, and a finite-element method that is
closely related to the discretization method described in this book has been
formulated. The actual formulation was worked out for a two-dimensional
situation, but care was taken to ensure that the extension to three dimensions
can be made without the need for any further novelties. A brief description of
the salient features of the method now follows.

1. For the tiangular grid the dependent variables are calculated for grid
points that lie at the vertices of the triangles. The discretization equations are
formed by the control-volume method; ie., the differential equation is
intergrated over the typical control volume shown in Fig. 8.2. The control
volumes are constructed by joining the centroid of each triangle to the
midpoints of the sides of that triangle. This construction of the control
volume was earlier proposed by Winslow (1967). It can be seen from Fig. 8.2

that the triangular elements adjacent to the grid point P accommodate .

portions of the control volume and the corresponding control-volume faces.
The discretization equation is formed by adding the contributions of these
elements to the integral conservation for the control volume.

Figure 8.2 Control volume for the tri-
angular grid.
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2. A shape function describing the variation of ¢ over an clement is
needed to calculate the flux across the control-volume faces that fall within
the element. The standard shape function for the triangular element is

¢=a+bx+cy, (8.1)

where the constants a, b, ¢ are expressed in terms of the three grid-point
values of ¢. For convection-diffusion problems, this shape function would give
results much like the central-difference scheme in finite-difference methods.
Since these results do become physically unrealistic when the Peclet number is
large, the shape function given by Eq. (8.1) is unacceptable. The alternative
proposed by Baliga and Patankar (1979a) is the shape function

Ux

<15=A+BexppT + Y, (8.2)

where U is the resultant velocity in the element, X is the coordinate pointing
in the direction of the resultant velocity, and Y in the direction normal
to it. The constants 4, B, C are found in terms of the three values of ¢ at the
vertices of the triangle.

On the basis of the discussion of convection and diffusion in Chapter 35,
the rationale for the use of the exponential function in Eq. (8.2) should be
quite obvious. For low Peclet numbers, Eq. (8.2) reduces to Eq. (8.1), which
is the appropriate shape function for conduction problems. 1t is through the
shape function (8.2) that the spirit of the exponential scheme has been
introduced into the finite-clement method.

In fact, the exponential shape function has achieved something more.
Whereas the formulation in Chapter 5 uses locally one-dimensional representa-
tion, Eq. (8.2) works with the resultant-velocity direction. Consequently, the
finite-element method based on Eq. (8.2) produces much less false diffusion
than does the formulation in Chapter 5.

3. The issue of the staggered grid is handled by calculating the pressure

o p,u v,

X u, v, . .
¢ Figure 8.3 Macrotriangles and

¥ subtriangles.
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on a grid that is different from the grid used for all the other variables. The
pressure is calculated at the vertices of “macrotriangles,” which are shown in
Fig. 8.3 by small circles. Each macrotriangle is divided into four subtriangles.
The subtriangles form the grid for the velocity components and all other
variables except pressure.

4. A sequential solution algorithm in the spirit of SIMPLER is formu-
lated. The pressure equation and the pressure-correction equation are derived
from the continuity equation written for a control volume defined by the
macrotriangle.

The control-volume-based finite-element method outlined here has under-
gonce relatively little testing, and certainly numerous refinements can be made.
However, the method represents a logical and effective extension of our
discretization method to triangular grids.

CHAPTER

NINE
ILLUSTRATIVE APPLICATIONS

In this last chapter, we shall look at a few applications of the numerical
method described in this book. The method has been extensively tested and
applied to a variety of practical situations. A review paper (Patankar, 1975)
written in the early days of the SIMPLE procedure contains a number of
examples that were available at that time. Since then, many more applications
have appeared in the literature. A partial list of the published applications of
the method now follows.

Two-dimensional elliptic situations involving fluid flow and heat transfer
have been computed by Lilly (1976), Abdel-Wahed, Patankar, and Sparrow
(1976), Moon and Rudinger (1977), Majumdar and Spalding (1977), Patankar,
Liu, and Sparrow (1977), Durst and Rastogi (1977), Sparrow, Patankar, and
Ramadhyani (1977), McGuirk and Rodi (1978), Patankar, Ramadhyani, and
Sparrow (1978), Ganesan, Spalding, and Murthy (1978), Patankar, Sparrow,
and lIvanovi¢ (1978), Sparrow, Patankar, and Shahrestani (1978), Sparrow,
Baliga, and Patankar (1978), and Patankar, Ivanovié, and Sparrow (1979).

Issa and Lockwood (1977) have modified the basic calculation method to
handle both subsonic and supersonic regions in a single domain. Turbulent
reacting flow in two-dimensional furnaces has been computed by Khalil,
Spalding, and Whitelaw (1975). Patankar and Spalding (1972b, 1974b) have
used the three-dimensional elliptic procedure for situations involving
turbulence, combustion, and radiation. Other three-dimensional elliptic
problems have been solved by Caretto, Gosman, Patankar, and Spalding
(1972), Patankar and Spalding (1974a, 1978), and Patankar, Basu, and Alpay
(1977).
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The method for three-dimensional parabolic flows has been applied to
complex practical problems by Patankar, Rastogi, and Whitelaw (1973),
Patankar, Pratap, and Spalding (1974, 1975), Patankar, Rafiinejad, and
Spalding (1975), McGuirk and Rodi (1977), Majumdar, Pratap, and Spalding
(1977), Rostogi and Rodi (1978), and DeJoode and Patankar (1978).

A complete discussion of all these applications will not be attempted
here. The aim of this chapter is to give the reader a feel for some applications
and then leave the rest to the imagination. Since only a few applications
would serve this purpose, it was convenient to choose them from the
problems solved by the author and his co-workers.

It is interesting to note that all the applications presented here have been
worked out by the use of only three general-purpose computer programs. The
three computer programs differ only in their dimensionality and parabolic-
elliptic nature. The programs are respectively designed for (1) two-dimensional
elliptic situations, (2) three-dimensional parabolic situations, and (3) three-
dimensional elliptic situations. It is possible to arrange each program to handle
either the Cartesian or cylindrical coordinate system. Of course, the adapta-
tion of any of the programs to a particular problem requires the incorporation
of appropriate mathematical models for the relevant physical processes (such
as turbulence or chemical reaction) and the introduction of the problem
specifications (such as geometry, fluid properties, and boundary conditions).
Although this adaptation often represents a significant effort, the use of
general-purpose computer programs still provides a great convenience.

Among the eight examples presented in this chapter, those in Sections
9.4-9.6 involve turbulent flow. The standard k-e¢ model of turbulence
(Launder and Spalding, 1974) is used in Sections 9.5 and 9.6, while a special
version of the mixing-length model is employed in Section 9.4. The steam-
generator problem in Section 9.8 employs the concept of distributed
resistances for flow over a tube bundle. The remaining sections deal with
laminar-flow situations.

From the computational point of view, a two-dimensional elliptic problem
is involved in the situations treated in Sections 9.2-9.4 and 9.7; the problems
in Sections 9.1 and 9.6 employ the three-dimensional parabolic procedure; and
Sections 9.5 and 9.8 illustrate the application of the three-dimensional elliptic
procedure. All the situations are steady-state except the one in Section 9.3,
where a moving-boundary unsteady problem is handled.

9.1 DEVELOPING FLOW IN A CURVED PIPE

The axisymmetric flow in a straight circular pipe is two-dimensional in
character. The flow in a curved pipe, however, exhibits a three-dimensional
nature. The reason is that the centrifugal force acting normal to the main
direction of flow causes a secondary flow pattern in the pipe cross section
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Figure 9.1 Secondary flow pattern in the cross section of a curved pipe [from Patankar,
Pratap, and Spalding (1974)].

(Fig. 9.1). As a result, the point of maximum axial velocity shifts to the
outside.

The developing laminar flow in a curved pipe was calculated by Patankar,
Pratap, and Spalding (1974). A representative sample of the results is
presented in Fig. 9.2, in which the axial velocity profiles on two different
diameters are shown at successive locations along a bend, which is situated
downstream of a straight section of the pipe. The velocity profile thus starts
as a parabolic one and gradually distorts to its fully developed shape in the
curved pipe. The computed results are compared with the experimental data of
Austin (1971); the agreement can be seen to be quite good.

The paper presents many more results for flow and for heat transfer and
compares them with experimental data. In a later study (Patankar, Pratap, and
Spalding, 1975), the turbulent flow in curved pipes was computed by the use
of a two-equation turbulence model.

9.2 COMBINED CONVECTION
IN A HORIZONTAL TUBE

Patankar, Ramadhyani, and Sparrow (1978) have carried out a computational
study of the fully developed laminar flow and heat transfer in a horizontal
tube that is subjected to nonuniform circumferential heating. Two heating
conditions, which are in evidence in the insets of Fig. 9.3, were considered. In
one, the tube was uniformly heated over the top half and insulated over the
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Figure 9.2 Development of axial velocity for the parameters K = 372 and R/z = 29.1 [from Patankar, Pratap, an

Spalding (1974)].
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Figure 9.3 Average Nusselt numbers for the horizontal tube with nonuniform heating
[from Patankar, Ramadhyani, and Sparrow (1978)].

bottom; in the other, the heated and insulated portions were reversed.

The nonuniform heating gives rise to a buoyancy-induced secondary flow,
which leads to significantly higher Nusselt numbers than those for pure forced
convection. The effect is particularly pronounced for the bottom-heating case
and for the larger Prandt number, as shown by the average Nusselt numbers
plotted in Fig. 9.3. The abscissa is a multiple of the modified Grashof num-
ber Gr™ .

Further insight into these results can be obtained from the isotherms and
streamlines over the tube cross section. The results for bottom heating are
presented in Fig. 9.4 for three different values of Gr*. In each cross-sectional
representation, the isotherms are plotted on the left, and the streamlines on
the right. The secondary flow caused by the nonuniform heating can be
clearly seen. At the highest Grashof number, the streamline pattern is rather
complicated, there being a tendency to form a “thermal” above the lowest




168

0.02

0.002

(b}

(a)

0 T 104, and (¢) 0.5 X 107 [from
Figure 9.4 Isotherms and streamline maps for bottom heating: Pr = 5, and the values of (4/n)Gr* are (a) 10, (b)

Patankar, Ramadhyani, and Sparrow (1978)].
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point in the cross section. The isotherms for this case exhibit a kind of stably
stratified structure in the top half, tend to follow the contour of the tube in
the bottom half, and indicate the rising thermal at the very bottom of the tube.

9.3 MELTING AROUND A VERTICAL PIPE

We shall now consider the situation shown in Fig. 9.5. A vertical pipe carrying
a hot fluid is embedded in a solid that is at its fusion temperature. With only
conduction heat transfer acting at the beginning, the melt layer has a uniform
thickness. But natural convection soon becomes influential and causes the
fluid at the top to be hotter than that at the bottom. This results in the
inclined interface as shown, with the largest thickness of the melt layer at the
top.

A numerical solution for the situation described was obtained by
Sparrow, Patankar, and Ramadhyani (1977). A grid in a transformed co-
ordinate system was employed, which always fitted the everchanging and
irregular shape of the melt region. In the unsteady solution, the interface was
regarded as temporarily stationary during each time step; its position was
readjusted before starting the next time step to account for the interface heat
transfer.

The time-dependent variation of the heat transfer rate at the pipe surface
is shown in Fig. 9.6. For our purposes here, it is best to ignore the various
parameters in the figure and concentrate on the trends. At early times, the
situation is governed by conduction, which causes a decrease in heat transfer
as the increasing thickness of the melt layer offers a greater resistance. This is
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Figure 9.5 Melting problem {from Sparrow, Patankar, and Ramadhyani (1977)].
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Figure 9.6 Timewise variation of the pipe heat transfer rate {from Sparrow, Patankar, and
Ramadhyani (1977)].

followed by an increase in the heat transfer rate that is brought about by the
action of natural convection. At large times, the rate of heat transfer is seen
to decrease again; by now, the melt region is so large that heat is carried only
by the recirculating flow, which itself experiences growing resistance along the
top wall.

The natural convection in the melt region and the shape of the interface
can be seen in Fig. 9.7 for three representative cases, for which the streamline
patterns are shown. For the early-time case, the conduction-dominated melt
region is nearly rectangular. The two other cases show the typical velocity
patterns and interface shapes that result from significant natural convection.

9.4 TURBULENT FLOW AND HEAT TRANSFER
IN INTERNALLY FINNED TUBES

A circular tube with longitudinal internal fins is considered to be an effective
device for heat transfer enhancement. The fully developed flow and heat
transfer in such a tube were computed by the use of a mixinglength model
formulated for the cross-sectional geometry shown in Fig. 9.8. Complete
details of the model and the resulting solutions are given in Patankar,
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Ivanovi¢, and Sparrow (1979). It is sufficient to note here that the modcl
calculgtes the local mixing length based on the distances of a point from both
the fin surface and the tube wall, and that the turbulent viscosity is

in.ﬂuenccd by the velocity gradients in both the radial and circumferential
directions. The model incorporates a single adjustable constant, which was

_r_ r
Ty ;; :
1.1 1.0 2.0 1.5 1.0 15 1.0
L 1.0 } 1 1.0 1 110
A
2 z z
H H H
- 0.5 - 0.5
! I oo
0 L O

(a) b) )

Figure 9.7 Representative flow patterns. The early situation is shown by (2), while () and
(¢) result from vigorous natural convection [from Sparrow, Patankar, and Ramadhyani

(1977)].
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Figure 9.8 Cross-sectional geome-
try of an internally finned tube
[from Patankar, Ivanovié, and
Sparrow (1979)].

chosen to give good agreement with the experimental data for air flow
reported by Carnavos (1977).

Figure 9.9 shows the comparison of the predicted values of the Nusselt
number and the friction factor with experimental data. In a way, the
satisfactory agreement shown is not surprising, because the adjustable constant
in the model was derived from the same experimental data. On the other hand,
that the adjustment of a single constant is able to give good predictions for both

200 -
L
100 10
80 | 8
60 - 6
Nu 10°f
prod

Tube no.

Hir,

10 0D 27 6 0.43
o 19 6 0.46
2 v 14 10 022 9
A6 10 0.24
19 > 7 10 0.26
o 10 16  0.32
N bbbl L 1 L1 1111
10° Re 10°
10* Re 10°

Figure 9.9 Comparison of predicted values of the Nusselt number and friction factor with
the experimental data of Carnavos (1977) [from Patankar, Ivanovié, and Sparrow (1979)].
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Nu and f over a range of Reynolds numbers and for different numbers and
heights of fins is a significant achievement of the model.

9.5 A DEFLECTED TURBULENT JET

A turbulent jet issuing from a circular orifice can be analyzed as a two-
dimensional parabolic flow. However, when the jet is deflected by a stream
normal to its axis, an interesting three-dimensional elliptic situation arises, as
schematically shown in Fig. 9.10. Chimney plumes, flow under a V/STOL
aircraft, and some film-cooling situations involve the deflected-jet configuration.

Patankar, Basu, and Alpay (1977) obtained a numerical solution for the
three-dimensional velocity field of the deflected jet on the basis of the k-¢
model of turbulence. Thus, in addition to the momentum and continuity
equations, two differential equations for the turbulence quantities, namely the
turbulence kinetic energy k and its dissipation rate e, were solved. The
standard values of the empirical constants in the k- model, as recommended
by Launder and Spalding (1974), were used; they were not adjusted to
procure better agreement with experimental data.

The predicted position of the jet center line is shown in Fig. 9.11 for
various ratios of the jet velocity to the mainstream velocity. Also shown are

Figure 9.10 Deflected-jet situation [from Patankar, Basu, and Alpay (1977)].




174 NUMERICAL HEAT TRANSFER AND FLUID FLOW
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Figure 9.11 Position of the jet centerline for ditferent jet-to-mainstream velocity ratios
(from Patankar, Basu, and Alpay (1977)}.

the experimental data of Ramsey and Goldstein (1970), Keffer and Baines
(1963), and Jordinson (1958). Within the experimental scatter, the agreement
of the numerical predictions with the data can be judged as satisfactory.

In Fig. 9.12, we compare the computed velocity profiles with the
measured ones from Ramsey and Goldstein (1970). These are the profiles of
the z-direction velocity along the central yz plane for four different values of
z; the ratio of the jet velocity to the mainstream velocity is 2. Again, the

agreement is reasonable.

9.6 A HYPERMIXING JET WITHIN
A THRUST-AUGMENTING EJECTOR

A thrust-augmenting ejector is an arrangement for increasing the thrust of a
primary jet by entraining secondary air from the atmosphere. It has possible
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Figure 9.12 Profiles of the z-direction velocity [from Patankar, Basu, and Alpay (1977)].
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applications in V/STOL aircraft. Ordinary jets from slot nozzles require long
mixing ducts to produce any significant thrust augmentation. Since such long
ducts are unsuitable for practical aircraft applications, a hypermixing nozzle is
used to accelerate the mixing process. Here we summarize the computational
investigation of a hypermixing-jet ejector reported by DeJoode and Patankar
(1978).

The geometry of the hypermixing nozzle and the resulting flow field are
shown in Fig. 9.13. The nozzle exit is divided into several segments. The flow
issuing from these segments is given an upward or downward velocity
component in an alternating fashion; this is shown schematically in the inset
of Fig. 9.13. These alternate velocity components lead to the formation of
streamwise vortices, indicated by the arrows on a cross-stream plane in the
figure. Also shown are the profiles of the velocity in the main flow direction.
The velocity maxima in front of adjacent segments can be seen to lie
respectively above and below the center line, while in front of the dividing
line between two segments the velocity profile has two peaks.

Figure 9.13 Geometry and the flow field of a hypermixing jet [from DeJoode and Patankar
(1978)1.
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For the situation chosen for computer analysis, the hypermixing jet was

placed in a diffuser as shown in Fig. 9.14. The computation was performed by
a marching procedure for the three-dimensional parabolic flow. The k- model
of turbulence, with the standard values of constants from Launder and
Spalding (1974), was used.
' The comparison of predicted and measured velocity profiles is shown
in Fig. 9.15. All the qualitative features of the flow field—such as the double
peak between the elements, the appearance of a second peak at the
mjd_-glement location, and the merging of the two peaks at a far-downstream
position—are correctly predicted; the quantitative agreement is also fairly
good.

The pressure rise through the diffuser is considered as a convenient
measure of the thrust augmentation achieved. The predicted pressure rise
through the ejector is compared with the experimental data in Fig. 9.16. Once
again, the agreement can be regarded as reasonable.
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Figure 9.15 Comparison of predicted and measured velocity profiles. (2) x/r = 5;
b) x/t = 25; (¢) x/t = 45 [from DeJoode and Patankar (1978)]. Figure 9.17 Transverse-plate array (from Patankar, Liu, and Sparrow (1977)].
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by dashed lines in Fig. 9.17, without having to deal with the entrance-region
problem.

The calculation for the module may at first sight appear to be burdened
with a difficulty: We do not have known values of velocity, temperature, etc.
at the upstream and downstream boundaries of the module. But further
thought eliminates the difficulty. When the fluid leaves the module, it enters
an identical next module. Therefore, the situation is conceptually the same as
if' the fluid leaving the module were (somehow) to reenter the same module at
the upstream end. In this view, the upstream and downstream boundaries do
not form boundary locations at all; all streamwise stations are as if arranged in
an endless loop.

This conceptual framework is sufficient to formulate the numerical
solution, which is described in detail by Patankar, Liu, and Sparrow (1977). A
representative solution for the module shown in Fig. 9.17 is presented in Fig.
9.18 in the form of the streamlines. It can be noted that the flow has to take
a rather tortuous path to get around the transverse plates. This leads to the
large recirculution zone on the downstream side of each plate. The heat
transfer calculation for the same situation with a Prandtl number of 0.7 leads
to the Nusselt numbers plotted in Fig. 9.19. The higher Nusselt numbers on

—— e s e T e e e —— e

0.50

0.36
0.25

0.14

L Separation streamline

L B e U UNUUGE | S

Figure 9.18 Predicted flow field for a Reynolds number of 1040 [from Patankar, Liu, and
Spuarrow (1977)].
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Figure 9.19 Predicted Nusselt numbers [from Patankar, Liu, and Sparrow (1977)].

the front face of the plates are caused by the impinging flow there, while the
slow recirculation zone on the back face gives much lower values. The increase
in the Nusselt number with the Reynolds number is, in itself, unlike the case
of conventional thermally developed duct flows, for which the Nusselt number
is independent of the Reynolds number.

9.8 THERMAL-HYDRAULIC ANALYSIS
OF A STEAM GENERATOR

This last example is included here to illustrate two main points: that useful
computations for realistic large-scale industrial equipment can now be made,
and that the “distributed-resistance™ concept can be effectively employed to
analyze configurations such as heat exchangers, steam generators, condensers,
and cooling towers.

The distributed-resistance concept is applicable to cases in which a fluid
flows through an enclosure that is filled with numerous solid objects such as
rods, tubes, or slats. The situation is then treated much like flow in porous
media, with distributed sinks of momentum and sources or sinks of heat
produced by the solid objects. The distributed resistance can be obtained from
detailed computations such as the one in Section 9.7 or directly from
empirical correlations for the appropriate configuration.

The thermal-hydraulic analysis of a steam generator, which is described by
Patankar and Spalding (1978), was carried out for the configuration shown in
Fig. 9.20. The cylindrical shell is uniformly filled with tubes (which are not




182 NUMLRICAL HEAT TRANSFER AND FLUID FLOW

shown in Fig. 9.20). The hot tube fluid rises upward in one half of the steam
generator, turns through the U bend at the top, and flows downward in the
other half. An economizer is housed in the lower part of the generator for the
purpose of bringing the feedwater up to the saturation temperature.

The numerical solution was carried out to obtain the three velocity
components, the pressure, the enthalpy for the shell fluid, and the enthalpy
(or temperature) of the tube fluid. For the situation considered, the tube fluid
remained in the liquid phase throughout, and its mass flow rate was known
from the inlet conditions.

The computed velocity field on the central vertical plane is shown in Fig.
9.21. The arrows denote the velocity vectors in both magnitude and direction.
The general magnitude of the velocity can be seen to increase as the fluid rises
in the steam generator; this is in response to the lower values of density in the
upper part. The velocity field in the lower left-hand corner of the figure
indicates the zig-zag flow path through the economizer.

Figure 9.22 shows the steam-quality distribution on the central vertical
plane. The lower left-hand corner is blank because the fluid in the economizer
is mostly subcooled water. In general, the qualities on the right side (i.e., the
“hot” side) are greater than those on the left side. This disparity is seen to
cxist all the way to the exit.

Exit

Tube
support plate
~

Baffles
™~

Dividing

Economizer / plate

Figure 9.20 Steam-generator configura-

- tion. (The tubes are not shown; the
Hot-side ports| . . .
P e— SN2 N, figure is not drawn to scale; the hori-
Feedwater - N TN e i\: zontal dimension is shown enlarged by a
ports N O S O S factor of about 2.) [From Patankar and
Cold side Hot side Spalding (1978).]
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on the vertical plane of symmetry [from on the vertical plane of symmetry {from
Patankar and Spalding (1978)]. Patankar and Spalding (1978)].

9.9 CLOSING REMARKS

In this book, we have developed a numerical method for heat transfer, fluid
flow, and related phenomena; evolved a philosophy of numerical computation
through physical understanding and insight; and presented illustrative examples
of actual computations. Sufficient details of the method are given to enable
readers to write their own computer programs. The readers are also
equipped with meaningful criteria with which to judge other methods. The
purpose of the book would be well served if each reader became an active
practitioner of, and possibly an innovator in, the exciting field of numerical
heat transfer and fluid flow.




NOMENCLATURE

b

Bl
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convection-diffusion coefficient, Eq. (5.37); also used to
denote area in Chapter 6

coefficient in the discretization equation

convection-diffusion coefficient, Eq. (5.37)

x-direction body force, Eq. (2.11)

constant term in the discretization equation

specific heat

diffusion conductance, Eq. (5.9)

coefficient of the pressure-difference term, Eq. (6.16)

flow rate through a control-volume face, Eq. (5.9)

weighting factor, Eq. (4.34)

length ratio, Eq. (4.6)

generation rate of turbulence energy, Eq. (2.12)

specific enthalpy in Chapter 2; heat transfer coefficient in
Chapter 4

inertia used for underrelaxation, Eq. (4.56)

total (convection + diffusion) flux

diffusion flux of chemical species /

normalized flux, Eq. (5.35)

thermal conductivity; also used to denote the turbulence
kinetic energy, Eq. (2.12)

mass fraction of the chemical species /

Peclet number, Eq. (5.18); also used as a TDMA coefficient in
Chapter 4

pressure

pressure correction

185




- RN |

<
x‘*

‘€>€ €“C>C
= Sx
*

2 ®
=
™

Subscripts

2% o

NUMERICAL HEAT TRANSFER AND FLUID FLOW

TDMA coeificient

heat flux

residual, Eqgs. (3.8) and (7.5)

rate of generation of species I by chemical reaction, Eq. (2.2)
radial coordinate

general source term, Eq. (2.13)

constant part of the linearized source term, Eq. (3.16)
volumetric rate of heat generation, Eq. (2.5)
coefficient of Tp (or ¢p) in the linearized source expression,
Eq. (3.16)

temperature

time

x-direction velocity

velocity vector

pseudovelocity in the x direction, Eq. (6.26)

velocity based on the guessed pressure p*

viscous source term in Eq. (2.11)

y-direction velocity

similar to #, u*

weighting function, Eq. (3.9)

z-direction velocity

similar to 1, u™*

coordinates

relaxation factor, Eq. (4.55)

relaxation factor for pressure, Eq. (6.24)

general diffusion coefficient, Eq. (2.13)

diffusion coefficient for species /, Eq. (2.3)

time step

x-direction width of the control volume

x-direction distance between two adjacent grid points
similar to Ax, 6x

similar to Ax, 6x

turbulence dissipation rate, Eq. (2.12)

viscosity

density

general dependent variable, Eq. (2.13)

neighbor in the negative z direction, i.e., at the bottom
control-volume face between P and B

neighbor in the positive x direction, i.e., on the east side
control-volume face between P and £

neighbor in the positive y direction, i.e., on the north side

NOMENCLATURE

=
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Superscripts

[

Special symbol
fA,B,C,...1]
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control-volume face between P and NV
general neighbor grid point
central grid point under consideration

neighbor in the negative y direction, i.e., on the south side
control-volume face between P and §

neighbor in the positive z direction, i.c,, at the top
control-volume face between Pand T

neighbor in the negative x direction, i.e., on the west side
control-volume face between P and W

new value (at time ¢ + Ar) of the dependent variable
old value (at time r) of the variable

previous-iteration value of a variable; also velocities based on a
guessed pressure

largest of A, B, C, . ..
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convergence ot 47
discussion, 139
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and diffusion, 101
Three-dimensional parabolic flow, 156
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Line-by-line method, 64 )
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Relaxation factor, 67
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and diffusion, 101
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Iixperimentul investigation, 3
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Methods of prediction, 3
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Numerical method, task of, 25
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and diftusion, 80
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