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Preface

Computational fluid dynamics, commonly known by the acronym ‘CFD’,
is undergoing significant expansion in terms of both the number of courses
offered at universities and the number of researchers active in the field. There
are a number of software packages available that solve fluid flow problems; the
market is not quite as large as the one for structural mechanics codes, in which
finite element methods are well established. The lag can be explained by the
fact that CFD problems are, in general, more difficult to solve. However, CFD
codes are slowly being accepted as design tools by industrial users. At present,
users of CFD need to be fairly knowledgeable, which requires education of
both students and working engineers. The present book is an attempt to fill
this need.

It is our belief that, to work in CFD, one needs a solid background in both
fluid mechanics and numerical analysis; significant errors have been made by
people lacking knowledge in one or the other. We therefore encourage the
reader to obtain a working knowledge of these subjects before entering into
a study of the material in this book. Because different people view numeri-
cal methods differently, and to make this work more self-contained, we have
included two chapters on basic numerical methods in this book. The book
is based on material offered by the authors in courses at Stanford Univer-
sity, the University of Erlangen-Niirnberg and the Technical University of
Hamburg-Harburg. It reflects the authors’ experience in both writing CFD
codes and using them to solve engineering problems. Many of the codes used
in the examples, from the simple ones involving rectangular grids to the ones
using non-orthogonal grids and multigrid methods, are available to interested
readers; see the information on how to access them via Internet in the ap-
pendix. These codes illustrate the methods described in the book; they can be
adapted to the solution of many fluid mechanical problems. Students should
try to modify them (e.g. to implement different boundary conditions, interpo-
lation schemes, differentiation and integration approximations, etc.). This is
important as one does not really know a method until s/he has programmed
and/or run it.

Since one of the authors (M.P.) has just recently decided to give up his pro-
fessor position to work for a provider of CFD tools, we have also included in
the Internet site a special version of a full-featured commercial CFD package
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that can be used to solve many different flow problems. This is accompanied
by a collection of prepared and solved test cases that are suitable to learn
how to use such tools most effectively. Experience with this tool will be valu-
able to anyone who has never used such tools before, as the major issues are
common to most of them. Suggestions are also given for parameter variation,
error estimation, grid quality assessment, and efficiency improvement.

The finite volume method is favored in this book, although finite difference
methods are described in what we hope is sufficient detail. Finite element
methods are not covered in detail as a number of books on that subject
already exist.

We have tried to describe the basic ideas of each topic in such a way
that they can be understood by the reader; where possible, we have avoided
lengthy mathematical analysis. Usually a general description of an idea or
method is followed by a more detailed description (including the necessary
equations) of one or two numerical schemes representative of the better meth-
ods of the type; other possible approaches and extensions are briefly de-
scribed. We have tried to emphasize common elements of methods rather
than their differences.

There is a vast literature devoted to numerical methods for fluid mechan-
ics. Even if we restrict our attention to incompressible flows, it would be
impossible to cover everything in a single work. Doing so would create con-
fusion for the reader. We have therefore covered only the methods that we
have found valuable and that are commonly used in industry in this book.
References to other methods are given, however.

We have placed considerable emphasis on the need to estimate numerical
errors; almost all examples in this book are accompanied with error analysis.
Although it is possible for a qualitatively incorrect solution of a problem to
look reasonable (it may even be a good solution of another problem), the
consequences of accepting it may be severe. On the other hand, sometimes a
relatively poor solution can be of value if treated with care. Industrial users
of commercial codes need to learn to judge the quality of the results before
believing them; we hope that this book will contribute to the awareness that
numerical solutions are always approximate.

We have tried to cover a cross-section of modern approaches, including di-
rect and large eddy simulation of turbulence, multigrid methods and parallel
computing, methods for moving grids and free surface flows, etc. Obviously,
we could not cover all these topics in detail, but we hope that the informa-
tion contained herein will provide the reader with a general knowledge of the
subject; those interested in a more detailed study of a particular topic will
find recommendations for further reading.

While we have invested every effort to avoid typing, spelling and other
errors, no doubt some remain to be found by readers. We will appreciate
your notifying us of any mistakes you might find, as well as your comments
and suggestions for improvement of future editions of the book. For that
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purpose, the authors’ electronic mail addresses are given below. We also hope
that colleagues whose work has not been referenced will forgive us, since any
omissions are unintentional.

We have to thank all our present and former students, colleagues, and
friends, who helped us in one way or another to finish this work; the complete
list of names is too long to list here. Names that we cannot avoid mentioning
include Drs. Ismet Demirdzié, Samir Muzaferija, Zeljko Lilek, Joseph Oliger,
Gene Golub, Eberhard Schreck, Volker Seidl, Kishan Shah, Fotina (Tina)
Katapodes and David Briggs. The help provided by those people who created
and made available TgX, I¥TEX, Linux, Xfig, Ghostscript and other tools
which made our job easier is also greatly appreciated.

Our families gave us a tremendous support during this endeavor; our
special thanks go to Anna, Robinson and Kerstin Peri¢ and Eva Ferziger.

This collaboration between two geographically distant colleagues was
made possible by grants and fellowships from the Alexander von Humboldt
Foundation and the Deutsche Forschungsgemeinschaft (German National Re-
search Organization). Without their support, this work would never have
come into existence and we cannot express sufficient thanks to them.

Milovan Perié
milovan@cd.co.uk

Joel H. Ferziger
ferziger@leland.stanford.edu
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1. Basic Concepts of Fluid Flow

1.1 Introduction

Fluids are substances whose molecular structure offers no resistance to exter-
nal shear forces: even the smallest force causes deformation of a fluid particle.
Although a significant distinction exists between liquids and gases, both types
of fluids obey the same laws of motion. In most cases of interest, a fluid can
be regarded as continuum, i.e. a continuous substance.

Fluid flow is caused by the action of externally applied forces. Common
driving forces include pressure differences, gravity, shear, rotation, and sur-
face tension. They can be classified as surface forces (e.g. the shear force due
to wind blowing above the ocean or pressure and shear forces created by a
movement of a rigid wall relative to the fluid) and body forces (e.g. gravity
and forces induced by rotation).

While all fluids behave similarly under action of forces, their macroscopic
properties differ considerably. These properties must be known if one is to
study fluid motion; the most important properties of simple fluids are the
density and wviscosity. Others, such as Prandtl number, specific heat, and sur-
face tension affect fluid flows only under certain conditions, e.g. when there
are large temperature differences. Fluid properties are functions of other ther-
modynamic variables (e.g. temperature and pressure); although it is possible
to estimate some of them from statistical mechanics or kinetic theory, they
are usually obtained by laboratory measurement.

Fluid mechanics is a very broad field. A small library of books would be
required to cover all of the topics that could be included in it. In this book
we shall be interested mainly in flows of interest to mechanical engineers but
even that is a very broad area so we shall try to classify the types of problems
that may be encountered. A more mathematical, but less complete, version
of this scheme will be found in Sect. 1.8.

The speed of a flow affects its properties in a number of ways. At low
enough speeds, the inertia of the fluid may be ignored and we have creep-
ing flow. This regime is of importance in flows containing small particles
(suspensions), in flows through porous media or in narrow passages (coating
techniques, micro-devices). As the speed is increased, inertia becomes im-
portant but each fluid particle follows a smooth trajectory; the flow is then
said to be laminar. Further increases in speed may lead to instability that
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eventually produces a more random type of flow that is called turbulent; the
process of laminar-turbulent transition is an important area in its own right.
Finally, the ratio of the flow speed to the speed of sound in the fluid (the
Mach number) determines whether exchange between kinetic energy of the
motion and internal degrees of freedom needs to be considered. For small
Mach numbers, Ma < 0.3, the flow may be considered incompressible; other-
wise, it is compressible. If Ma < 1, the flow is called subsonic; when Ma > 1,
the flow is supersonic and shock waves are possible. Finally, for Ma > 5, the
compression may create high enough temperatures to change the chemical
nature of the fluid; such flows are called hypersonic. These distinctions affect
the mathematical nature of the problem and therefore the solution method.
Note that we call the flow compressible or incompressible depending on the
Mach number, even though compressibility is a property of the fluid. This
is common terminology since the flow of a compressible fluid at low Mach
number is essentially incompressible.

In many flows, the effects of viscosity are important only near walls, so
that the flow in the largest part of the domain can be considered as inviscid.
In the fluids we treat in this book, Newton’s law of viscosity is a good ap-
proximation and it will be used exclusively. Fluids obeying Newton’s law are
called Newtonian; non-Newtonian fluids are important for some engineering
applications but are not treated here.

Many other phenomena affect fluid flow. These include temperature dif-
ferences which lead to heat transfer and density differences which give rise to
buoyancy. They, and differences in concentration of solutes, may affect flows
significantly or, even be the sole cause of the flow. Phase changes (boiling,
condensation, melting and freezing), when they occur, always lead to impor-
tant modifications of the flow and give rise to multi-phase flow. Variation of
other properties such as viscosity, surface tension etc. may also play impor-
tant role in determining the nature of the flow. With only a few exceptions,
these effects will not be considered in this book.

In this chapter the basic equations governing fluid flow and associated
phenomena will be presented in several forms: (i) a coordinate-free form,
which can be specialized to various coordinate systems, (%) an integral form
for a finite control volume, which serves as starting point for an important
class of numerical methods, and (73) a differential (tensor) form in a Cartesian
reference frame, which is the basis for another important approach. The basic
conservation principles and laws used to derive these equations will only
be briefly summarized here; more detailed derivations can be found in a
number of standard texts on fluid mechanics (e.g. Bird et al., 1962; Slattery,
1972; White, 1986). It is assumed that the reader is somewhat familiar with
the physics of fluid flow and related phenomena, so we shall concentrate on
techniques for the numerical solution of the governing equations.
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1.2 Conservation Principles

Conservation laws can be derived by considering a given quantity of matter or
control mass (CM) and its extensive properties, such as mass, momentum and
energy. This approach is used to study the dynamics of solid bodies, where the
CM (sometimes called the system) is easily identified. In fluid flows, however,
it is difficult to follow a parcel of matter. It is more convenient to deal with
the flow within a certain spatial region we call a control volume (CV), rather
than in a parcel of matter which quickly passes through the region of interest.
This method of analysis is called the control volume approach.

We shall be concerned primarily with two extensive properties, mass and
momentum. The conservation equations for these and other properties have
common terms which will be considered first.

The conservation law for an extensive property relates the rate of change
of the amount of that property in a given control mass to externally deter-
mined effects. For mass, which is neither created nor destroyed in the flows
of engineering interest, the conservation equation can be written:

dm

dt
On the other hand, momentum can be changed by the action of forces and
its conservation equation is Newton’s second law of motion:

d(mv)
) 2 (1.2)

where ¢ stands for time, m for mass, v for the velocity, and f for forces acting
on the control mass.

We shall transform these laws into a control volume form that will be used
throughout this book. The fundamental variables will be intensive rather than
extensive properties; the former are properties which are independent of the
amount of matter considered. Examples are density p (mass per unit volume)
and velocity » (momentum per unit mass).

If ¢ is any conserved intensive property (for mass conservation, ¢ = 1; for
momentum conservation, ¢ = v; for conservation of a scalar, ¢ represents the
conserved property per unit mass), then the corresponding extensive property
& can be expressed as:

=0. (1.1)

&= / 06d02 | (1.3)
Qcm
where 2cm stands for volume occupied by the CM. Using this definition,

the left hand side of each conservation equation for a control volume can be
written:!

! This equation is often called control volume equation or the Reynolds’ transport
theorem.
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d d
P p¢dQ:EZ / p¢d9+/p¢(v—vb)-nd5, (1.4)
I7)

Rcm cv Scv

where {2cv is the CV volume, Scv is the surface enclosing CV, n is the unit
vector orthogonal to Scv and directed outwards, v is the fluid velocity and vy,
is the velocity with which the CV surface is moving. For a fixed CV, which
we shall be considering most of the time, vy, = 0 and the first derivative
on the right hand side becomes a local (partial) derivative. This equation
states that the rate of change of the amount of the property in the control
mass, &, is the rate of change of the property within the control volume plus
the net flux of it through the CV boundary due to fluid motion relative to
CV boundary. The last term is usually called the convective (or sometimes,
advective) flux of ¢ through the CV boundary. If the CV moves so that its
boundary coincides with the boundary of a control mass, then v = vy and
this term will be zero as required.

A detailed derivation of this equation is given in in many textbooks on
fluid dynamics {(e.g. in Bird et al., 1962; Fox and McDonald, 1982) and will not
be repeated here. The mass, momentum and scalar conservation equations
will be presented in the next three sections. For convenience, a fixed CV will
be considered; §2 represents the CV volume and S its surface.

1.3 Mass Conservation

The integral form of the mass conservation (continuity) equation follows di-
rectly from the control volume equation, by setting ¢ = 1:

%/deﬂ-i-/spv-ndSZO. (1.5)

By applying the Gauss’ divergence theorem to the convection term, we can
transform the surface integral into a volume integral. Allowing the control
volume to become infinitesimally small leads to a differential coordinate-free
form of the continuity equation:

g—? +div (pv) =0. (1.6)
This form can be transformed into a form specific to a given coordinate
system by providing the expression for the divergence operator in that system.
Expressions for common coordinate systems such as the Cartesian, cylindrical
and spherical systems can be found in many textbooks (e.g. Bird et al., 1962);
expressions applicable to general non-orthogonal coordinate systems are given
e.g. in Truesdell (1977), Aris (1989), Sedov (1971). We present below the
Cartesian form in both tensor and expanded notation. Here and throughout
this book we shall adopt the Einstein convention that whenever the same



1.4 Momentum Conservation 5

index appears twice in any term, summation over the range of that index is
implied:
op O(pwi) _ 9p  O(pus) + A(puy) N O(pu.)

8t = dx; ot Bz By 8z

=0, (1.7)

where z; (i=1,2,3) or (z,y,z) are the Cartesian coordinates and wu; or
(ug, Uy, u,) are the Cartesian components of the velocity vector v. The con-
servation equations in Cartesian form are often used and this will be the case
in this work. Differential conservation equations in non-orthogonal coordi-
nates will be presented in Chap. 8.

1.4 Momentum Conservation

There are several ways of deriving the momentum conservation equation. One
approach is to use the control volume method described in Sect. 1.2; in this
method, one uses Eqgs. (1.2) and (1.4) and replaces ¢ by v, e.g. for a fixed
fluid-containing volume of space:

8
a/vad(er/Spw.ndS_Zf. (1.8)

To express the right hand side in terms of intensive properties, one has to
consider the forces which may act on the fluid in a CV:

o surface forces (pressure, normal and shear stresses, surface tension etc.);
¢ body forces (gravity, centrifugal and Coriolis forces, electromagnetic forces,
etc.).

The surface forces due to pressure and stresses are, from the molecular point
of view, the microscopic momentum fluxes across a surface. If these fluxes
cannot be written in terms of the properties whose conservation the equa-
tions govern (density and velocity), the system of equations is not closed;
that is there are fewer equations than dependent variables and solution is
not possible. This possibility can be avoided by making certain assumptions.
The simplest assumption is that the fluid is Newtonian; fortunately, the New-
tonian model applies to many actual fluids.

For Newtonian fluids, the stress tensor T, which is the molecular rate of
transport of momentum, can be written:

2
T:—(p+ g,udivv>|+2,uD, (1.9)

where y is the dynamic viscosity, | is the unit tensor, p is the static pressure
and D is the rate of strain (deformation) tensor:
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D= % [gradv + (gradv)T] . (1.10)

These two equations may be written, in index notation in Cartesian coordi-
nates, as follows:

_ 2 6uj

le = — <p+ ‘3‘,“1 a—m]> 51] + 2,UD2] P (111)
_ 1 8ui 6Uj

Dy = (axj + ax,-) , (1.12)

where §;; is Kronecker symbol (d;; = 1 if i = j and d;; = 0 otherwise).
For incompressible flows, the second term in brackets in Eq. (1.11) is zero
by virtue of the continuity equation. The following notation is often used in
literature to describe the viscous part of the stress tensor:

2
3

For non-Newtonian fluids, the relation between the stress tensor and the
velocity is defined by a set of partial differential equations and the total
problem is far more complicated. In fact, different types of non-Newtonian
fluids require different constitutive equations which may, in turn, require
different solution methods. This subject is complex and is just beginning to
be explored. For these reasons, it will not be considered further in this book.

With the body forces (per unit mass) being represented by b, the integral
form of the momentum conservation equation becomes:

2/ pde+/pvv-ndS=/T-ndS+/ pbdf2 . (1.14)
Ot Ja s s o}

A coordinate-free vector form of the momentum conservation equation (1.14)
is readily obtained by applying Gauss’ divergence theorem to the convective
and diffusive flux terms:

Tij = 2,uDij — ,U(s,;j divw . (113)

Q—(gg]—) +div (pvv) =divT + pb . (1.15)
The corresponding equation for the ith Cartesian component is:
a(g;”) + div (pusv) = div t; + pb; . (1.16)

Since momentum is a vector quantity, the convective and diffusive fluxes
of it through a CV boundary are the scalar products of second rank tensors
(pvv and T) with the surface vector n dS. The integral form of the above
equations is:
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0
at/ pu,d!?—}-/pulv ndS = /t ndS+/ pb;df2 (1.17)

where (see Egs. (1.9) and (1.10)):
. 2 . . .
t; = pgradu; + p (gradv)T -4, - (p+ g,udiv v> % = T8 — Pty (1.18)

Here b; stands for the ith component of the body force, superscript 7 means
transpose and ¢; is the Cartesian unit vector in the direction of the coordinate
z;. In Cartesian coordinates one can write the above expression as:

_ Ou;  Ouy 2 Ouj
ti_ﬂ<a$j+6$l> <p+ 3 am ) . (1.19)

A vector field can be represented in a number of different ways. The basis
vectors in terms of which the vector is defined may be local or global. In curvi-
linear coordinate systems, which are often required when the boundaries are
complex (see Chap. 8) one may choose either a covariant or a contravariant
basis, see Fig. 1.1. The former expresses a vector in terms of its components
along the local coordinates; the latter uses the projections normal to coordi-
nate surfaces. In a Cartesian system, the two become identical. Also, the basis
vectors may be dimensionless or dimensional. Including all of these options,
over 70 different forms of the momentum equations are possible. Mathemat-
ically, all are equivalent; from the numerical point of view, some are more
difficult to deal with than others.

Fig. 1.1. Representation of a vector through different components: u; — Gartesian
components; v* — contravariant components; v; — covariant components [va = ws,

(ui)a = (ui)s, (v)a # (V)8 (v:)a # (vi)8]

The momentum equations are said to be in “strong conservation form” if
all terms have the form of the divergence of a vector or tensor. This is possi-
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ble for the component form of the equations only when components in fixed
directions are used. A coordinate-oriented vector component turns with the
coordinate direction and an “apparent force” is required to produce the turn-
ing; these forces are non-conservative in the sense defined above. For example,
in cylindrical coordinates the radial and circumferential directions change so
the components of a spatially constant vector (e.g. a uniform velocity field)
vary with r and 6 and are singular at the coordinate origin. To account
for this, the equations in terms of these components contain centrifugal and
Coriolis force terms.

Figure 1.1 shows a vector v and its contravariant, covariant and Cartesian
components. Obviously, the contravariant and covariant components change
as the base vectors change even though the vector v remains constant. We
shall discuss the effect of the choice of velocity components on numerical
solution methods in Chap. 8.

The strong conservation form of the equations, when used together with a
finite volume method, automatically insures global momentum conservation
in the calculation. This is an important property of the conservation equations
and its preservation in the numerical solution is equally important. Retention
of this property can help to insure that the numerical method will not diverge
during the solution and may be regarded as a kind of “realizability”.

For some flows it is advantageous to resolve the momentum in spatially
variable directions. For example, the velocity in a line vortex has only one
component ug in cylindrical coordinates but two components in Cartesian
coordinates. Axisymmetric flow without swirl is two-dimensional (2D) when
analyzed in a polar-cylindrical coordinate frame, but three-dimensional (3D)
when a Cartesian frame is used. Some numerical techniques that use non-
orthogonal coordinates require use of contravariant velocity components. The
equations then contain so-called “curvature terms”, which are hard to com-
pute accurately because they contain second derivatives of the coordinate
transformations that are difficult to approximate.

Throughout this book we shall work with velocity vectors and stress ten-
sors in terms of their Cartesian components, and we shall use conservative
form of the Cartesian momentum equations.

Equation (1.16) is in strong conservation form. A non-conservative form
of this equation can be obtained by employing the continuity equation; since

div (pvu;) = u; div (pv) + pv - grad u; ,
it follows that:

8’(1,,;

pgt— + pv - grad u; = dive; + pbi . (120)

The pressure term contained in ¢; can also be written as

div (pi;) = gradp - ¢; .
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The pressure gradient is then regarded as a body force; this amounts to
non-conservative treatment of the pressure term. The non-conservative form
of equations is often used in finite difference methods, since it is somewhat
simpler. In the limit of a very fine grid, all equation forms and numerical
solution methods give the same solution; however, on coarse grids the non-
conservative form introduces additional errors which may become important.
If the expression for the viscous part of the stress tensor, Eq. (1.13),
is substituted into Eq. (1.16) written in index notation and for Cartesian
coordinates, and if gravity is the only body force, one has:
Olpus) | Olpujui) _ Omij _ Op

ot 51:]' N 8.’L‘j Ox;

where g; is the component of the gravitational acceleration g in the direction
of the Cartesian coordinate x;. For the case of constant density and gravity,
the term pg can be written as grad (pg - r), where r is the position vector,
r = z;i; (usually, gravity is assumed to act in the negative z-direction, i.e.
g = g.k, g. being negative; in this case g - r = g¢,2). Then —pg,z is the
hydrostatic pressure, and it is convenient — and for numerical solution more
efficient - to define p = p—pg.z as the head and use it in place of the pressure.
The term pg; then disappears from the above equation. If the actual pressure
is needed, one has only to add pg.z to p.

Since only the gradient of the pressure appears in the equation, the abso-
lute value of the pressure is not important except in compressible flows.

In variable density flows (the variation of gravity can be neglected in all
flows considered in this book), one can split the pg; term into two parts:
pogi + (p — po)gi, where pg is a reference density. The first part can then be
included with pressure and if the density variation is retained only in the
gravitational term, we have the Boussinesq approximation, see Sect. 1.7.

1.5 Conservation of Scalar Quantities

The integral form of the equation describing conservation of a scalar quantity,
¢, is analogous to the previous equations and reads:

o
E/gpd)d(?-i—/spdm-nds—z:fd,, (1.22)

where f, represents transport of ¢ by mechanisms other than convection and
any sources or sinks of the scalar. Diffusive transport is always present (even
in stagnant fluids), and it is usually described by a gradient approximation,
e.g. Fourier’s law for heat diffusion and Fick’s law for mass diffusion:

f3 = [ Feads-nas, (1.23)
S



10 1. Basic Concepts of Fluid Flow

where I is the diffusivity for the quantity ¢. An example is the energy equa-
tion which, for most engineering flows, can be written:

g/phd()+/phv-nd5 = /kgradT-ndS+
t s s

/(’U gradp+S: gradv)d()-#-g/pd() {1.24)
Ioi

where h is the enthalpy, T is the temperature, k is the thermal conductivity,
k = pcp /Pr, and S is the viscous part of the stress tensor, S = T+pl. Pr is the
Prandtl number and ¢, is the specific heat at constant pressure. The source
term represents work done by pressure and viscous forces; it may be neglected
in incompressible flows. Further simplification is achieved by considering a
fluid with constant specific heat, in which case a convection/diffusion equa-
tion for the temperature results:

3/ pTdQ+/pTU~ndS:/ L oradT -ndsS. (1.25)
6t Ie) s SPr

Species concentration equations have the same form, with T replaced by
the concentration ¢ and Pr replaced by Sc, the Schmidt number.

It is useful to write the conservation equations in a general form, as all
of the above equations have common terms. The discretization and analysis
can then be carried out in a general manner; when necessary, terms peculiar
to an equation can be handled separately.

The integral form of the generic conservation equation follows directly
from Eqs. (1.22) and (1.23):

—(2/ p¢d9+/p¢v-nd5:/Fgrad¢-ndS+/ gsdf2, (1.26)
ot o s s Q

where gy is the source or sink of ¢. The coordinate-free vector form of this
equation is:

(p ¢) + div (ppv) = div (Mgrad @) + g - (1.27)

In Cartesian coordinates and tensor notation, the differential form of the
generic conservation equation is:

d(pg)  O(pu;¢) 8 9¢
ot * oz, ~ ou; (F ax])”"’ (128)

Numerical methods will first be described for this generic conservation equa-
tion. Special features of the continuity and momentum equations (which are
usually called Navier-Stokes equations) will be described afterwards as an
extension of the methods for the generic equation.
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1.6 Dimensionless Form of Equations

Experimental studies of flows are often carried out on models, and the results
are displayed in dimensionless form, thus allowing scaling to real flow con-
ditions. The same approach can be undertaken in numerical studies as well.
The governing equations can be transformed to dimensionless form by using
appropriate normalization. For example, velocities can be normalized by a
reference velocity vg, spatial coordinates by a reference length Lg, time by
some reference time tg, pressure by pv2, and temperature by some reference
temperature difference T} — Ty. The dimensionless variables are then:

F=t S S e

= — U, = ; = —= =
to : LO ’ : Yo P p’Ug ’ Tl - To

If the fluid properties are constant, the continuity, momentum and tempera-
ture equations are, in dimensionless form:

Ou;

1

our  O(uju) 1 8%u; Op* 1

RNt e’ A LA A R 1.
o T o T Reow?  oar 2 (1.30)
T  O(uiT™ 1 0T
Sta + W T") 0 (1.31)

ot* oz} ~ ReDr 6:17;2 '

The following dimensionless numbers appear in the equations:

L L
St = —— Re:w; Fr = —

voto Iz vELog’
which are called Strouhal, Reynolds, and Froude numbers, respectively. ; is
the component of the normalized gravitational acceleration vector in the z;
direction.

For natural convection flows, the Boussinesq approximation is often used,
in which case the last term in the momentum equations becomes:

Ra
T* 19
R Pr= |

where Ra is the Rayleigh number, defined as:

_ p29B(Th — To) L} Pr.

Ra
12

and S is the coefficient of thermal expansion.
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The choice of the normalization quantities is obvious in simple flows; vg
is the mean velocity and Lg is a geometric length scale; Ty and T are the
cold and hot wall temperatures. If the geometry is complicated, the fluid
properties are not constant, or the boundary conditions are unsteady, the
number of dimensionless parameters needed to describe a flow can become
very large and the use of dimensionless equations may no longer be useful.

The dimensionless equations are useful for analytical studies and for de-
termining the relative importance of various terms in the equations. They
show, for example, that steady flow in a channel or pipe depends only on
the Reynolds number; however, if the geometry changes, the flow will also be
influenced by the shape of boundary. Since we are interested in computing
flows in complex geometries, we shall use the dimensional form of transport
equations throughout this book.

1.7 Simplified Mathematical Models

The conservation equations for mass and momentum are more complex than
they appear. They are non-linear, coupled, and difficult to solve. It is difli-
cult to prove by the existing mathematical tools that a unique solution exists
for particular boundary conditions. Experience shows that the Navier-Stokes
equations describe the flow of a Newtonian fluid accurately. Only in a small
number of cases — mostly fully developed flows in simple geometries, e.g. in
pipes, between parallel plates etc. — is it possible to obtain an analytical so-
lution of the Navier-Stokes equations. These flows are important for studying
the fundamentals of fluid dynamics, but their practical relevance is limited.

In all cases in which such a solution is possible, many terms in the equa-
tions are zero. For other flows some terms are unimportant and we may
neglect them; this simplification introduces an error. In most cases, even the
simplified equations cannot be solved analytically; one has to use numeri-
cal methods. The computing effort may be much smaller than for the full
equations, which is a justification for simplifications. We list below some flow
types for which the equations of motion can be simplified.

1.7.1 Incompressible Flow

The conservation equations for mass and momentum presented in Sects. 1.3
and 1.4 are the most general ones; they assume that all fluid and flow prop-
erties vary in space and time. In many applications the fluid density may be
assumed constant. This is true not only for flows of liquids, whose compress-
ibility may indeed be neglected, but also for gases if the Mach number is
below 0.3. Such flows are said to be incompressible. If the flow is also isother-
mal, the viscosity is also constant. In that case the mass and momentum
conservation equations (1.6) and (1.16) reduce to:
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dive =0, (1.32)
i . 1. .
881; (u;v) = div (vgrad u;) — ;le (pi;) + b, (1.33)

where v = 11/ p is the kinematic viscosity. This simplification is generally not
of a great value, as the equations are hardly any simpler to solve. However,
it does help in numerical solution.

1.7.2 Inviscid (Euler) Flow

In flows far from solid surfaces, the effects of viscosity are usually very small.
If viscous effects are neglected altogether, i.e. if we assume that the stress
tensor reduces to T = —pl, the Navier-Stokes equations reduce to the Euler
equations. The continuity equation is identical to (1.6}, and the momentum
equations are:

( i) + div (pu;v) = —div (pi;) + pb; . (1.34)

Since the fluid is assumed to be inviscid, it cannot stick to walls and slip
is possible at solid boundaries. The Euler equations are often used to study
compressible flows at high Mach numbers. At high velocities, the Reynolds
number is very high and viscous and turbulence effects are important only in
a small region near the walls. These flows are often well predicted using the
Euler equations.

Although the Euler equations are not easy to solve, the fact that no
boundary layer near the walls need be resolved allows the use of coarser
grids. Thus flows over the whole aircraft have been simulated using Euler
equations; accurate resolution of the viscous region would require much more
computer resource; such simulations are being done on a research basis at
present.

There are many methods designed to solve compressible Euler equations.
Some of them will be briefly described in Chap. 10. More details on these
methods can be found in books by Hirsch (1991), Fletcher (1991) and An-
derson et al. (1984), among others. The solution methods described in this
book can also be used to solve the compressible Euler equations and, as we
shall see in Chap. 10, they perform as well as the special methods designed
for compressible flows.

1.7.3 Potential Flow

One of the simplest flow models is potential flow. The fluid is assumed to
be inviscid (as in the Euler equations); however, an additional condition is
imposed on the flow - the velocity field must be irrotational, i.e.:
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rotv =0. (1.35)

From this condition it follows that there exists a velocity potential @, such that
the velocity vector can be defined as v = —grad @. The continuity equation
for an incompressible flow, divwy = 0, then becomes a Laplace equation for
the potential @:

div (grad®) =0 . (1.36)

The momentum equation can then be integrated to give the Bernoulli equa-~
tion, an algebraic equation that can be solved once the potential is known.
Potential flows are therefore described by the scalar Laplace equation. The
latter cannot be solved analytically for arbitrary geometries, although there
are simple analytical solutions (uniform flow, source, sink, vortex), which
can also be combined to create more complicated flows e.g. flow around a
cylinder.

For each velocity potential ¢ one can also define the corresponding stream-
function ¥. The velocity vectors are tangential to streamlines (lines of con-
stant streamfunction); the streamlines are orthogonal to lines of constant
potential, so these families of lines form an orthogonal flow net.

Potential flows are important but not very realistic. For example, the po-
tential theory leads to D’Alembert’s paradox, i.e. a body experiences neither
drag nor lift in a potential flow.

1.7.4 Creeping (Stokes) Flow

When the flow velocity is very small, the fluid is very viscous, or the geometric
dimensions are very small (i.e. when the Reynolds number is small), the
convective (inertial) terms in the Navier-Stokes equations play a minor role
and can be neglected (see the dimensionless form of the momentum equation,
Eq. (1.30)). The flow is then dominated by the viscous, pressure, and body
forces and is called creeping flow. If the fluid properties can be considered
constant, the momentum equations become linear; they are usually called
Stokes equations. Due to the low velocities the unsteady term can also be
neglected, a substantial simplification. The continuity equation is identical
to Eq. (1.32), while the momentum equations become:

1
div (pgrad u;) — ;div (pi;) +b;,=0. (1.37)

Creeping flows are found in porous media, coating technology, micro-devices
etc.

1.7.5 Boussinesq Approximation

In flows accompanied by heat transfer, the fluid properties are normally func-
tions of temperature. The variations may be small and yet be the cause of the
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fluid motion. If the density variation is not large, one may treat the density
as constant in the unsteady and convection terms, and treat it as variable
only in the gravitational term. This is called the Boussinesq approrimation.
One usually assumes that the density varies linearly with temperature. If one
includes the effect of the body force on the mean density in the pressure term
as described in Sect. 1.4, the remaining term can be expressed as:

(p = po)gi = —pogiB(T — To) , (1.38)

where 3 is the coefficient of volumetric expansion. This approximation intro-
duces errors of the order of 1% if the temperature differences are below e.g.
2° for water and 15° for air. The error may be more substantial when tem-
perature differences are larger; the solution may even be qualitatively wrong
(for an example, see Biickle and Perié¢, 1992).

1.7.6 Boundary Layer Approximation

When the flow has a predominant direction (i.e. there is no reversed flow or
recirculation) and the variation of the geometry is gradual, the flow is mainly
influenced by what happened upstream. Examples are flows in channels and
pipes and flows over plane or mildly curved solid walls. Such flows are called
thin shear layer or boundary layer flows. The Navier-Stokes equations can be
simplified for such flows as follows:

¢ diffusive transport of momentum in the principal flow direction is much
smaller than convection and can be neglected;

e the velocity component in the main flow direction is much larger than the
components in other directions;

o the pressure gradient across the flow is much smaller than in the principal
flow direction.

The two-dimensional boundary layer equations reduce to:

O(puy)  O(puyuy) N Opuguy) 0wy _op
ot 1, oz M 0s2 " Bay

(1.39)

which must be solved together with the continuity equation; the equation for
the momentum normal to the principal flow direction reduces to dp/dzs = 0.
The pressure as a function of £; must be supplied by a calculation of the flow
exterior to the boundary layer — which is usually assumed to be potential
flow, so the boundary layer equations themselves are not a complete descrip-
tion of the flow. The simplified equations can be solved by using marching
techniques similar to those used to solve ordinary differential equations with
initial conditions. These techniques see considerable use in aerodynamics.
The methods are very efficient but can be applied only to problems without
separation.



16 1. Basic Concepts of Fluid Flow

1.7.7 Modeling of Complex Flow Phenomena

Many flows of practical interest are difficult to describe exactly mathemat-
ically, let alone solve exactly. These flows include turbulence, combustion,
multiphase flow, and are very important. Since exact description is often im-
practicable, one usually uses semi-empirical models to represent these phe-
nomena. Examples are turbulence models (which will be treated in some
detail in Chap. 9), combustion models, multiphase models, etc. These mod-
els, as well as the above mentioned simplifications affect the accuracy of the
solution. The errors introduced by the various approximations may either
augment or cancel each other; therefore, care is needed when drawing con-
clusions from calculations in which models are used. Due to the importance
of various kinds of errors in numerical solutions we shall devote a lot of at-
tention to this topic. The error types will be defined and described as they
are encountered.

1.8 Mathematical Classification of Flows

Quasi-linear second order partial differential equations in two independent
variables can be divided into three types: hyperbolic, parabolic, and elliptic.
This distinction is based on the nature of the characteristics, curves along
which information about the solution is carried. Every equation of this type
has two sets of characteristics.

In the hyperbolic case, the characteristics are real and distinct. This means
that information propagates at finite speeds in two sets of directions. In
general, the information propagation is in a particular direction so that one
datum needs to be given at an initial point on each characteristic; the two sets
of characteristics therefore demand two initial conditions. If there are lateral
boundaries, usually only one condition is required at each point because one
characteristic is carrying information out of the domain and one is carrying
information in. There are, however, exceptions to this rule.

In parabolic equations the characteristics degenerate to a single real set.
Consequently, only one initial condition is normally required. At lateral
boundaries one condition is needed at each point.

Finally, in the elliptic case, the characteristics are imaginary or complex so
there are no special directions of information propagation. Indeed, informa-
tion travels essentially equally well in all directions. Generally, one boundary
condition is required at each point on the boundary and the domain of so-
lution is usually closed although part of the domain may extend to infinity.
Unsteady problems are never elliptic.

These differences in the nature of the equations are reflected in the meth-
ods used to solve them. It is an important general rule that numerical methods
should respect the properties of the equations they are solving.
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The Navier-Stokes equations are a system of non-linear second order equa-
tions in four independent variables. Consequently the classification scheme
does not apply directly to them. Nonetheless, the Navier-Stokes equations do
possess many of the properties outlined above and the many of the ideas used
in solving second order equations in two independent variables are applicable
to them but care must be exercised.

1.8.1 Hyperbolic Flows

To begin, consider the case of unsteady inviscid compressible flow. A com-
pressible fluid can support sound and shock waves and it is not surprising
that these equations have essentially hyperbolic character. Most of the meth-
ods used to solve these equations are based on the idea that the equations
are hyperbolic and, given suflicient care, they work quite well; these are the
methods referred to briefly above.

For steady compressible flows, the character depends on the speed of the
flow. If the flow is supersonic, the equations are hyperbolic while the equations
for subsonic flow are essentially elliptic. This leads to a difficulty that we shall
discuss further below.

It should be noted however, that the equations for a viscous compressible
flow are still more complicated. Their character is a mixture of elements of
all of the types mentioned above; they do not fit well into the classification
scheme and numerical methods for them are difficult to construct.

1.8.2 Parabolic Flows

The boundary layer approximation described briefly above leads to a set of
equations that have essentially parabolic character. Information travels only
downstream in these equations and they may be solved using methods that
are appropriate for parabolic equations.

Note, however, that the boundary layer equations require specification of
a pressure that is usually obtained by solving a potential flow problem. Sub-
sonic potential flows are governed by elliptic equations (in the incompressible
limit the Laplace equation suffices) so the overall problem actually has a
mixed parabolic-elliptic character.

1.8.3 Elliptic Flows

When a flow has a region of recirculation i.e. flow in a sense opposite to
the principal direction of flow, information may travel upstream as well as
downstream. As a result, one cannot apply conditions only at the upstream
end of the flow. The problem then acquires elliptic character. This situation
occurs in subsonic (including incompressible) flows and makes solution of the
equations a very difficult task.
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It should be noted that unsteady incompressible flows actually have a
combination of elliptic and parabolic character. The former comes from the
fact that information travels in both directions in space while the latter results
from the fact that information can only flow forward in time. Problems of
this kind are called incompletely parabolic.

1.8.4 Mixed Flow Types

As we have just seen, it is possible for a single flow to be described by equa-
tions that are not purely of one type. Another important example occurs in
steady transonic flows, that is, steady compressible flows that contain both
supersonic and subsonic regions. The supersonic regions are hyperbolic in
character while the subsonic regions are elliptic. Consequently, it may be
necessary to change the method of approximating the equations as a func-
tion of the nature of the local flow. To make matters even worse, the regions
can not be determined prior to solving the equations.

1.9 Plan of This Book

This book contains twelve chapters. We now give a brief summary of the
remaining eleven chapters.

In Chap. 2 an introduction to numerical solution methods is given. The
advantages and disadvantages of numerical methods are discussed and the
possibilities and limitations of the computational approach are outlined. This
is followed by a description of the components of a numerical solution method
and their properties. Finally, a brief description of basic computational meth-
ods (finite difference, finite volume and finite element) is given.

In Chap. 3 finite difference (FD) methods are described. Here we present
methods of approximating first, second, and mixed derivatives, using Taylor
series expansion and polynomial fitting. Derivation of higher-order methods,
and treatment of non-linear terms and boundaries is discussed. Attention is
also paid to the effects of grid non-uniformity on truncation error and to the
estimation of discretization errors. Spectral methods are also briefly described
here.

In Chap. 4 the finite volume (FV) method is described including the ap-
proximation of surface and volume integrals and the use of interpolation to
obtain variable values and derivatives at locations other than cell centers.
Development of higher-order schemes and simplification of the resulting al-
gebraic equations using the deferred-correction approach is also described.
Finally, implementation of the various boundary conditions is discussed.

Applications of basic FD and FV methods are described and their use is
demonstrated in Chaps. 3 and 4 for structured Cartesian grids. This restric-
tion allows us to separate the issues connected with geometric complexity
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from the concepts behind discretization techniques. The treatment of com-
plex geometries is introduced later, in Chap. 8.

In Chap. 5 we describe methods of solving the algebraic equation systems
resulting from discretization. Direct methods are briefly described, but the
major part of the chapter is devoted to iterative solution techniques. Incom-
plete lower-upper decomposition, conjugate gradients and multigrid methods
are given special attention. Approaches to solving coupled and non-linear
systems are also described, including the issues of under-relaxation and con-
vergence criteria.

Chapter 6 is devoted to methods of time integration. First, the methods
of solving ordinary differential equations are described, including basic meth-
ods, predictor-corrector and multipoint methods, Runge-Kutta methods. The
application of these methods to the unsteady transport equations is described
next, including analysis of stability and accuracy.

The complexity of the Navier-Stokes equations and special features for
incompressible flows are considered in Chap. 7. The staggered and colo-
cated variable arrangements, the pressure equation, pressure-velocity cou-
pling and other approaches (streamfunction-vorticity, artificial compressibil-
ity, fractional step methods) are described. The solution methods for incom-
pressible Navier-Stokes equations based on pressure-correction are described
in detail for staggered and colocated Cartesian grids. Finally, some examples
of two-dimensional and three-dimensional laminar flows are presented.

Chapter 8 is devoted to the treatment of complex geometries. The choices
of grid type, grid properties, velocity components and variable arrangements
are discussed. FD and FV methods are revisited, and the features special
to complex geometries (like non-orthogonal and unstructured grids, control
volumes of arbitrary shape etc.) are discussed. Special attention is paid to
pressure-correction equation and boundary conditions. One section is devoted
to FE methods, which are best known for their applicability to arbitrary
unstructured grids.

Chapter 9 deals with computation of turbulent flows. We discuss the na-
ture of turbulence and three methods for its simulation: direct and large-eddy
simulation and methods based on Reynolds-averaged Navier-Stokes equa-
tions. Some models used in the latter two approaches are described. Examples
using these approaches are presented.

In Chap. 10 compressible flows are considered. Methods designed for com-
pressible flows are briefly discussed. The extension of the pressure-correction
approach for incompressible flows to compressible flows is described. Methods
for dealing with shocks (e.g. grid adaptation, total-variation-diminishing and
essentially-non-oscillating schemes) are also discussed. Boundary conditions
for various types of compressible flows (subsonic, transonic and supersonic)
are described. Finally, examples are presented and discussed.

Chapter 11 is devoted to accuracy and efficiency improvement. The in-
creased efficiency provided by multigrid algorithms is described first, followed
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by examples. Adaptive grid methods and local grid refinement are the subject
of another section. Finally, parallelization is discussed. Special attention is
paid to parallel processing for implicit methods based on domain decomposi-
tion in space and time, and to analysis of the efficiency of parallel processing.
Example calculations are used to demonstrate these points.

Finally, in Chap. 12 some special issues are considered. These include the
treatment of moving boundaries which require moving grids and flows with
free surfaces. Special effects in flows with heat and mass transfer, two phases
and chemical reactions are briefly discussed.

We end this introductory chapter with a short note. Computational fluid
dynamics (CFD) may be regarded as a sub-field of either fluid dynamics or
numerical analysis. Competence in CFD requires that the practitioner has a
fairly solid background in both areas. Poor results have been produced by
individuals who are experts in one area but regarded the other as unneces-
sary. We hope the reader will take note of this and acquire the necessary
background.
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2.1 Approaches to Fluid Dynamical Problems

As the first chapter stated, the equations of fluid mechanics — which have been
known for over a century — are solvable for only a limited number of flows.
The known solutions are extremely useful in helping to understand fluid flow
but rarely can they be used directly in engineering analysis or design. The
engineer has traditionally been forced to use other approaches.

In the most common approach, simplifications of the equations are used.
These are usually based on a combination of approximations and dimensional
analysis; empirical input is almost always required. For example, dimensional
analysis shows that the drag force on an object can be represented by:

Fp = CpSpv? (2.1)

where S is the frontal area presented to the flow by the body, v is the flow
velocity and p is the density of the fluid; the parameter Cp is called the
drag coefficient. It is a function of the other non-dimensional parameters of
the problem and is nearly always obtained by correlating experimental data.
This approach is very successful when the system can be described by one
or two parameters so application to complex geometries (which can only be
described by many parameters) are ruled out.

A related approach is arrived at by noting that for many flows non-
dimensionalization of the Navier-Stokes equations leaves the Reynolds num-
ber as the only independent parameter. If the body shape is held fixed, one
can get the desired results from an experiment on a scale model with that
shape. The desired Reynolds number is achieved by careful selection of the
fluid and the flow parameters or by extrapolation in Reynolds number; the
latter can be dangerous. These approaches are very valuable and are the
primary methods of practical engineering design even today.

The problem is that many flows require several dimensionless parameters
for their specification and it may be impossible to set up an experiment
which correctly scales the actual flow. Examples are flows around aircraft or
ships. In order to achieve the same Reynolds number with smaller models,
fluid velocity has to be increased. For aircraft, this may give too high a
Mach number if the same fluid (air) is used; one tries to find a fluid which
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allows matching of both parameters. For ships, the issue is to match both the
Reynolds and Froude numbers, which is nearly impossible.

In other cases, experiments are very difficult if not impossible. For ex-
ample, the measuring equipment might disturb the flow or the flow may be
inaccessible (e.g. flow of a liquid silicon in a crystal growth apparatus). Some
quantities are simply not measurable with present techniques or can be mea-
sured only with an insufficient accuracy.

Experiments are an efficient means of measuring global parameters, like
the drag, lift, pressure drop, or heat transfer coefficients. In many cases,
details are important; it may be essential to know whether flow separation
occurs or whether the wall temperature exceeds some limit. As technological
improvement and competition require more careful optimization of designs
or, when new high-technology applications demand prediction of flows for
which the database is insufficient, experimental development may be too
costly and/or time consuming. Finding a reasonable alternative is essential.

An alternative — or at least a complementary method — came with the
birth of electronic computers. Although many of the key ideas for numeri-
cal solution methods for partial differential equations were established more
than a century ago, they were of little use before computers appeared. The
performance-to-cost ratio of computers has increased at a spectacular rate
since the 1950s and shows no sign of slowing down. While the first comput-
ers built in the 1950s performed only a few hundred operations per second,
machines are now being designed to produce teraflops ~ 10'? floating point
operations per second. The ability to store data has also increased dramati-
cally: hard discs with ten gigabyte (10'° bytes or characters) capacity could
be found only on supercomputers a decade ago — now they are found in per-
sonal computers. A machine that cost millions of dollars, filled a large room,
and required a permanent maintenance and operating staff is now available
on a desktop. It is difficult to predict what will happen in the future, but fur-
ther increases in both computing speed and memory of affordable computers
are certain.

It requires little imagination to see that computers might make the study
of fluid flow easier and more effective. Once the power of computers had been
recognized, interest in numerical techniques increased dramatically. Solution
of the equations of fluid mechanics on computers has become so important
that it now occupies the attention of perhaps a third of all researchers in
fluid mechanics and the proportion is still increasing. This field is known
as computational fluid dynamics (CFD). Contained within it are many sub-
specialties. We shall discuss only a small subset of methods for solving the
equations describing fluid flow and related phenomena.
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2.2 What is CFD?

As we have seen in Chap. 1, flows and related phenomena can be described by
partial differential (or integro-differential) equations, which cannot be solved
analytically except in special cases. To obtain an approximate solution nu-
merically, we have to use a discretization method which approximates the
differential equations by a system of algebraic equations, which can then
be solved on a computer. The approximations are applied to small domains
in space and/or time so the numerical solution provides results at discrete
locations in space and time. Much as the accuracy of experimental data de-
pends on the quality of the tools used, the accuracy of numerical solutions is
dependent on the quality of discretizations used.

Contained within the broad field of computational fluid dynamics are
activities that cover the range from the automation of well-established engi-
neering design methods to the use of detailed solutions of the Navier-Stokes
equations as substitutes for experimental research into the nature of complex
flows. At one end, one can purchase design packages for pipe systems that
solve problems in a few seconds or minutes on personal computers or work-
stations. On the other, there are codes that may require hundreds of hours
on the largest super-computers. The range is as large as the field of fluid
mechanics itself, making it impossible to cover all of CFD in a single work.
Also, the field is evolving so rapidly that we run the risk of becoming out of
date in a short time.

We shall not deal with automated simple methods in this book. The basis
for them is covered in elementary textbooks and undergraduate courses and
the available program packages are relatively easy to understand and to use.

We shall be concerned with methods designed to solve the equations of
fluid motion in two or three dimensions. These are the methods used in non-
standard applications, by which we mean applications for which solutions {or,
at least, good approximations) cannot be found in textbooks or handbooks.
While these methods have been used in high-technology engineering (for ex-
ample, aeronautics and astronautics) from the very beginning, they are being
used more frequently in fields of engineering where the geometry is compli-
cated or some important feature (such as the prediction of the concentration
of a pollutant) cannot be dealt with by standard methods. CFD is finding its
way into process, chemical, civil, and environmental engineering. Optimiza-
tion in these areas can produce large savings in equipment and energy costs
and in reduction of environmental pollution.

2.3 Possibilities and Limitations of Numerical Methods
We have already noted some problems associated with experimental work.

Some of these problems are easily dealt with in CFD. For example, if we want
to simulate the flow around a moving car in a wind tunnel, we need to fix



24 2. Introduction to Numerical Methods

the car model and blow air at it — but the floor has to move at the air speed,
which is difficult to do. It is not difficult to do in a numerical simulation.
Other types of boundary conditions are easily prescribed in computations;
for example, temperature or opaqueness of the fluid pose no problem. If we
solve the unsteady three-dimensional Navier-Stokes equations accurately (as
in direct simulation of turbulence), we obtain a complete data set from which
any quantity of physical significance can be derived.

This sounds to good to be true. Indeed, these advantages of CFD are
conditional on being able to solve the Navier-Stokes equations accurately,
which is extremely difficult for most flows of engineering interest. We shall
see in Chap. 9 why obtaining accurate numerical solutions of the Navier-
Stokes equations for high Reynolds number flows is so difficult.

If we are unable to obtain accurate solutions for all flows, we have to deter-
mine what we can produce and learn to analyze and judge the results. First
of all, we have to bear in mind that numerical results are always approzimate.
There are reasons for differences between computed results and ‘reality’ i.e.
errors arise from each part of the process used to produce numerical solutions:

¢ The differential equations may contain approximations or idealizations, as
discussed in Sect. 1.7;

¢ Approximations are made in the discretization process;

¢ In solving the discretized equations, iterative methods are used. Unless
they are run for a very long time, the exact solution of the discretized
equations is not produced.

When the governing equations are known accurately (e.g. the Navier-
Stokes equations for incompressible Newtonian fluids), solutions of any de-
sired accuracy can be achieved in principle. However, for many phenomena
(e.g. turbulence, combustion, and multiphase flow) the exact equations are
either not available or numerical solution is not feasible. This makes intro-
duction of models a necessity. Even if we solve the equations exactly, the
solution would not be a correct representation of reality. In order to vali-
date the models, we have to rely on experimental data. Even when the exact
treatment is possible, models are often needed to reduce the cost.

Discretization errors can be reduced by using more accurate interpolation
or approximations or by applying the approximations to smaller regions but
this usually increases the time and cost of obtaining the solution. Compromise
is usually needed. We shall present some schemes in detail but shall also point
out ways of creating more accurate approximations.

Compromises are also needed in solving the discretized equations. Direct
solvers, which obtain accurate solutions, are seldom used, because they are
too costly. Iterative methods are more common but the errors due to stopping
the iteration process too soon need to be taken into account.

Errors and their estimation will be emphasized throughout this book. We
shall present error estimates for many examples; the need to analyze and
estimate numerical errors can not be overemphasized.
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Visualization of numerical solutions using vector, contour or other kinds
of plots or movies (videos) of unsteady flows is important for the interpre-
tation of results. It is far and away the most effective means of interpreting
the huge amount of data produced by a calculation. However, there is the
danger that an erroneous solution may look good but may not correspond
to the actual boundary conditions, fluid properties etc.! The authors have
encountered incorrect numerically produced flow features that could be and
have been interpreted as physical phenomena. Industrial users of commer-
cial CFD codes should especially be careful, as the optimism of salesmen is
legendary. Wonderful color pictures make a great impression but are of no
value if they are not quantitatively correct. Results must be examined very
critically before they are believed.

2.4 Components of a Numerical Solution Method

Since this book is meant not only for users of commercial codes but also for
young researchers developing new codes, we shall present the important in-
gredients of a numerical solution method here. More details will be presented
in the following chapters.

2.4.1 Mathematical Model

The starting point of any numerical method is the mathematical model, i.e.
the set of partial differential or integro-differential equations and boundary
conditions. Some sets of equations used for flow prediction were presented in
Chap. 1. One chooses an appropriate model for the target application (in-
compressible, inviscid, turbulent; two- or three-dimensional, etc.). As already
mentioned, this model may include simplifications of the exact conservation
laws. A solution method is usually designed for a particular set of equations.
Trying to produce a general purpose solution method, i.e. one which is appli-
cable to all flows, is impractical, if not impossible and, as with most general
purpose tools, they are usually not optimum for any one application.

2.4.2 Discretization Method

After selecting the mathematical model, one has to choose a suitable dis-
cretization method, i.e. a method of approximating the differential equations
by a system of algebraic equations for the variables at some set of discrete
locations in space and time. There are many approaches, but the most im-
portant of which are: finite difference (FD), finite volume (FV) and finite
element (FE) methods. Important features of these three kinds of discretiza-
tion methods are described at the end of this chapter. Other methods, like
spectral schemes, boundary element methods, and cellular automata are used
in CFD but their use is limited to special classes of problems.
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Each type of method yields the same solution if the grid is very fine,
However, some methods are more suitable to some classes of problems than
others. The preference is often determined by the attitude of the developer.
We shall discuss the pros and cons of the various methods later.

2.4.3 Coordinate and Basis Vector Systems

It was mentioned in Chap. 1 that the conservation equations can be written
in many different forms, depending on the coordinate system and the basis
vectors used. For example one can select Cartesian, cylindrical, spherical,
curvilinear orthogonal or non-orthogonal coordinate systems, which may be
fixed or moving. The choice depends on the target flow, and may influence
the discretization method and grid type to be used.

One also has to select the basis in which vectors and tensors will be defined
(fixed or variable, covariant or contravariant, etc.). Depending on this choice,
the velocity vector and stress tensor can be expressed in terms of e.g. Carte-
sian, covariant or contravariant, physical or non-physical coordinate-oriented
components. In this book we shall use Cartesian components exclusively for
reasons explained in Chap. 8.

2.4.4 Numerical Grid

The discrete locations at which the variables are to be calculated are defined
by the numerical grid which is essentially a discrete representation of the
geometric domain on which the problem is to be solved. It divides the solution
domain into a finite number of subdomains (elements, control volumes etc.).
Some of the options available are the following:

o Structured (regular) grid — Regular or structured grids consist of families
of grid lines with the property that members of a single family do not cross
each other and cross each member of the other families only once. This
allows the lines of a given set to be numbered consecutively. The position of
any grid point (or control volume) within the domain is uniquely identified
by a set of two (in 2D) or three (in 3D) indices, e.g. (4, 4, k).

This is the simplest grid structure, since it is logically equivalent to a Carte-
sian grid. Each point has four nearest neighbors in two dimensions and six
in three dimensions; one of the indices of each neighbor of point P (indices
i, 4, k) differs by +1 from the corresponding index of P. An example of a
structured 2D grid is shown in Fig. 2.1. This neighbor connectivity sim-
plifies programming and the matrix of the algebraic equation system has
a regular structure, which can be exploited in developing a solution tech-
nique. Indeed, there is a large number of efficient solvers applicable only to
structured grids (see Chap. 5). The disadvantage of structured grids is that
they can be used only for geometrically simple solution domains. Another
disadvantage is that it may be difficult to control the distribution of the
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grid points: concentration of points in one region for reasons of accuracy
produces unnecessarily small spacing in other parts of the solution domain
and a waste of resources. This problem is exaggerated in 3D problems. The
long thin cells may also affect the convergence adversely.

Structured grids may be of H-, O-, or C-type; the names are derived
from the shapes of the grid lines. Figure 2.1 shows an H-type grid which,
when mapped onto a rectangle, has distinct east, west, north, and south
boundaries. Figure 2.3 shows an O-type structured grid around a cylinder.
In this type of grid, one set of grid lines is “endless”; if the grid lines
are treated as coordinate lines and we follow the coordinate around the
cylinder, it will continuously increase and, to avoid a problem, one must
introduce an artificial “cut” at which the coordinate jumps from a finite
value to zero. At the cut, the grid can be “unwrapped” but the neighboring
points must be treated as interior grid points, in contrast to the treatment
applied at the boundaries of an H-type grid. The outer grid in Fig. 2.3 is
again of H-type. The block grid around the hydrofoil in Fig. bloknmegr is
of C-type. In this type of grid, points on portions of one grid line coincide,
requiring the introduction of a cut similar to the ones found in O-type
grids. This type of grid is often used for bodies with sharp edges for which
they are capable of good grid quality.

Fig. 2.1. Example of a 2D, structured, non-orthogonal grid, designed for calculation
of flow in a symmetry segment of a staggered tube bank

o Block-structured grid — In a block structured grid, there is a two (or more)
level subdivision of solution domain. On the coarse level, there are blocks
which are relatively large segments of the domain; their structure may be
irregular and they may or may not overlap. On the fine level (within each
block) a structured grid is defined. Special treatment is necessary at block
interfaces. Some methods of this kind are described in Chap. 8.

In Fig. 2.2 a block-structured grid with matching at the interfaces is shown;
it is designed for the calculation of 2D flow around a cylinder in a channel
and contains three blocks.
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Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used
to calculate flow around a cylinder in a channel

In Fig. 2.3 a block-structured grid with non-matching interfaces is shown;
it was used to calculate the flow around a submerged hydrofoil. It consists
of five blocks of grids of different fineness. This kind of grid is more flexible
than the previous ones, as it allows use of finer grids in regions, where
greater resolution is required. The non-matching interface can be treated
in a fully conservative manner, as will be discussed in Chap. 8. The pro-
gramming is more difficult than for grid types described above. Solvers for
structured grids can be applied block-wise, and complex flow domains can
be treated with these grids. Local refinement is possible block-wise (i.e.,
the grid may be refined in some blocks).
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Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces,
designed for calculation of flow around a hydrofoil under a water surface

Block-structured grids with overlapping blocks are sometimes called com-
posite or Chimera grids. One such grid is shown in Fig. 2.4. In the overlap
region, boundary conditions for one block are obtained by interpolating
the solution from the other (overlapped) block. The disadvantage of these
grids is that conservation is not easily enforced at block boundaries. The
advantages of this approach are that complex domains are dealt with more
easily and it can be used to follow moving bodies: one block is attached to
the body and moves with it, while a stagnant grid covers the surroundings.
This type of grid is not very often used, although it has strong supporters
(Tu and Fuchs, 1992; Perng and Street, 1991; Hinatsu and Ferziger, 1991;
Zang and Street, 1995; Hubbard and Chen, 1994, 1995).
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Fig. 2.4. A composite 2D grid, used to calculate flow around a cylinder in a channel

e Unstructured grids — For very complex geometries, the most flexible type

of grid is one which can fit an arbitrary solution domain boundary. In prin-
ciple, such grids could be used with any discretization scheme, but they
are best adapted to the finite volume and finite element approaches. The
elements or control volumes may have any shape; nor is there a restriction
on the number of neighbor elements or nodes. In practice, grids made of
triangles or quadrilaterals in 2D, and tetrahedra or hexahedra in 3D are
most often used. Such grids can be generated automatically by existing
algorithms. If desired, the grid can be made orthogonal, the aspect ratio
is easily controlled, and the grid may be easily locally refined. The advan-
tage of flexibility is offset by the disadvantage of the irregularity of the
data structure. Node locations and neighbor connections need be specified
explicitly. The matrix of the algebraic equation system no longer has regu-
lar, diagonal structure; the band width needs to be reduced by reordering
of the points. The solvers for the algebraic equation systems are usually
slower than those for regular grids.
Unstructured grids are usually used with finite element methods and, in-
creasingly, with finite volume methods. Computer codes for unstructured
grids are more flexible. They need not be changed when the grid is locally
refined, or when elements or control volumes of different shapes are used.
However, grid generation and pre-processing are usually much more dif-
ficult. The finite volume method presented in this book is applicable to
unstructured grids. An example of an unstructured grid is shown in Fig.
2.5.

Methods of grid generation will not be covered in detail in this book. Grid
properties and some basic grid generation methods are discussed briefly in
Chap. 8; there is a vast literature devoted to grid generation and interested
reader is referred to books by Thompson et al. (1985) and Arcilla et al. (1991).
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Fig. 2.5. Example of a 2D unstructured grid

2.4.5 Finite Approximations

Following the choice of grid type, one has to select the approximations to
be used in the discretization process. In a finite difference method, approxi-
mations for the derivatives at the grid points have to be selected. In a finite
volume method, one has to select the methods of approximating surface and
volume integrals. In a finite element method, one has to choose the shape
functions (elements) and weighting functions.

There are many possibilities to choose from; some of those most often used
are presented in this book, some are simply mentioned and many more can be
created. The choice influences the accuracy of the approximation. It also af-
fects the difficulty of developing the solution method, coding it, debugging it,
and the speed of the code. More accurate approximations involve more nodes
and give fuller coefficient matrices. The increased memory requirement may
require using coarser grids, partially offsetting the advantage of higher ac-
curacy. A compromise between simplicity, ease of implementation, accuracy
and computational efficiency has to be made. The second-order methods pre-
sented in this book were selected with this compromise in mind.

2.4.6 Solution Method

Discretization yields a large system of non-linear algebraic equations. The
method of solution depends on the problem. For unsteady flows, methods
based on those used for initial value problems for ordinary differential equa-
tions (marching in time) are used. At each time step an elliptic problem has
to be solved. Steady flow problems are usually solved by pseudo-time march-
ing or an equivalent iteration scheme. Since the equations are non-linear,
an iteration scheme is used to solve them. These methods use successive lin-
earization of the equations and the resulting linear systems are almost always
solved by iterative techniques. The choice of solver depends on the grid type
and the number of nodes involved in each algebraic equation. Some solvers
will be presented in Chap. 5.
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2.4.7 Convergence Criteria

Finally, one needs to set the convergence criteria for the iterative method.
Usually, there are two levels of iterations: inner iterations, within which the
linear equation are solved, and outer iterations, that deal with the non-
linearity and coupling of the equations. Deciding when to stop the iterative
process on each level is important, from both the accuracy and efficiency
points of view. These issues are dealt with in Chaps. 5 and 11.

2.5 Properties of Numerical Solution Methods

The solution method should have certain properties. In most cases, it is not
possible to analyze the complete solution method. One analyzes the compo-
nents of the method; if the components do not possess the desired properties,
neither will the complete method but the reverse is not necessarily true. The
most important properties are summarized below.

2.5.1 Consistency

The discretization should become exact as the grid spacing tends to zero. The
difference between the discretized equation and the exact one is called the
truncation error. It is usually estimated by replacing all the nodal values in
the discrete approximation by a Taylor series expansion about a single point.
As a result one recovers the original differential equation plus a remainder,
which represents the truncation error. For a method to be consistent, the
truncation error must become zero when the mesh spacing At — 0 and/or
Az; — 0. Truncation error is usually proportional to a power of the grid
spacing Az; and/or the time step At. If the most important term is propor-
tional to (Az)™ or (At)™ we call the method an nth-order approximation;
n > 0 is required for consistency. Ideally, all terms should be discretized with
approximations of the same order of accuracy; however, some terms (e.g.
convective terms in high Reynolds number flows or diffusive terms in low
Reynolds number flows) may be dominant in a particular flow and it may be
reasonable to treat them with more accuracy than the others.

Some discretization methods lead to truncation errors which are functions
of the ratio of Az; to At or vice versa. In such a case the consistency require-
ment is only conditionally fulfilled: Az; and At must be reduced in a way
that allows the appropriate ratio to go to zero. In the next two chapters we
shall demonstrate consistency for several discretization schemes.

Even if the approximations are consistent, it does not necessarily mean
that the solution of the discretized equation system will become the exact
solution of the differential equation in the limit of small step size. For this to
happen, the solution method has to be stable; this is defined below.
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2.5.2 Stability

A numerical solution method is said to be stable if it does not magnify the
errors that appear in the course of numerical solution process. For temporal
problems, stability guarantees that the method produces a bounded solution
whenever the solution of the exact equation is bounded. For iterative meth-
ods, a stable method is one that does not diverge. Stability can be difficult
to investigate, especially when boundary conditions and non-linearities are
present. For this reason, it is common to investigate the stability of a method
for linear problems with constant coefficients without boundary conditions.
Experience shows that the results obtained in this way can often be applied
to more complex problems but there are notable exceptions.

The most widely used approach to studying stability of numerical schemes
is the von Neumann’s method. We shall describe it briefly for one scheme in
Chap. 6. Most of the schemes to be described in this book have been ana-
lyzed for stability and we shall state the important result when describing
each scheme. However, when solving complicated, non-linear and coupled
equations with complicated boundary conditions, there are few stability re-
sults so we may have to rely on experience and intuition. Many solution
schemes require that the time step be smaller than a certain limit or that
under-relaxation be used. We shall discuss these issues and give guidelines for
selecting time step size and values of under-relaxation parameters in Chaps.
6 and 7.

2.5.3 Convergence

A numerical method is said to be convergent if the solution of the discretized
equations tends to the exact solution of the differential equation as the grid
spacing tends to zero. For linear initial value problems, the Laz equivalence
theorem (Richtmyer and Morton, 1967) states that “given a properly posed
linear initial value problem and a finite difference approximation to it that
satisfies the consistency condition, stability is the necessary and sufficient
condition for convergence”. Obviously, a consistent scheme is useless unless
the solution method converges.

For non-linear problems which are strongly influenced by boundary condi-
tions, the stability and convergence of a method are difficult to demonstrate.
Therefore convergence is usually checked using numerical experiments, i.e. re-
peating the calculation on a series of successively refined grids. If the method
is stable and if all approximations used in the discretization process are con-
sistent, we usually find that the solution does converge to a grid-independent
solution. For sufficiently small grid sizes, the rate of convergence is governed
by the order of principal truncation error component. This allows us to es-
timate the error in the solution. We shall describe this in detail in Chaps. 3
and 5.
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2.5.4 Conservation

Since the equations to be solved are conservation laws, the numerical scheme
should also — on both a local and a global basis — respect these laws. This
means that, at steady state and in the absence of sources, the amount of a
conserved quantity leaving a closed volume is equal to the amount entering
that volume. If the strong conservation form of equations and a finite volume
method are used, this is guaranteed for each individual control volume and
for the solution domain as a whole. Other discretization methods can be made
conservative if care is taken in the choice of approximations. The treatment
of sources or sink terms should be consistent so that the total source or sink
in the domain is equal to the net flux of the conserved quantity through the
boundaries.

This is an important property of the solution method, since it imposes a
constraint on the solution error. If the conservation of mass, momentum and
energy are insured, the error can only improperly distribute these quantities
over the solution domain. Non-conservative schemes can produce artificial
sources and sinks, changing the balance both locally and globally. However,
non-conservative schemes can be consistent and stable and therefore lead
to correct solutions in the limit of very fine grids. The errors due to non-
conservation are in most cases appreciable only on relatively coarse grids.
The problem is that it is difficult to know on which grid are these errors
small enough. Conservative schemes are therefore preferred.

2.5.5 Boundedness

Numerical solutions should lie within proper bounds. Physically non-negative
quantities (like density, kinetic energy of turbulence) must always be positive;
other quantities, such as concentration, must lie between 0% and 100%. In
the absence of sources, some equations (e.g. the heat equation for the tem-
perature when no heat sources are present) require that the minimum and
maximum values of the variable be found on the boundaries of the domain.
These conditions should be inherited by the numerical approximation.

Boundedness is difficult to guarantee. We shall show later on that only
some first order schemes guarantee this property. All higher-order schemes
can produce unbounded solutions; fortunately, this usually happens only on
grids that are too coarse, so a solution with undershoots and overshoots
is usually an indication that the errors in the solution are large and the
grid needs some refinement (at least locally). The problem is that schemes
prone to producing unbounded solutions may have stability and convergence
problems. These methods should be avoided, if possible.

2.5.6 Realizability

Models of phenomena which are too complex to treat directly (for example,
turbulence, combustion, or multiphase flow)} should be designed to guarantee
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physically realistic solutions. This is not a numerical issue per se but models
that are not realizable may result in unphysical solutions or cause numerical
methods to diverge. We shall not deal with these issues in this book, but if
one wants to implement a model in a CFD code, one has to be careful about
this property.

2.5.7 Accuracy

Numerical solutions of fluid flow and heat transfer problems are only ap-
prozimate solutions. In addition to the errors that might be introduced in
the course of the development of the solution algorithm, in programming or
setting up the boundary conditions, numerical solutions always include three
kinds of systematic errors:

o Modeling errors, which are defined as the difference between the actual
flow and the exact solution of the mathematical model;

e Discretization errors, defined as the difference between the exact solution
of the conservation equations and the exact solution of the algebraic system
of equations obtained by discretizing these equations, and

e [teration errors, defined as the difference between the iterative and exact
solutions of the algebraic equations systems.

Iteration errors are often called convergence errors (which was the case in
the earlier editions of this book). However, the term convergence is used
not only in conjunction with error reduction in iterative solution methods,
but is also (quite appropriately) often associated with the convergence of
numerical solutions towards a grid-independent solution, in which case it is
closely linked to discretization error. To avoid confusion, we shall adhere to
the above definition of errors and, when discussing issues of convergence,
always indicate which type of convergence we are talking about.

It is important to be aware of the existence of these errors, and even more
to try to distinguish one from another. Various errors may cancel each other,
so that sometimes a solution obtained on a coarse grid may agree better with
the experiment than a solution on a finer grid — which, by definition, should
be more accurate.

Modeling errors depend on the assumptions made in deriving the trans-
port equations for the variables. They may be considered negligible when
laminar flows are investigated, since the Navier-Stokes equations represent
a sufficiently accurate model of the flow. However, for turbulent flows, two-
phase flows, combustion etc., the modeling errors may be very large — the
exact solution of the model equations may be qualitatively wrong. Modeling
errors are also introduced by simplifying the geometry of the solution do-
main, by simplifying boundary conditions etc. These errors are not known a
priori; they can only be evaluated by comparing solutions in which the dis-
cretization and convergence errors are negligible with accurate experimental
data or with data obtained by more accurate models (e.g. data from direct
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simulation of turbulence, etc.). It is essential to control and estimate the con-
vergence and discretization errors before the models of physical phenomena
(like turbulence models) can be judged.

We mentioned above that discretization approximations introduce errors
which decrease as the grid is refined, and that the order of the approximation
is a measure of accuracy. However, on a given grid, methods of the same order
may produce solution errors which differ by as much as an order of magnitude.
This is because the order only tells us the rate at which the error decreases
as the mesh spacing is reduced - it gives no information about the error on a
single grid. We shall show how discretization errors can be estimated in the
next chapter.

Errors due to iterative solution and round-off are easier to control; we
shall see how this can be done in Chap. 5, where iterative solution methods
are introduced.

There are many solution schemes and the developer of a CFD code may
have a difficult time deciding which one to adopt. The ultimate goal is to
obtain desired accuracy with least effort, or the maximum accuracy with the
available resources. Each time we describe a particular scheme we shall point
out its advantages or disadvantages with respect to these criteria.

2.6 Discretization Approaches

2.6.1 Finite Difference Method

This is the oldest method for numerical solution of PDE’s, believed to have
been introduced by Euler in the 18th century. It is also the easiest method
to use for simple geometries.

The starting point is the conservation equation in differential form. The
solution domain is covered by a grid. At each grid point, the differential equa-
tion is approximated by replacing the partial derivatives by approximations
in terms of the nodal values of the functions. The result is one algebraic equa-
tion per grid node, in which the variable value at that and a certain number
of neighbor nodes appear as unknowns.

In principle, the FD method can be applied to any grid type. However, in
all applications of the FD method known to the authors, it has been applied
to structured grids. The grid lines serve as local coordinate lines.

Taylor series expansion or polynomial fitting is used to obtain approxima-
tions to the first and second derivatives of the variables with respect to the
coordinates. When necessary, these methods are also used to obtain variable
values at locations other than grid nodes (interpolation). The most widely
used methods of approximating derivatives by finite differences are described
in Chap. 3.

On structured grids, the FD method is very simple and effective. It is
especially easy to obtain higher-order schemes on regular grids; some will be
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mentioned in Chap. 3. The disadvantage of FD methods is that the conser-
vation is not enforced unless special care is taken. Also, the restriction to
simple geometries is a significant disadvantage in complex flows.

2.6.2 Finite Volume Method

The FV method uses the integral form of the conservation equations as its
starting point. The solution domain is subdivided into a finite number of
contiguous control volumes (CVs), and the conservation equations are applied
to each CV. At the centroid of each CV lies a computational node at which the
variable values are to be calculated. Interpolation is used to express variable
values at the CV surface in terms of the nodal (CV-center) values. Surface
and volume integrals are approximated using suitable quadrature formulae.
As a result, one obtains an algebraic equation for each CV, in which a number
of neighbor nodal values appear.

The FV method can accommodate any type of grid, so it is suitable for
complex geometries. The grid defines only the control volume boundaries
and need not be related to a coordinate system. The method is conservative
by construction, so long as surface integrals (which represent convective and
diffusive fluxes) are the same for the CVs sharing the boundary.

The FV approach is perhaps the simplest to understand and to program.
All terms that need be approximated have physical meaning which is why it
is popular with engineers.

The disadvantage of FV methods compared to FD schemes is that meth-
ods of order higher than second are more difficult to develop in 3D. This is
due to the fact that the FV approach requires three levels of approximation:
interpolation, differentiation, and integration. We shall give a detailed de-
scription of the FV method in Chap. 4; it is the most used method in this
book.

2.6.3 Finite Element Method

The FE method is similar to the FV method in many ways. The domain is
broken into a set of discrete volumes or finite elements that are generally
unstructured; in 2D, they are usually triangles or quadrilaterals, while in 3D
tetrahedra or hexahedra are most often used. The distinguishing feature of
FE methods is that the equations are multiplied by a weight function before
they are integrated over the entire domain. In the simplest FE methods, the
solution is approximated by a linear shape function within each element in
a way that guarantees continuity of the solution across element boundaries.
Such a function can be constructed from its values at the corners of the
elements. The weight function is usually of the same form.

This approximation is then substituted into the weighted integral of the
conservation law and the equations to be solved are derived by requiring the
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derivative of the integral with respect to each nodal value to be zero; this
corresponds to selecting the best solution within the set of allowed functions
(the one with minimum residual). The result is a set of non-linear algebraic
equations.

An important advantage of finite element methods is the ability to deal
with arbitrary geometries; there is an extensive literature devoted to the
construction of grids for finite element methods. The grids are easily refined;
each element is simply subdivided. Finite element methods are relatively easy
to analyze mathematically and can be shown to have optimality properties
for certain types of equations. The principal drawback, which is shared by any
method that uses unstructured grids, is that the matrices of the linearized
equations are not as well structured as those for regular grids making it more
difficult to find eflicient solution methods. For more details on finite element
methods and their application to the Navier-Stokes equations, see books by
Oden (1972), Zinkiewicz (1977), Chung (1978), Baker (1983), Girault and
Raviart (1986) or Fletcher (1991).

A hybrid method called control-volume-based finite element method (CV-
FEM) should also be mentioned. In it, shape functions are used to describe
the variation of the variables over an element. Control volumes are formed
around each node by joining the centroids of the elements. The conservation
equations in integral form are applied to these CVs in the same way as in
the finite volume method. The fluxes through CV boundaries and the source
terms are calculated element-wise. We shall give a short description of this
approach in Chap. 8.



3. Finite Difference Methods

3.1 Introduction

As was mentioned in Chap. 1, all conservation equations have similar struc-
ture and may be regarded as special cases of a generic transport equation,
Eq. (1.26), (1.27) or {1.28). For this reason, we shall treat only a single,
generic conservation equation in this and the following chapters. It will be
used to demonstrate discretization methods for the terms which are common
to all conservation equations (convection, diffusion, and sources). The special
features of the Navier-Stokes equations and techniques for solving coupled
non-linear problems will be introduced later. Also, for the time being, the
unsteady term will be dropped so we consider only time-independent prob-
lems.

For simplicity, we shall use only Cartesian grids at this point. The equation
we shall deal with is:

Opuj¢) _ 0 (. 0¢
—54— = 5, (F azj) +go - (3.1)

We shall assume that p, u;, I" and g4 are known. This may not be the case
because the velocity may not have been computed yet and the properties of
the fluid may depend on the temperature and, if turbulence models are used,
on the velocity field as well. As we shall see, the iterative schemes used to
solve these equations treat ¢ as the only unknown; all other variables are
fixed at their values determined on the previous iteration so regarding these
as known is a reasonable approach.

The special features of non-orthogonal and unstructured grids will be
discussed in Chap. 8. Furthermore, of the many possible discretization tech-
niques, only a selected few which illustrate the main ideas will be described;
others may be found in the literature cited.

3.2 Basic Concept

The first step in obtaining a numerical solution is to discretize the geometric
domain ~ i.e. a numerical grid must be defined. In finite difference (FD)
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discretization methods the grid is usually locally structured, i.e. each grid
node may be considered the origin of a local coordinate system, whose axes
coincide with grid lines. This also implies that two grid lines belonging to
the same family, say £, do not intersect, and that any pair of grid lines
belonging to different families, say & = const. and & = const., intersect only
once. In three dimensions, three grid lines intersect at each node; none of these
lines intersect each other at any other point. Figure 3.1 shows examples of
one-dimensional (1D) and two-dimensional (2D) Cartesian grids used in FD
methods.

. D S
) i-l i i+1 N

Fig. 3.1. An example of a 1D (above) and 2D (below) Cartesian grid for FD meth-
ods (full symbols denote boundary nodes and open symbols denote computational
nodes)

Each node is uniquely identified by a set of indices, which are the indices of
the grid lines that intersect at it, (¢, 7) in 2D and (7, J, k) in 3D. The neighbor
nodes are defined by increasing or reducing one of the indices by unity.

The generic scalar conservation equation in differential form, (3.1), serves
as the starting point for FD methods. As it is linear in ¢, it will be approxi-
mated by a system of linear algebraic equations, in which the variable values
at the grid nodes are the unknowns. The solution of this system approximates
the solution to the partial differential equation (PDE).

Each node thus has one unknown variable value associated with it and
must provide one algebraic equation. The latter is a relation between the
variable value at that node and those at some of the neighboring nodes. It
is obtained by replacing each term of the PDE at the particular node by
a finite-difference approximation. Of course, the numbers of equations and
unknowns must be equal. At boundary nodes where variable values are given
(Dirichlet conditions), no equation is needed. When the boundary conditions
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involve derivatives (as in Neumann conditions), the boundary condition must
be discretized to contribute an equation to the set that must be solved.

The idea behind finite difference approximations is borrowed directly from
the definition of a derivative:

8¢\  _ . @i+ Az) — ¢(z)
(?9_1;) . A, Az ’

(3.2)

A geometrical interpretation is shown in Fig. 3.2 to which we shall refer fre-
quently. The first derivative 8¢/0z at a point is the slope of the tangent to
the curve ¢(z) at that point, the line marked ‘exact’ in the figure. Its slope
can be approximated by the slope of a line passing through two nearby points
on the curve. The dotted line shows approximation by a forward difference;
the derivative at x; is approximated by the slope of a line passing through
the point z; and another point at z; + Az. The dashed line illustrates ap-
proximation by backward difference: for which the second point is z; — Ax.
The line labeled ‘central’ represents approximation by a central difference: it
uses the slope of a line passing through two points lying on opposite sides of
the point at which the derivative is approximated.

0 Exact Backward

T ----TCentral
Forward
/]
Ax; | Axiy
2 il i il 2 x

Fig. 3.2. On the definition of a derivative and its approximations

It is obvious from Fig. 3.2 that some approximations are better than
others. The line for the central difference approximation has a slope very
close to the slope of the exact line; if the function ¢(z) were a second-order
polynomial and the points were equally spaced in z-direction, the slopes
would match exactly.

It is also obvious from Fig. 3.2 that the quality of the approximation
improves when the additional points are close to x;, i.e. as the grid is refined,
the approximation improves. The approximations shown in Fig. 3.2 are a few
of many possibilities; the following sections outline the principal approaches
to deriving approximations for the first and second derivatives.
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In the following two sections, only the one dimensional case is considered.
The coordinate may be either Cartesian or curvilinear, the difference is of lit-
tle importance here. In multidimensional finite differences, each coordinate is
usually treated separately so the methods developed here are readily adapted
to higher dimensionality.

3.3 Approximation of the First Derivative

Discretization of the convective term in Eq. (3.1) requires the approximation
of the first derivative, 8(pu¢)/dz. We shall now describe some approaches to
approximation of the first derivative of a generic variable ¢; the methods can
be applied to the first derivative of any quantity.

In the previous section, one means of deriving approximations to the
first derivative was presented. There are more systematic approaches that
are better suited to the derivation of more accurate approximations; some of
these will be described later.

3.3.1 Taylor Series Expansion

Any continuous differentiable function ¢(z) can, in the vicinity of z;, be
expressed as a Taylor series:

d(z) = p(z:) + (z — z;) <%Zi>l + (—QE-;'L’P (g%)l +

M(a%)&”*(i:ﬁ)_"(@)fm (3.3)

3! 823 n! dzm

where H means “higher order terms”. By replacing # by x;4; or #;_; in this
equation, one obtains expressions for the variable values at these points in
terms of the variable and its derivatives at z;. This can be extended to any
other point near z;, for example, z;;2 and z;_».

Using these expansions, one can obtain approximate expressions for the
first and higher derivatives at point z; in terms of the function values at
neighboring points. For example, using Eq. (3.3) for ¢ at x;, 1, we can show

that:
¢\ _ ir1 — i g1 — 3 (879N
oz ), T 2 oz? ),

($i+16— ;)? (g%g) ‘ + H . (3.4)

Another expression may be derived using the series expression (3.3) at z;_1:
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Still another expression may be obtained by using Eq. (3.3) at both z;_; and
Tig1:

(5¢> _ i = b1 (@i - 7)) - (@i 7in1)® (5245) _
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(@1 — 2:)° + (20 — 2i1)° (63_‘15) + H. (3.6)
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All three of these expressions are ezact if all terms on the right hand side
are retained. Because the higher-order derivatives are unknown, these expres-
sions are not of great value as they stand. However, if the distance between
the grid points i.e. z; — z;—; and z;4; — z; is small, the higher-order terms
will be small except in the unusual situation in which the higher derivatives
are locally very large. Ignoring the latter possibility, approzimations to the
first derivative result from truncating each of the series after the first terms
on the right hand sides:

0P\ _ Pit1 — i
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These are the forward- (FDS), backward- (BDS), and central-difference
(CDS) schemes mentioned earlier, respectively. The terms that were deleted
from the right hand sides are called the truncation errors; they measure the
accuracy of the approximation and determine the rate at which the error
decreases as the spacing between points is reduced. In particular, the first
truncated term is usually the principal source of error.

The truncation error is the sum of products of a power of the spacing
between the points and a higher order derivative at the point z = x;:

€&r = (A2)"amt1 + (A2) " amya + -+ (AT) "oy (3.10)

where Az is the spacing between the points (assumed all equal for the present)
and the a’s are higher-order derivatives multiplied by constant factors. From
Eq. (3.10) we see that the terms containing higher powers of Az are smaller
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for small spacing so that the leading term (the one with the smallest ex-
ponent) is the dominant one. As Az is reduced, the above approximations
converge to the exact derivatives with an error proportional to {Az)™, where
m is the exponent of the leading truncation error term. The order of an ap-
proximation indicates how fast the error is reduced when the grid is refined;
it does not indicate the absolute magnitude of the error. The error is thus
reduced by a factor of two, four, eight or sixteen for first-, second-, third-
or fourth-order approximations, respectively. It should be remembered that
this rule is valid only for sufficiently small spacings; the definition of ‘small
enough’ depends on the profile of the function ¢(x).

3.3.2 Polynomial Fitting

An alternative way of obtaining approximations for the derivatives is to fit
the function to an interpolation curve and differentiate the resulting curve.
For example, if piece-wise linear interpolation is used, we obtain the FDS or
BDS approximations, depending on whether the second point lies to the left
or the right of point z;.

Fitting a parabola to the data at points x;_1, z;, and z;4+1, and computing
the first derivative at x; from the interpolant, we obtain:

(@) i1 (D) — di1 (Azigr)? + ¢i[(Aziy1)® — (Axy)?]
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(3.11)

where Az; = z; — z;—1. This approximation has a second order truncation
error on any grid, and is identical to the above second order approximation
obtained using Taylor series approach. For uniform spacing, it reduces to the
CDS approximation given above.

Other polynomials, splines etc. can be used as interpolants and then to
approximate the derivative. In general, approximation of the first derivative
possesses a truncation error of the same order as the degree of the polynomial
used to approximate the function. We give below two third-order approxima-
tions obtained by fitting a cubic polynomial to four points and a fourth-order
approximation obtained by fitting a polynomial of degree four to five points
on a uniform grid:

0P\ _ 2¢i+1+3¢i —6¢i—1 +di2 )
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(&)1 = 12 Ax +(9((Az) ) . (3.14)
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The above approximations are third order BDS, third order FDS, and fourth
order CDS schemes, respectively. On non-uniform grids, the coefficients in
the above expressions become functions of grid expansion ratios.

In the case of FDS and BDS, the major contribution to the approximation
comes from one side. In convection problems, BDS is sometimes used when
flow is locally from node z;_; to z; and FDS when the flow is in the nega-
tive direction. Such methods are called upwind schemes (UDS). First order
upwind schemes are very inaccurate; their truncation error has the effect of
a false diffusion (i.e. the solution corresponds to a larger diffusion coefficient,
which is sometimes much larger than the actual diffusivity). Higher-order
upwind schemes are more accurate, but one can usually implement a CDS
of higher order with less effort, since it is not necessary to check the flow
direction (see above expressions).

We have demonstrated only one-dimensional polynomial fitting here; a
similar approach can be used together with any type of shape function or
interpolant in one-, two-, or three-dimensions. The only constraint is the
obvious one that the number of grid points used to compute the coefficients
of the shape function must equal the number of available coefficients. This
approach is attractive when irregular grids are used, because it allows the
possibility of avoiding the use of coordinate transformations; see Sect. 8.5.

3.3.3 Compact Schemes

For uniformly spaced grids, many special schemes can be derived. Among
these are compact schemes and the spectral methods described later. Here,
only Padé schemes will be described.

Compact schemes can be derived through the use of polynomial fitting.
However, instead of using only the variable values at computational nodes to
derive the coefficients of the polynomial, one also uses values of the deriva-
tives at some of the points. We will use this idea to derive a fourth-order
Padé scheme. The objective is to use information from near-neighbor points
only; this makes solution of the resulting equations simpler and reduces the
difficulty of finding approximations near the domain boundaries. In the par-
ticular schemes described here, we will use the variable values at nodes ¢,
1+1,and i — 1, and the first derivatives at nodes i + 1 and i — 1, to obtain an
approximation for the first derivative at the node i. To this end, a polynomial
of degree four is defined in the vicinity of node i:

é=aop+a(r—zx;)+ as(x — l‘i)Z + az(z — l‘i)a + a4z — .’l)i)4 . (315)
The coefficients ag, . . . , a4 can be found by fitting the above polynomial to the
three variable and two derivative values. However, since we are interested only

in the first derivative at the node i, we only need to compute the coefficient
a1. Differentiating Eq. (3.15), we have:

o9

2 = @ + 2a5(z — ;) + 3az(x — ;)% + day(z — ;)" (3.16)
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so that

(2) ~a. o

By writing Eq. (3.15) for £ = z;, £ = 1441, and = = z;_;, and Eq. (3.16) for
z =1x;41 and * = x;_1, we obtain after some rearrangement:

00) _ _1(02) _1(08)  3fir1 i
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A polynomial of degree six can be used if the variable values at nodes ¢+2 and
i — 2 are added and one of degree eight can be employed if the derivatives at
these two nodes are also used. An equation like Eq. (3.18) may be written at
each point. The complete set of equations is actually a tridiagonal system of
equations for the derivatives at the grid points. To compute the derivatives,
this system has to be solved.

A family of compact centered approximations of up to sixth order can be
written:

0¢ 0¢ 0¢ Pyl — Pia
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Depending on the choice of parameters «, §, and +, the second- and fourth-
order CDS, and fourth and sixth-order Padé schemes are obtained; the pa-
rameters and the corresponding truncation errors are listed in Table 3.1.

Table 3.1. Compact schemes: the parameters and truncation errors

Scheme Truncation error e’ B 5

CDS-2 (A;!” ) g_jg 0 1 0
4 a5

CDS-4 %ﬂ% % 0 % -

Padé-4 (A;!” )’ g% i g 0

Padé-6 4(47!””)6 % % 19_4 %

Obviously, for the same order of approximation, Padé schemes use fewer
computational nodes and thus have more compact computational molecules
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than central-difference approximations. If the variable values at all grids were
known, we can compute the derivatives at all nodes on a grid line by solving
the tridiagonal system (see Chap. 5 for details on how this can be done).
We shall see, in Sect. 5.6, that these schemes can also be applied in implicit
methods. This issue will be addressed again in Sect. 3.7.

The schemes derived here are only a few of the possibilities; extensions
to higher order and multi-dimensional approximations are possible. It is also
possible to derive schemes for non-uniform grids but the coefficients are par-
ticular to the grid, making them rather impractical.

3.3.4 Non-Uniform Grids

Since the truncation error depends not only on the grid spacing but also on
the derivatives of the variable, we cannot achieve a uniform distribution of
discretization error on a uniform grid. We therefore need to use a non-uniform
grid. The idea is to use a smaller Az in regions where the derivatives of the
function are large and a larger Az in regions where the function is smooth. In
this way, it should be possible to spread the error nearly uniformly over the
domain, thus obtaining a better solution for a given number of grid points. In
this section, we will discuss the accuracy of finite difference approximations
on non-uniform grids.

In some approximations, the leading term in the truncation error expres-
sion becomes zero when the spacing of the points is uniform, i.e. ¢;4; —z; =
z; — z;—1 = Az. This is the case for the CDS approximation, see Eq. (3.6).
Even though different approximations are formally of the same order for non-
uniform spacing, they do not have the same truncation error. Moreover, the
rate at which the error decreases when the grid is refined does not deteriorate
when CDS is applied to non-uniform grids, as we shall now show.

To demonstrate this point, on which there is some confusion in the liter-
ature, note that the truncation error for the CDS is:

_ (Azi)® — (Azy)° (876
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where we have used the notation (see Fig. 3.2):
Azip) = Tjp — Ty, ATy =T — Ty .

The leading term is proportional to Az, but becomes zero when Az;y; =
Arx;. This means that the more non-uniform the mesh spacing, the larger the
€rror.

Let us assume that the grid expands or contracts with a constant factor
re. This is called a compound interest grid; for it:
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A.’IZH_l = ’I‘eA.’L'i . (321)

In this case, the leading truncation error term for the CDS can be rewritten:

1—re)dz; (8?
z(—%)—x (a—xf).‘ (3.22)

The leading error term of the first-order FDS or BDS schemes is:

_ da, (0%
“F oz ),

When r, is close to unity, the first-order truncation error of the CDS is
substantially smaller than the BDS error.

Now let us see what happens when the grid is refined. We consider two
possibilities: halving the spacing between two coarse grid points and inserting
new points so that the fine grid also has a constant ratio of spacings.

In the first case, the spacing is uniform around the new points, and the
expansion factor r, at the old points remains the same as on the coarse grid.
If the refinement is repeated several times, we obtain a grid which is uniform
everywhere except near the coarsest grid points. At this stage, at all grid
points except those belonging to the coarsest grid, the spacing is uniform
and the leading error term in the CDS vanishes. After some refinements,
the number of points at which the spacing is non-uniform will be small.
Therefore, the global error will decrease just a bit more slowly than in a true
second-order scheme.

] Grid 2h
i-1 i i+1
*—O0—O . ]
-2 -l i i+ 1 +2
e ! ' : Grid &

Fig. 3.3. Refinement of a non-uniform grid which expands by a constant factor r.

In the second case the expansion factor of the fine grid is smaller than on
the coarse grid. Simple arithmetic shows that

Te,h = v/Te,2h » (3.23)

where h represents the refined grid and 2h, the coarse grid. Let us consider
a node common to both grids; the ratio of the leading truncation error term
at node i on the two grids is (see Eq. (3.22)):

_ (1 —7re)an (Azy)an
T, = A= ron (Ban (3.24)

The following relation holds between the mesh spacing on the two grids (see
Fig. 3.3):
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(Azi)an = (Azi)n + (Azi—1)n = (re + Dr(Azio1)n -

When these are inserted in Eq. (3.24), taking into account Eq. (3.23), it
follows that the first-order truncation error of the CDS is reduced by a factor

2

rp = QL Ten)” (3.25)

Te,h

when the grid is refined. This factor has the value 4 when r, = 1, i.e. when
the grid is uniform. When r. > 1 (expanding grid) or r, < 1 (contracting
grid), this factor is r. > 4, which means that the error due to the first-order
term decreases faster than the second-order error term! Since, in this method,
re — 1 as the grid is refined, the convergence becomes asymptotically second
order. This will be demonstrated in the examples presented later.

A similar analysis can be performed for any scheme with the same con-
clusion: systematic refinement of non-uniform grids gives a rate of reduction
of truncation error that has the same order as for a uniform grid.

For a given number of grid points, smaller errors are almost always ob-
tained with non-uniform spacing. This is their purpose. However, for the grid
to do its job, the user must know where smaller spacing is needed or an
automatic means of grid adaptation to the solution needs to be used. An
experienced user can identify regions that require fine grids; see Chap. 11
for a discussion of this issue. Methods which provide automatic error-guided
grid refinement will also be presented there. It should be emphasized that
grid generation becomes more difficult as the dimension of the problem is
increased. Indeed, the generation of effective grids remains one of the most
difficult problems in computational fluid dynamics.

Higher-order approximations of the first derivative can be obtained by
using more points to eliminate more of the truncation error terms in the
above expressions. For example, using ¢;_, to obtain an expression for the
second derivative at #; and substituting this expression in Eq. (3.6), we obtain
the following second-order approximation (on any grid):

(‘9‘15) _ $ir1(A20)® — $i-1(Azi41)° + $i(ATir1)® — (Azy)’]

oz Azi1 Azi(Az; + Aziyy)
Az Az (0°¢
=) +H. 2
6 (8:33 i+ (3.26)

For equispaced grids this reduces to the simple form given by Eq. (3.9).

3.4 Approximation of the Second Derivative

Second derivatives appear in the diffusive terms, see Eq. (3.1). To estimate
the second derivative at a point, one may use the approximation for the first
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derivative twice. This is the only approach possible when the fluid properties
are variable, since we need the derivative of the product of diffusion coeffi-
cient and the first derivative. We next consider approximations to the second
derivative; application to the diffusive term in the conservation equation will
be discussed later.

Geometrically, the second derivative is the slope of the line tangent to the
curve representing the first derivative, see Fig. 3.2. By inserting approxima-
tions for the first derivatives at locations x;4; and z;, an approximation for
the second derivative is obtained:

(3),.. ()
(62¢) N 0z ) (6_10 i

8z

3.27
Tit1 — T ( )
All such approximations involve data from at least three points.

In the above equation, the outer derivative was estimated by FDS. For
inner derivatives one may use a different approximation, e.g. BDS; this results
in the following expression:

(£2) - dulosmiod) $ il =) o = 2i1) (g

oz2 ) (g1 — zi)*(z; — 15-1)

One could also use the CDS approach which requires the first derivative at
at z;-; and z;4;. A better choice is to evaluate 9¢/0x at points halfway
between z; and z;4+1 and z; and x;_;. The CDS approximations for these
first derivatives are:

0¢ ~ i1 — P and 04 ~ i — Pi1
Oz iy ikl T T Oz i} T;— Ti_1

respectively. The resulting expression for the second derivative is:

(5:).., (&)

8¢\ \0x/y1 \Or/y 4

<w>z - L@ —mic1) (3.29)
(

Gipr (T — zim1) + i1 (Zig1 — Ts) — ¢i(Tig1 — Ti—1)
%($¢+1 — i) (Tip1 — 3) (@5 — Tio1)

For equidistant spacing of the points, expressions (3.28) and (3.30) become:

¢\ P+ i1 —2¢;
(5), = 22 (330

Taylor series expansion offers another way of deriving approximations to
the second derivative. Using the series at z;_; and z;; given above, one can
re-derive Eq. (3.28) with an explicit expression for the error:
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(32(25) _ Gir1 (@i — xic1) + dic1(Tigr — &) — @i —Tio1)

2 5@ — zis1)(@ipr — z) (@i — i)

(Tit1 — x5) = (@ — T4-1) (@) +H.

. o~ (3.31)

The leading truncation error term is first order but vanishes when the spac-
ing between the points is uniform, making the approximation second-order
accurate. However, even when the grid is non-uniform, the argument given
above shows that the truncation error is reduced in a second-order manner
when the grid is refined. When a compound interest grid is used, the error de-
creases in the same way as for the CDS approximation of the first derivative,
see Eq. (3.25).

Higher-order approximations for the second derivative can be obtained by
including more data points, say T;_2 Or Z;ts.

Finally, one can use interpolation to fit a polynomial of degree n through
n+ 1 data points. From that interpolation, approximations to all derivatives
up to the nth can be obtained by differentiation. Using quadratic interpola-
tion on three points leads to the formulas given above. Approaches like those
described in Sect. 3.3.3 can also be extended to the second derivative.

In general, the truncation error of the approximation to the second deriva-
tive is the degree of the interpolating polynomial minus one (first order for
parabolas, second order for cubics, etc.). One order is gained when the spacing
is uniform and even-order polynomials are used. For example, a polynomial
of degree four fit through five points leads to a fourth-order approximation
on uniform grids:

%P\ _ —ira + 164511 — 300 +16 i1 — di
oz ), 12(Ax)?

+0((Az)*)(3.32)

One can also use approximations of the second derivative to increase the
accuracy of approximations to the first derivative. For example, using the
FDS expression for the first derivative, Eq. (3.4), keeping just two terms
on the right-hand side, and using the CDS expression (3.30) for the second
derivative, results in the following expression for the first derivative:

(@f) o $i41(47:)? — dio1(Azir1)? + ¢i[(Azit1)® — (Az:)?]
oz ), - Az Axi(Azy + Aziqy)

(3.33)

This expression possesses a second-order truncation error on any grid and
reduces to the standard CDS expression for the first derivative on uniform
grids. This approximation is identical to Eq. (3.26). In a similar way, one can
upgrade any approximation by eliminating the derivative in the leading trun-
cation error term. Higher-order approximations always involve more nodes,
yielding more complex equations to solve and more complicated treatment
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of boundary conditions so a trade-off has to be made. Second-order approxi-
mations usually offer a good combination of ease of use, accuracy, and cost-
effectiveness in engineering applications. Schemes of third and fourth order
offer higher accuracy for a given number of points when the grid is sufficiently
fine but are more difficult to use. Methods of still higher order are used only
in special cases.

For the conservative form of the diffusive term (3.1), one has to approxi-
mate the inner first derivative 8¢ /9 first, multiply it by I" and differentiate
the product again. As shown above, one does not have to use the same ap-
proximation for the inner and outer derivatives.

The most often used approximation is a second-order, central-difference
approximation; the inner derivative is approximated at points midway be-
tween nodes, and then a central difference with a grid size Az is used. One

obtains:
(r%),,~ (%)
22
8z \" 9z )|, "~ $(Tip1 —2i1) -
L Pit1 —pi I, i — ¢i_1
2Tip1 — T4 2T — Ty

3.34
%(xiﬂ - Ti1) ( )

Other approximations are easily obtained using different approximations for

the inner and outer first derivatives; any of the approximations presented in
the previous section can be used.

3.5 Approximation of Mixed Derivatives

Mixed derivatives occur only when the transport equations are expressed in
non-orthogonal coordinate systems; see Chap. 8 for an example. The mixed
derivative, 8%¢/3z0y may be treated by combining the one-dimensional ap-
proximations as was described above for the second derivative. One can write:

8% 8 (0¢
529y = 5% (@) . (3.35)

The mixed second derivative at (z;,y;) can be estimated using CDS by first
evaluating the first derivative with respect to y at (z;11,y;) and (z;_1,y;)
and then evaluating the first derivative of this new function with respect to
z, in the manner described above.

The order of differentiation can be changed; the numerical approximation
may depend on the order. Although this may seem a drawback, it really poses
no problem. All that is required is that the numerical approximation become
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exact in the limit of infinitesimal grid size. The difference in the solutions
obtained with two approximations is due to the discretization errors being
different.

3.6 Approximation of Other Terms

In the scalar conservation equation there may be terms — which we have
lumped together into the source term g4 — which do not contain derivatives;
these also have to be evaluated. In the FD method, only the values at the
nodes are normally needed. If the non-differentiated terms involve the de-
pendent variable, they may be expressed in terms of the nodal value of the
variable. Care is needed when the dependence is non-linear. The treatment
of these terms depends on the equation and further discussion is put off until
Chaps. 5 and 7.

3.7 Implementation of Boundary Conditions

A finite-difference approximation to the partial differential equation is re-
quired at every interior grid point. To render the solution unique, the contin-
uous problem requires information about the solution at the domain bound-
aries. Generally, the value of the variable at the boundary (Dirichlet bound-
ary conditions) or its gradient in a particular direction (usually normal to
the boundary—Neumann boundary conditions) or a linear combination of
the two quantities is given.

If the variable value is known at some boundary point, then there is no
need to solve for it. In all FD equations which contain data at these points,
the known values are used and nothing more is necessary. A problem does
arise when higher-order approximations of the derivatives are used; since they
require data at more than three points, approximations at interior nodes may
demand data at points beyond the boundary. It may then be necessary to
use different approximations for the derivatives at points close to boundary;
usually these are of lower order than the approximations used deeper in the
interior and may be one-sided differences. For example, from a cubic fit to the
boundary value and three inner points, Eq. (3.13) may be derived for the first
derivative at the next-to-boundary point. Fitting a fourth-order polynomial
through the boundary and four inner points, the following approximation for
the first derivative results at = x4, the first interior point;:

<5¢>> _ —¢5 + 604 +18¢3 +10¢2 — 33 ¢
2

a7 A +0((Az)*) . (3.36)

Approximation of the second derivative using the same polynomial gives:
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62¢) —21 5 + 96 P4 + 18 b3 — 240 ¢ + 147 ¢4
— ] = 0((Ax)3) .(3.37
(61:2)2 180 (Az)? +0((42)%) .(3.37)

If the gradient is prescribed at the boundary, a suitable FD approximation
for it (it must be a one-sided approximation) can be used to compute the
boundary value of the variable. If, for example, zero gradient in the normal
direction is prescribed, a simple FDS approximation leads to:

AN P2 — 1
(67)1_0 5 Bzh_g (3.38)

Iz —T1

which gives ¢, = ¢2, allowing the boundary value to be replaced by the
value at the node next to boundary and eliminated as an unknown. From a
parabolic fit to the boundary and two inner points, the following second-order
approximation, valid on any grid, is obtained for the first derivative at the
boundary:

(8¢) _ —¢3(x2 — r1)? + ¢o(xs — 71)% — ¢1[(x3 — 21)? — (72 — 71)?] ‘

or L (x2 — 1) (23 — 21)(23 — T2)

On a uniform grid this expression reduces to:

(8_¢> L —93+4d— 3
Oz 1~ 240z )

(3.39)

A third-order approximation on equispaced grids is obtained from a cubic fit
to four points:

(3_45) 204 -9¢3+18¢; — 11 ¢y
Ox 1~ 6 Az '

(3.40)

Sometimes one needs to calculate first derivative normal to boundary at
points at which the boundary value of the variable is given (for example,
to calculate heat flux through an isothermal surface). In this case, any of
the one-sided approximations given above are suitable. The accuracy of the
result depends not only on the approximation used, but also on the accuracy
of the values at interior points. It is sensible to use approximations of the
same order for both purposes.

When the compact schemes described in Sect. 3.3.3 are used, one has to
provide both the variable value and the derivative at boundary nodes. Usu-
ally, one of these is known and the other must be computed using information
from the interior. For example, a one-sided approximation to the derivative
at the boundary node, like Eq. (3.40), can be employed when the variable
value is prescribed. On the other hand, polynomial interpolation can be used
to compute the boundary value if the derivative is known. From a cubic fit
to four points the following expression is obtained for the boundary value:
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b

_ 184 — 943 +2¢4 64z (%) . (3.41)
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Approximations of lower or higher order can be obtained in a similar way.

3.8 The Algebraic Equation System

A finite-difference approximation provides an algebraic equation at each grid
node; it contains the variable value at that node as well as values at neigh-
boring nodes. If the differential equation is non-linear, the approximation
will contain some non-linear terms. The numerical solution process will then
require linearization; methods for solving these equations will be discussed in
Chap. 5. For now, we consider only the linear case. The methods described
are applicable in the non-linear case as well. For this case, the result of dis-
cretization is a system of linear algebraic equations of the form:

Apgp + Y Aigr = Qp, (3.42)
I

where P denotes the node at which the partial differential equation is approx-
imated and index [ runs over the neighbor nodes involved in finite-difference
approximations. The node P and its neighbors form the so-called compu-
tational molecule; two examples, which result from second and third order
approximations, are shown in Fig. 3.4. The coeflicients A; depend on geo-
metrical quantities, fluid properties and, for non-linear equations, the variable
values themselves. Qp contains all the terms which do not contain unknown
variable values; it is presumed known.
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Fig. 3.4. Examples of computational molecules in 2D and 3D

The numbers of equations and unknowns must be equal, i.e., there has
to be one equation for each grid node. Thus we have a large set of linear
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algebraic equations, which must be solved numerically. This system is sparse,
meaning that each equation contains only a few unknowns. The system can
be written in matrix notation as follows:

Ap=Q, (3.43)
where A is the square sparse coefficient matrix, ¢ is a vector (or column
matrix) containing the variable values at the grid nodes, and @ is the vector
containing the terms on the right-hand side of Eq. (3.42).

The structure of matrix A depends on the ordering of variables in the
vector ¢. For structured grids, if the variables are labeled starting at a cor-
ner and traversing line after line in a regular manner (lexicographic ordering),
the matrix has a poly-diagonal structure. For the case of a five-point compu-
tational molecule, all the non-zero coefficients lie on the main diagonal, the
two neighboring diagonals, and two other diagonals removed by N positions
from the main diagonal, where N is the number of nodes in one direction.
All other coeflicients are zero. This structure allows use of efficient iterative
solvers.

Throughout this book we shall, for the sake of definiteness, order the
entries in vector ¢ starting at the southwest corner of the domain, proceeding
northwards along each grid line and then eastward across the domain (in
three-dimensional cases we shall start at the bottom computational surface
and proceed on each horizontal plane in the manner just described, and then
go from bottom to top). The variables are normally stored in computers in
one-dimensional arrays. The conversion between the grid locations, compass
notation, and storage locations is indicated in Table 3.2.

Table 3.2. Conversion of grid indices to one-dimensional storage locations for
vectors or column matrices

Grid location Compass notation Storage location

i,k P I=(k-1N,N+(E—-1)N;+j
i—1,4,k w - N;

i,j—1,k S -1

i, 7+ 1,k N I+1

i+1,4,k E [+ N;

4, k-1 B l — N;N;

i, 5, k+1 T I+ N;N;

Because the matrix A is sparse, it does not make sense to store it as a
two-dimensional array in computer memory (this is standard practice for full
matrices). Storing the elements of each non-zero diagonal in a separate array
of dimension 1 x N; N;, where N; and N; are the numbers of grid points in the
two coordinate directions, requires only 5N;N; words of storage; full array
storage would require N? N7 words of storage. In three dimensions, the num-

bers are TN;N; Ny and N7N?NZ, respectively. The difference is sufficiently
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large that the diagonal-storage scheme may allow the problem to be kept in
main memory when the full-array scheme does not.

If the nodal values are referenced using the grid indices, say ¢; ; in 2D,
they look like matrix elements or components of a tensor. Since they are
actually components of a vector ¢, they should have only the single index
indicated in Table 3.2.

The linearized algebraic equations in two dimensions can now be written
in the form:

ANy Q1-N; + A1 + A +
Anir1dier + AnigN;digen; = Q. (3.44)

- : : : ' wl L Lo

Fig. 3.5. Structure of the matrix for a five-point computational molecule (non-
zero entries in the coefficient matrix on five diagonals are shaded; each horizontal
set of boxes corresponds to one grid line)

As noted above, it makes little sense to store the matrix as an array. If,
instead, the diagonals are kept in separate arrays, it is better to give each
diagonal a separate name. Since each diagonal represents the connection to
the variable at a node that lies in a particular direction with respect to the
central node, we shall call them Aw, As, Ap, An and Ag; their locations in
the matrix for a grid with § x 5 internal nodes are shown in Fig. 3.5. With this
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ordering of points, each node is identified with an index [, which is also the
relative storage location. In this notation the equation (3.44) can be written

Awow + Asps + Apop + Andn + Agdr = Qp , (3.45)

where the index I, which indicated rows in Eq. (3.44), is understood, and
the index indicating column or location in the vector has been replaced by
the corresponding letter. We shall use this shorthand notation from now on.
When necessary for clarity, the index will be inserted. A similar treatment
applies to three-dimensional problems.

For block-structured and composite grids, this structure is preserved
within each block, and the solvers for regular structured grids may be used.
This is discussed further in Chap. 5.

For unstructured grids, the coefficient matrix remains sparse, but it no
longer has banded structure. For a 2D grid of quadrilaterals and approxi-
mations that use only the four nearest neighbor nodes, there are only five
non-zero coefficients in any column or row. The main diagonal is full and the
other non-zero coefficients lie within a certain range of the main diagonal but
not necessarily on definite diagonals. A different type of iterative solver must
be used for such matrices; they will be discussed in Chap. 5. The storage
scheme for unstructured grids will be introduced in Chap. 8, since such grids
are used mostly in complex geometries with the FV method.

3.9 Discretization Errors

Since the discretized equations represent approximations to the differential
equation, the exact solution of the latter, which we shall denote by @, does not
satisfy the difference equation. The imbalance, which is due to truncation of
the Taylor series, is called truncation error. For a grid with a reference spacing
h, the truncation error 7 is defined as:

L(P) = Lp(P) +Tn =0, (3.46)

where £ is a symbolic operator representing the differential equation and Ly,
is a symbolic operator representing the algebraic equation system obtained
by discretization on grid h, which is given by Eq. (3.43).

The exact solution of the discretized equations on grid h, ¢, satisfies the
following equation:

Ln(¢n) = (A9 - Q)r =0. (3.47)

It differs from the exact solution of the partial differential equation by the
discretization error, €, i.e.:

=y +el. (3.48)

From Egs. (3.46) and (3.47) one can show that the following relation holds
for linear problems:
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Li(eh) = -7y . (3.49)

This equation states that the truncation error acts as a source of the dis-
cretization error, which is convected and diffused by the operator L. Exact
analysis is not possible for non-linear equations, but we expect similar behav-
ior; in any case, if the error is small enough, we can locally linearize about
the exact solution and what we will say in this section is valid. Information
about the magnitude and distribution of the truncation error can be used as
a guide for grid refinement and can help achieve the goal of having the same
level of the discretization error everywhere in the solution domain. However,
as the exact solution @ is not known, the truncation error cannot be calcu-
lated exactly. An approximation to it may be obtained by using a solution
from another (finer or coarser) grid. The estimate of the truncation error
thus obtained is not always accurate but it serves the purpose of pointing to
regions that have large errors and need finer grids.

For sufficiently fine grids, the truncation error (and the discretization
error as well) is proportional to the leading term in the Taylor series:

€ ~ah? + H, (3.50)

where H stands for higher-order terms and o depends on the derivatives
at the given point but is independent of k. The discretization error can be
estimated from the difference between solutions obtained on systematically

refined (or coarsened) grids. Since the exact solution may be expressed as
(see Eq. (3.48)):

S =¢p+ah?+H=¢a+al2h)P+ H, (3.51)
the exponent p, which is the order of the scheme, may be estimated as follows:
log (¢2h - ¢4h)

_ n — dan

P= log 2

(3.52)

From Eq. (3.51) it also follows that the discretization error on grid h can be
approximated by:

on — dan '

d
€5 ~
h 2r — 1

(3.53)
If the ratio of the grid sizes on successive grids is not two, the factor 2 in
the last two equations needs to be replaced by that ratio (see Roache, 1994,
for details on error estimates when the grid is not systematically refined or
coarsened).

When solutions on several grids are available, one can obtain an approxi-
mation of @ which is more accurate than the solution ¢, on the finest grid by
adding the error estimate (3.53) to ¢p; this method is known as Richardson
extrapolation, (Richardson, 1910). It is simple and, when the convergence is



60 3. Finite Difference Methods

monotonic, accurate. When a number of solutions are available, the process
can be repeated to improve the accuracy further.

We have shown above that it is the rate at which the error is reduced
when the grid is refined that matters, not the formal order of the scheme as
defined by the leading term in the truncation error. Equation (3.52) takes
this into account and returns the correct exponent p. This estimate of the
order of a scheme is also a useful tool in code validation. If a method should
be, say, second-order accurate but Eq. (3.52) finds that it is only first-order
accurate, there is probably an error in the code.

The order of convergence estimated using Eq. (3.52) is valid only when
the convergence is monotonic. Monotonic convergence can be expected only
on sufficiently fine grids. We shall show in the examples that the error depen-
dence on grid size may be irregular when the grid is coarse. Therefore, care
should be taken when comparing solutions on two grids; when convergence is
not monotonic, solutions on two consecutive grids may not differ much even
though the errors are not small. A third grid is necessary to assure that the
solution is really converged. Also, when the solution is not smooth, the error
estimates obtained with Taylor series approximations may be misleading. For
example, in simulations of turbulent flows, the solution varies on a wide range
of scales and the order of the solution method may not be a good indicator of
solution quality. In Sect. 3.10 it will be shown that the error of a fourth-order
scheme may not be much smaller than of a second-order scheme for these
types of simulations.

3.10 An Introduction to Spectral Methods

Spectral methods are a class of methods less suited for general purpose CFD
codes than FV and FE methods but, as they are important in some appli-
cations (e.g. simulation of turbulence), they are briefly described here. For a
more complete description of them, see the book by Canuto et al. (1987).

3.10.1 Basic Concept

In spectral methods, spatial derivatives are evaluated with the aid of Fourier
series or one of their generalizations. The simplest spectral method deals
with periodic functions specified by their values at a uniformly spaced set of
points. It is possible to represent such a function by a discrete Fourier series:

N/2—1

fla)= > flkg)e*o™, (3.54)

g=—N/2

where z; = i Az, i =1,2,...N and k; = 2rg/Az N. Equation (3.54) can
be inverted in a surprisingly simple way:
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flke) = 5 3 fla et (3.55)

as can be proven by using the well-known formula for the summation of
geometric series. The set of values of ¢ is somewhat arbitrary; changing the
index from ¢ to g+!N, where [ is an integer, produces no change in the value
of eti%a®: at the grid points. This property is known as aliasing; aliasing is a
common and important source of error in numerical solutions of non-linear
differential equations, including ones that do not use spectral methods. We
shall say more about it in Chap. 9.

What makes these series useful is that Eq. (3.54) can be used to inter-
polate f(z). We simply replace the discrete variable z; by the continuous
variable z; f(z) is then defined for all z, not just the grid points. Now the
choice of the range of ¢ becomes very important. Different sets of ¢ produce
different interpolants; the best choice is the set which gives the smoothest
interpolant, which is the one used in Eq. (3.54). (The set —N/2+1,...,N/2
is as good a choice as the one selected.) Having defined the interpolant, we
can differentiate it to produce a Fourier series for the derivative:

df N/2—-1
= > ik f(kg)ee® (3.56)
z g=—N/2

which shows that the Fourier coefficient of df/dz is ik, f(k,). This provides
a method of evaluating the derivative:

e Given f(z;), use Eq. (3.55) to compute its Fourier coefficients f (kqg);

e Compute the Fourier coefficients of g =df /dz;  §(kq) =ik, f(kq);
¢ Evaluate the series (3.56) to obtain g =df/dz at the grid points.

Several points need to be noted.

e The method is easily generalized to higher derivatives; for example, the
Fourier coefficient of d2f/dz? is —k2 f(k,).

e The error in the computed derivative decreases exponentially with N when
the number of grid points N is large if f(x) is periodic in z. This makes
spectral methods much more accurate than finite difference methods for
large N; however, for small N, this may not be the case. The definition of
‘large’ depends on the function.

e The cost of computing the Fourier coefficients using Eq. (3.55) and/or the
inverse using Eq. (3.54), if done in the most obvious manner, scales as N2,
This would be prohibitively expensive; the method is made practical by
the existence of a fast method of computing Fourier transform (FFT) for
which the cost is proportional to N log, V.

To obtain the advantages of this particular spectral method, the function
must be periodic and the grid points uniformly spaced. These conditions
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can be relaxed by using functions other than complex exponentials but any
change in geometry or boundary conditions requires a considerable change in
the method, making spectral methods relatively inflexible. For the problems
to which they are ideally suited (for example, the simulation of turbulence in
geometrically simple domains), they are unsurpassed.

3.10.2 Another View of Discretization Error

Spectral methods are as useful for providing another way of looking at trun-
cation errors as they are as computational methods on their own. So long as
we deal with periodic functions, the series (3.54) represents the function and
we may approximate its derivative by any method we choose. In particular,
we can use the exact spectral method of the example above or a finite differ-
ence approximation. Any of these methods can be applied term-by-term to
the series so it is sufficient to consider differentiation of e'*%. The exact result
is ike'*2. On the other hand, if we apply the central difference operator of
Eq. (3.9) to this function we find:

Seikz ik(z+Az) _ sik(z—Az) H . .
e e e - sin(k Azx) ke — kg oike (3.57)

or 24z Azx

where keg is called the effective wavenumber because using the finite difference
approximation is equivalent to replacing the exact wavenumber k by keg.
Similar expressions can be derived for other schemes; for example, the fourth
order CDS, Eq. (3.14), leads to:

__sin(k Azx)

ke = 3 Az [4 — cos(k Az)] . (3.58)

For low wavenumber (corresponding to smooth functions), the effective
wavenumber of the CDS approximation can be expanded in a Taylor series:

: 3 2
. sm(Asz:c) ke k (?z) , (3.59)
which shows the second-order nature of the approximation for small k and
small Az. However, in any computation, wavenumbers up to kpax = 7/4x
may be encountered. The magnitude of a given Fourier coefficient depends
on the function whose derivatives are being approximated; smooth functions
have small high wavenumber components but rapidly varying functions give
Fourier coeflicients that decrease slowly with wavenumber.

In Fig. 3.6 the effective wavenumbers of the second and fourth order
CDS scheme, normalized by kmax, are shown as functions of the normalized
wavenumber k* = k/ky.x. Both schemes give a poor approximation if the
wavenumber is larger than half the maximum value. More wavenumbers are
included as the grid is refined. In the limit of small spacings, the function is
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smooth relative to the grid, only the small wavenumbers have large coefli-
cients, and accurate results may be expected.

If we are solving a problem with a solution that is not very smooth, the
order of the discretization method may no longer be a good indicator of its
accuracy. One needs to be very careful about claims that a particular scheme
is accurate because the method used is of high order. The result is accurate
only if there are enough nodes per wavelength of a highest wavenumber in
the solution.

Spectral methods yield an error that decreases more rapidly than any
power of the grid size as the latter goes to zero. This is often cited as an ad-
vantage of the method. However, this behavior is obtained only when enough
points are used (the definition of ‘enough’ depends on the function). For small
numbers of grid points, spectral methods may actually yield larger errors than
finite difference methods.

Finally, we note that the effective wavenumber of the upwind difference
method is:

koff = ————— (3.60)

and is complex. This is an indication of the dissipative nature of this approx-
imation.

3.11 Example

In this example we solve the steady 1D convection/diffusion equation with
Dirichlet boundary conditions at both ends. The aim is to demonstrate the
properties of the FD discretization technique for a simple problem which has
an analytic solution.

The equation to be solved reads (see Eq. (1.28)):
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with the boundary conditions: ¢ = ¢g at ¢ = 0, ¢ = ¢, at £ = L, see Fig.
3.7; the partial derivatives may be replaced by ordinary derivatives in this
case. The density p and the velocity u are assumed constant. This problem
has the exact solution:

ezPe/L -1

¢=¢0+—€Pe—

3 (oL — o) - (3.62)

Here Pe is the Peclet number, defined as:
Pe = — . (3.63)

Because it is so simple, this problem is often used as a test of numerical
methods, including both discretization and solution schemes. Physically, it
represents a situation in which convection is balanced by diffusion in the
streamwise direction. There are few actual flows in which this balance plays
an important role. Normally, convection is balanced by either a pressure
gradient or diffusion in the direction normal to the flow. In the literature,
one finds many methods that were developed for Eq. (3.61) and then applied
to the Navier-Stokes equations. The results are often very poor and most of
these methods are best avoided. Indeed, use of this problem as a test case
has probably produced more poor choices of method than any other in the
field. Despite these difficulties, we shall consider this problem as some of the
issues it raises are worthy of attention.

Let us consider the case u > 0 and ¢ < ¢r; other situations are easily
dealt with. In the case of small velocity (u = 0) or large diffusivity I', the
Peclet number tends to zero and convection can be neglected; the solution
is then linear in z. When the Peclet number is large, ¢ grows slowly with
z and then suddenly rises to ¢ over a short distance close to z = L. The
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sudden change in the gradient of ¢ provides a severe test, of the discretization
method.

We shall discretize Eq. (3.61) using FD schemes which use the three-point
computational molecule. The resulting algebraic equation at node i reads:
boi + Apdin + Aydio = Qi . (3.64)

It is common practice to discretize the diffusion term using CDS; thus,
for the outer derivative, we have:

[2(r22)] - _(F%%-( > N

3.65
Oz 5@ — i) (3.65)
The CDS approximations of the inner derivatives are:
a i i i QPi—
09\ pfmibi (L09) _péicem oo
Bx xl+1 —x; Bx i1 Ti— Ti_q

The contributions of the diffusion term to the coefficients of the algebraic
equation (3.64) are thus:

o ar .
(Tip1 — Tic1)(Zig1 — 23)
A = — 2r :

(Tit1 — Tim1)(Ts — Tio1)
AS = —(AS + A% .

If the convection term is discretized using first-order upwind differences
(UDS - FDS or BDS, depending on the flow direction), we have:

¢1 ¢11 .
f .
[8(pu¢)] o $'—$, ) Jifu>0; (367
Oz 41 7% <o,
Tit1 — &4

This leads to the following contributions to the coefficients of Eq. (3.64):

. Mmin(pu,0) c
Tit1 — T4 Ti— Ti-1

P =—(4g + Aw) -

Either Af, or AYy is zero, depending on the flow direction.
The CDS approximation leads to:

max(pu,0)

)
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5 (3.68)

{8(PU¢)] ~ pu Piy1 — Pi-1 _

Tit1 — Ti—1
The CDS contributions to the coefficients of Eq. (3.64) are:

pu pu
AE:—————; ACW:_

—
Tiv1 — Ti—1 Ti41 — Ti—1

AS = —(AG + AS) =0

The total coeflicients are the sums of the convection and diffusion contribu-
tions, A° and A9.

The values of ¢ at boundary nodes are specified: ¢, = ¢o and ¢y = ¢r,
where N is the number of nodes including the two at the boundaries. This
means that, for the node at ¢ = 2, the term A%,¢; can be calculated and
added to @2, the right hand side, and we set the coefficient A%, in that
equation to zero. Analogously, we add the product Ag ~lon for the node
t =N —1to Qn_1 and set the coefficient Ag"l =0.

The resulting tridiagonal system is easily solved. We shall only discuss the
solutions here; the solver used to obtain them will be introduced in Chap. 5.

. Exact + ——— Exact
R Calculated oesreemmnenmas Calculated

a
"
i
IR
Sy
s

[

/
0 TS B ROV A B (U I /A |
. 2 A

L R R B By e e O B

/
1ll]¢l|I|J'|[nJ-~r"r1

¢ 1.0 0 .2 .4 .6 .8
X

0 2 4 6 N8}
X

e

Fig. 3.8. Solution of the 1D convection/diffusion equation at Pe = 50 using CDS
(left) and UDS (right) for convection terms and a uniform grid with 11 nodes

In order to demonstrate the false diffusion associated with UDS and the
possibility of oscillations when using CDS, we shall consider the case with
Pe =50 (L=1.0,p=10,u=10,I =0.02, ¢g =0 and ¢ = 1.0). We
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start with results obtained using uniform grid with 11 nodes (10 equal sub-
divisions). The profiles of ¢(z) obtained using CDS and UDS for convection
and CDS for diffusion terms are shown in Fig. 3.8.

The UDS solution is obviously over-diffusive; it corresponds to the exact
solution for Pe ~ 18 (instead of 50). The false diffusion is stronger than the
true diffusion! On the other hand, the CDS solution exhibits severe oscilla-
tions. The oscillations are due to the sudden change of gradient in ¢ at the
last two points. The Peclet number based on mesh spacing (see Eq. (3.63))
is equal to 5 at every node.

1.0
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Fig. 3.9. Solution of the 1D convection/diffusion equation at Pe = 50 using CDS
(left) and UDS (right) for convection terms and a uniform grid with 41 nodes

If the grid is refined, the CDS oscillations are reduced, but they are still
present when 21 points are used. After the second refinement (41 grid nodes),
the solution is oscillation-free and very accurate, see Fig. 3.9. The accuracy
of the UDS solution has also been improved by grid refinement, but it is still
substantially in error for z > 0.8.

The CDS oscillations depend on the value of the local Peclet number,
Pe = puAz/I". It can be shown that no oscillations occur if the local Peclet
number is Pe < 2 at every grid node (see Patankar, 1980). This is a sufficient,
but not necessary condition for boundedness of CDS solution. The so-called
hybrid scheme (Spalding, 1972) was designed to switch from CDS to UDS at
any node at which Pe > 2. This is too restrictive and reduces the accuracy.
Oscillations appear only when the solution changes rapidly in a region of high
local Peclet number.

In order to demonstrate this, we repeat the calculation using a non-
uniform grid with 11 nodes. The smallest and the largest mesh spacings are
AZmin = v —Zn—1 = 0.0125 and Azpax = 22 — 21 = 0.31, corresponding to



68 3. Finite Difference Methods

1.0
- Exact - Exact
8 - -
L e Calculated o Calculated
6 -
- L _
4 =
2 -
N B
0. A S B T AN Y (SR OO ST Il \\x\lll]i!J]\lLJ--T'
0 2 4 8 .8 1.0 0 2 4 .6 8 1.0
X X

Fig. 3.10. Solution of the 1D convection/diffusion equation at Pe = 50 using CDS
(left) and UDS (right) for convection terms and a non-uniform grid with 11 nodes
(grid dense near right end)

an expansion factor r, = 0.7, see Eq. (3.21). The minimum Peclet number is
thus Penin = 0.625 near right boundary, and the maximum is Pejax = 15.5
near left boundary. The Peclet number is thus smailer than two in the region
where ¢ undergoes strong change and is large in the region of nearly constant
¢. The calculated profiles on this grid using the CDS and UDS schemes are
shown in Fig. 3.10. There are no oscillations in the CDS solution. Moreover,
it is as accurate as the solution on a uniform grid with four times as many
nodes. The accuracy of the UDS solution has also been improved by using a
non-uniform grid but is still unacceptable.
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00001 0 i of the 1D convection/diffusion equation
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Ax mesh spacing
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Since this problem has an analytic solution, Eq. (3.62), we can calculate
the error in the numerical solution directly. The following average error is
used as a measure:

_ Zi |¢§:xact _ ¢1.|
N

The problem was solved using both CDS and UDS and both uniform and
non-uniform grids with up to 321 nodes. The average error is plotted as a
function of average mesh spacing in Fig. 3.11. The UDS error asymptotically
approaches the slope expected of a first-order scheme. The CDS shows, from
the second grid onwards, the slope expected of a second-order scheme: the
error is reduced by two orders of magnitude when the grid spacing is reduced
one order of magnitude.

This example clearly shows that the solution on a non-uniform grid con-
verges in the same way as the solution on a uniform grid, even though the
truncation error contains a first-order term as explained in Sect. 3.3.4. For
the CDS, the average error on a non-uniform grid is almost an order of mag-
nitude smaller than on a uniform grid with the same number of grid nodes.
This is due to the fact that the mesh spacing is small where the error would
be large. That Fig. 3.11 indicates larger error for UDS on a non-uniform than
on a uniform grid is due to the fact that large errors at a few nodes on a uni-
form grid have a small effect on the average; maximum nodal error is much
larger on uniform than on non-uniform grids, as can be seen by examining
Figs. 3.8 and 3.10.

For related examples, see the last section of the next chapter.

€



4. Finite Volume Methods

4.1 Introduction

As in the previous chapter, we consider only the generic conservation equation
for a quantity ¢ and assume that the velocity field and all fluid properties are
known. The finite volume method uses the integral form of the conservation
equation as the starting point:

/p¢v-ndS=/Fgrad¢-ndS+/ gsde2 . (4.1
s 5 2

The solution domain is subdivided into a finite number of small control vol-
umes (CVs) by a grid which, in contrast to the finite difference (FD) method,
defines the control volume boundaries, not the computational nodes. For the
sake of simplicity we shall demonstrate the method using Cartesian grids;
complex geometries are treated in Chap. 8.

The usual approach is to define CVs by a suitable grid and assign the
computational node to the CV center. However, one could as well {for struc-
tured grids) define the nodal locations first and construct CVs around them,
so that CV faces lie midway between nodes; see Fig. 4.1. Nodes on which
boundary conditions are applied are shown as full symbols in this figure.

4r 0 e} 0 0 [ Me] 0 o] 0 [ ]
[ JNe} o] 0 o] ® [ Xe} 0 0 o] ®
¢o0| o o 0 ¢ ¢0 | O o o ?
[ Je} e] 0 0 ® 1} e] 0 0 o} ®

Fig. 4.1. Types of FV grids: nodes centered in CVs (left) and CV faces centered
between nodes (right)
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The advantage of the first approach is that the nodal value represents
the mean over the CV volume to higher accuracy (second order) than in the
second approach, since the node is located at the centroid of the CV. The
advantage of the second approach is that CDS approximations of derivatives
at CV faces are more accurate when the face is midway between two nodes.
The first variant is used more often and will be adopted in this book.

There are several other specialized variants of FV-type methods (cell-
vertex schemes, dual-grid schemes etc.); some of these will be described later
in this chapter and in Chap. 8. Here we shall describe just the basic method.

The discretization principles are the same for all variants — one only has
to take into account the relation between the various locations within the
integration volume.

The integral conservation equation (4.1) applies to each CV, as well as to
the solution domain as a whole. If we sum equations for all CVs, we obtain
the global conservation equation, since surface integrals over inner CV faces
cancel out. Thus global conservation is built into the method and this provides
one of its principal advantages.

To obtain an algebraic equation for a particular CV, the surface and vol-
ume integrals need be approximated using quadrature formulae. Depending
on the approximations used, the resulting equations may or may not be those
obtained from the FD method.

4.2 Approximation of Surface Integrals

In Figs. 4.2 and 4.3, typical 2D and 3D Cartesian control volumes are shown
together with the notation we shall use. The CV surface consists of four (in
2D) or six (in 3D) plane faces, denoted by lower-case letters corresponding
to their direction (e, w, n, s, t, and b) with respect to the central node (P).
The 2D case can be regarded as a special case of the 3D one in which the
dependent variables are independent of z. In this chapter we shall deal mostly
with 2D grids; the extension to 3D problems is straightforward.

The net flux through the CV boundary is the sum of integrals over the
four (in 2D) or six (in 3D) CV faces:

= S .
/Sde ij | sas, (4.2)

where f is the component of the convective (pgv -n) or diffusive (I'grad ¢-n)
flux vector in the direction normal to CV face. As the velocity field and the
fluid properties are assumed known, the only unknown is ¢. If the velocity
field is not known, we have a more complex problem involving non-linear
coupled equations; we shall deal with it in Chap. 7.

For maintenance of conservation, it is important that CVs do not overlap;
each CV face is unique to the two CVs which lie on either side of it.
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Fig. 4.3. A typical CV and the notation used for a Cartesian 3D grid

In what follows, only a typical CV face, the one labeled ‘e’ in Fig. 4.2 will
be considered; analogous expressions may be derived for all faces by making
appropriate index substitutions.

To calculate the surface integral in Eq. (4.2) exactly, one would need
to know the integrand f everywhere on the surface S.. This information is
not available, as only the nodal (CV center) values of ¢ are calculated so
an approximation must be introduced. This is best done using two levels of
approximation:

e the integral is approximated in terms of the variable values at one or more
locations on the cell face;
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o the cell-face values are approximated in terms of the nodal (CV center)
values.

The simplest approximation to the integral is the midpoint rule: the in-
tegral is approximated as a product of the integrand at the cell-face center
(which is itself an approximation to the mean value over the surface) and the
cell-face area:

F, = / fdS = f.Se ~ foSe . (4.3)
Se

This approximation of the integral — provided the value of f at location ‘e’
is known — is of second-order accuracy.

Since the value of f is not available at the cell face center ‘¢’, it has to be
obtained by interpolation. In order to preserve the second-order accuracy of
the midpoint rule approximation of the surface integral, the value of f, has
to be computed with at least second-order accuracy. We shall present some
widely used approximations in Sect. 4.4.

Another second-order approximation of the surface integral in 2D is the
trapezoid rule, which leads to:

Se
F, = /;e de ~ 7 (fne + fse) . (4'4)

In this case we need to evaluate the flux at the CV corners.

For higher-order approximation of the surface integrals, the flux must
be evaluated at more than two locations. A fourth-order approximation is
Simpson’s rule, which estimates the integral over S, as:

Se
Fe=/;‘efdszg(fne+4fe+fse)- (45)

Here the values of f are needed at three locations: the cell face center ‘e’ and
the two corners, ‘ne’ and ‘se’. In order to retain the fourth-order accuracy
these values have to be obtained by interpolation of the nodal values at
least as accurate as Simpson'’s rule. Cubic polynomials are suitable, as shown
below.

In 3D, the midpoint rule is again the simplest second-order approximation.
Higher-order approximations, which require the integrand at locations other
than cell face center (e.g. corners and centers of edges) are possible, but they
are more difficult to implement. One possibility is mentioned in the following
section.

If the variation of f is assumed to have some particular simple shape (e.g.
an interpolation polynomial), the integration is easy. The accuracy of the
approximation then depends on the order of shape functions.



4.3 Approximation of Volume Integrals 75

4.3 Approximation of Volume Integrals

Some terms in the transport equations require integration over the volume
of a CV. The simplest second-order accurate approximation is to replace the
volume integral by the product of the mean value of the integrand and the
CV volume and approximate the former as the value at the CV center:

Qp:/qdﬂzﬁAqupA.Q, (4.6)
2

where gp stands for the value of ¢ at the CV center. This quantity is easily
calculated; since all variables are available at node P, no interpolation is
necessary. The above approximation becomes exact if ¢ is either constant or
varies linearly within the CV; otherwise, it contains a second-order error, as
is easily shown.

An approximation of higher order requires the values of ¢ at more loca-
tions than just the center. These values have to be obtained by interpolating
nodal values or, equivalently, by using shape functions.

In 2D the volume integral becomes an area integral. A fourth-order ap-
proximation can be obtained by using the bi-quadratic shape function:

g(z,y) =ag+ a1z +ary + azz® + ag y*+

as xy + ag oy + ar ry? + ag x?y? . (4.7)

The nine coefficients are obtained by fitting the function to the values of ¢
at nine locations (‘nw’, ‘w’, ‘sw’, ‘n’, P, ‘s’, ‘ne’, ‘e’ and ‘se’, see Fig. 4.2).
The integral can then be evaluated. In 2D the integration gives {for Cartesian

grids):

Qp = / qd ~ Az Ay [ao + B Ay
o 12

2 (Ay)?+ o (A0 (Ap)?]

Only four coefficients need to be determined, but they depend on the values
of ¢ at all nine locations listed above. On a uniform Cartesian grid we obtain:

Az Ay
Qp = —¢

(4.8)

(16qp +4¢gs +4qn +4qw +4ge+ (4.9)
Gse + Gsw T+ Qne +an) .

Since only the value at P is available, interpolation has to be used to
obtain ¢ at the other locations. It has to be at least fourth-order accurate to
retain the accuracy of the integral approximation. Some possibilities will be
described in the next section.

The above fourth-order approximation of the volume integral in 2D can be
used to approximate the surface integrals in 3D. Higher-order approximations
of volume integrals in 3D are more complex, but can be found using the same
techniques.
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4.4 Interpolation and Differentiation Practices

The approximations to the integrals require the values of variables at loca-
tions other than computational nodes (CV centers). The integrand, denoted
in the previous sections by f, involves the product of several variables and/or
variable gradients at those locations: f¢ = p¢w - n for the convective flux and
f4 = I'grad¢ - n for the diffusive flux. We assume that the velocity field
and the fluid properties p and I' are known at all locations. To calculate
the convective and diffusive fluxes, the value of ¢ and its gradient normal to
the cell face at one or more locations on the CV surface are needed. Volume
integrals of the source terms may also require these values. They have to be
expressed in terms of the nodal values by interpolation. Numerous possibili-
ties are available; we shall mention a few that are most commonly used. In
particular we shall show how the value of ¢ and its normal derivative at cell
face ‘e’ can be approximated.

4.4.1 Upwind Interpolation (UDS)

Approximating ¢ by its value at the node upstream of ‘e’ is equivalent to
using a backward- or forward-difference approximation for the first deriva-
tive (depending on the flow direction), hence the name upwind differencing
scheme (UDS) for this approximation. In UDS, ¢, is approximated as:

¢e:{¢Pif(v'n)e>0§

¢ if (v-n)e <0. (4.10)

This is the only approximation that unconditionally satisfies the boundedness
criterion i.e. it will never yield oscillatory solutions. However, it achieves this
by being numerically diffusive. This was shown in the preceding chapter and
will be shown again below.

Taylor series expansion about P gives (for Cartesian grid and (v - n). > 0):

_ 2 2
e = ¢p + (Te — zP) (g-ﬁ) + @‘*2—”) (37(5) + H, (4.11)
P P

where H denotes higher-order terms. The UDS approximation retains only

the first term on the right-hand side, so it is a first-order scheme. Its leading
truncation error term is diffusive i.e. it resembles a diffusive flux:

fd="re (g—ﬁ>e : (4.12)

The coefficient of numerical, artificial, or false diffusion (it goes by various
uncomplimentary names!) is I'™™ = (pu). Az /2. This numerical diffusion is
magnified in multidimensional problems if the flow is oblique to the grid; the
truncation error then produces diffusion in the direction normal to the flow
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as well as in the streamwise direction, a particularly serious type of error.
Peaks or rapid variations in the variables will be smeared out and, since the
rate of error reduction is only first order, very fine grids are required to obtain
accurate solutions.

4.4.2 Linear Interpolation (CDS)

Another straightforward approximation for the value at CV-face center is lin-
ear interpolation between the two nearest nodes. At location ‘e’ on a Cartesian
grid we have (see Figs. 4.2 and 4.3):

$e = PEAe + PP(L = Xe) , (4.13)
where the linear interpolation factor ). is defined as:

Te—
A = TeZ TP (4.14)
ITE — TP
Equation (4.13) is second-order accurate as can be shown by using the Taylor
series expansion of ¢ about the point zp to eliminate the first derivative in
Eq. (4.11). The result is:

¢e = ¢E/\e + ¢P(1 - /\e) -

(e — zp)(TE — Te) (82¢
Ox?

> ———)P+H. (4.15)

The leading truncation error term is proportional to the square of the grid
spacing, on uniform or non-uniform grids.

As with all approximations of order higher than one, this scheme may pro-
duce oscillatory solutions. This is the simplest second-order scheme and is the
one most widely used. It corresponds to the central-difference approximation
of the first derivative in FD methods; hence the acronym CDS.

The assumption of a linear profile between the P and E nodes also offers
the simplest approximation of the gradient, which is needed for the evaluation
of diffusive fluxes:

(?ﬁ) LB (4.16)

O IE — Ip

By using Taylor series expansion around ¢, one can show that truncation
error of the above approximation is:

(Te = -'L'P)2 — (zg — -'L'e)2 62¢

€& =

2 (zg — zp) ox? o B
(ze — -”L‘P)g: + (-”LI‘DE —x.)® (33¢> VH (4.17)
6(.’L‘E —-.’L‘p) @ e .

When the location ‘e’ is midway between P and E (for example on a uniform
grid), the approximation is of second-order accuracy, since the first term on
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the right-hand side vanishes and the leading error term is then proportional to
(Az)?. When the grid is non-uniform, the leading error term is proportional
to the product of Az and the grid expansion factor minus unity. In spite of
the formal first-order accuracy, the error reduction when the grid is refined is
similar to that of a second-order approximation even on non-uniform grids.
See Sect. 3.3.4 for a detailed explanation of this behavior.

4.4.3 Quadratic Upwind Interpolation (QUICK)

The next logical improvement is to approximate the variable profile between
P and E by a parabola rather than a straight line. To construct a parabola we
need to use data at one more point; in accord with the nature of convection,
the third point is taken on the upstream side, i.e. W if the flow is from P to
E (i.e. u; > 0) or EE if u, < 0, see Fig. 4.2. We thus obtain:

$e = du + 91(¢p — du) + g2(du — duv) , (4.18)

where D, U, and UU denote the downstream, the first upstream, and the
second upstream node, respectively (E, P, and W or P, E, and EE, depending
on the flow direction). The coefficients g; and g, can be expressed in terms
of the nodal coordinates by:

o= (ze — 2u)(2e — zyU) | o= (ze — 2u)(zD — Ze)
' T @p-2v)@p—2vu) T (U —ouu)(en - suu)

For uniform grids, the coefficients of the three nodal values involved in the
interpolation turn out to be: % for the downstream point, -g— for the first up-
stream node and ——é— for the second upstream node. This scheme is somewhat
more complex than the CDS scheme: it extends the computational molecule
one more node in each direction (in 2D, the nodes EE, WW, NN and SS
are included), and, on non-orthogonal and/or non-uniform grids, the expres-
sions for the coefficients g; are not simple. Leonard (1979) made this scheme
popular and gave it the name QUICK (Quadratic Upwind Interpolation for
Convective Kinematics).

This quadratic interpolation scheme has a third-order truncation error on
both uniform and non-uniform grids. This can be shown by eliminating the
second derivative from Eq. (4.15) using ¢w, which, on a uniform Cartesian
grid with u, > 0, leads to:

L

3(Az)® (D3¢
— H. 4.19

48 0z3 ) + ( )
The first three terms on the right-hand side represent the QUICK approx-
imation, while the last term is the principal truncation error. When this
interpolation scheme is used in conjunction with the midpoint-rule approxi-
mation of the surface integral, the overall approximation is, however, still of
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second-order accuracy (the accuracy of the quadrature approximation). Al-
though the QUICK approximation is slightly more accurate than CDS, both
schemes converge asymptotically in a second-order manner and the differ-
ences are rarely large.

4.4.4 Higher-Order Schemes

Interpolation of order higher than third makes sense only if the integrals
are approximated using higher-order formulae. If one uses Simpson’s rule in
2D for surface integrals, one has to interpolate with polynomials of at least
degree three, which leads to interpolation errors of fourth order. For example,
by fitting a polynomial

¢(z) =ao+a; T +ayz’ +az2’ (4.20)

through the values of ¢ at four nodes (two on either side of ‘¢’: W, P, E and
EE), one can determine the four coefficients a; and find ¢, as a function of
the nodal values. For a uniform Cartesian grid, the following expression is
obtained:

_ 27¢p +27¢r — 3pw — 3 ¢EE
= 5 :

ge (4.21)

The same polynomial can be used to determine the derivative; we need only
to differentiate it once to obtain:

(6_¢> =ay+2a7 +3a3r?, (4.22)
oz /,

which, on a uniform Cartesian grid, produces:

(@) _ 27¢r —27¢p + ¢w — ¢EE '

Oz 24 Az (4.23)

The above approximation is sometimes called fourth-order CDS. Of course,
both polynomials of higher degree and/or multi-dimensional polynomials can
be used. Cubic splines, which ensure continuity of the interpolation function
and its first two derivatives across the solution domain, can also be used (at
some increase in cost).

Once the values of the variable and its derivative are obtained at the cell-
face centers, one can interpolate on the cell faces to obtain values at the CV
corners. This is not difficult to use with explicit methods but the fourth-order
scheme based on Simpson’s rule and polynomial interpolation produces too
large a computational molecule for implicit treatment. One can avoid this
complexity by using the deferred-correction approach described in Sect. 5.6.

Another approach is to use the techniques employed to derive the compact
(Padé) schemes in FD methods. For example, one can obtain the coefficients
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of the polynomial (4.20) by fitting it to the variable values and first derivatives
at the two nodes on either side of the cell face. For a uniform Cartesian grid,
the following expression for ¢, results:

_getdu Az [0\ (99
b=t [<a> <6>J (4.24)

The first term on the right-hand side of the above equation represents second-
order approximation by linear interpolation; the second term represents an
approximation of the second derivative which occurs in the leading truncation
error term for linear interpolation, see Eq. (4.15).

The problem is that the derivatives at nodes P and E are not known and
must themselves be approximated. However, even if we approximate the first
derivatives by a second-order CDS, i.e.:

(3_45) _ ¢E— ¢w | 3_¢> _ ¢EE — ¢p
or ), 24z or )y 24z

the resulting approximation of the cell-face value retains the fourth-order
accuracy of the polynomial:

_¢p -;—qu + ¢p + dg —1ébw — ¢EE +O(Az)* . (4.25)

e

If we use as data the variable values on either side of the cell face and
the derivative on the upstream side, we can fit a parabola. This leads to an
approximation equivalent to the QUICK scheme described above:

3 1 Az (0¢
e = — - —{ = . 4.26
¢ 4¢U+4¢D+ 1 <6x>U (4.26)

The same approach can be used to obtain an approximation of the deriva-
tive at the cell-face center; from the derivative of the polynomial (4.20) we
obtain:

0\ _ds—¢p ¢p—¢p 17/0¢ ¢
(3—1:_>e_ Az T 24q 4{(31:)},—'—(61:)13]' (427)

Obviously, the first term on the right-hand side is the second-order CDS
approximation. The remaining terms represent a correction which increases
the accuracy.

The problem with approximations (4.24), (4.26) and (4.27) is that they
contain first derivatives at CV centers, which are not known. Although we
can replace these by second-order approximations expressed in terms of the
nodal variable values without destroying their order of accuracy, the resulting
computational molecules will be much larger than we would like them to
be. For example, in 2D, using Simpson’s rule and fourth-order polynomial
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interpolation, we find that each flux depends on 15 nodal values and the
algebraic equation for one CV involves 25 values. The solution of the resulting
equation system would be very expensive (see Chap. 5).

A way around this problem lies in the deferred-correction approach, that
will be described in Sect. 5.6.

One should bear in mind that a higher-order approximation does not nec-
essarily guarantee a more accurate solution on any single grid; high accuracy
is achieved only when the grid is fine enough to capture all of the essential
details of the solution; at what grid size this happens can be determined only
by systematic grid refinement.

4.4.5 Other Schemes

A large number of approximations to the convective fluxes have been pro-
posed; it is beyond the scope of this book to discuss all of them. The approach
used above can be used to derive nearly all of them. We shall describe a few
of them briefly.

One can approximate ¢, by linear extrapolation from two upstream nodes,
leading to the so called linear upwind scheme (LUDS). This scheme is of
second order accuracy but, as it is more complex than CDS and can produce
unbounded solutions, the latter is a better choice.

Another approach, proposed by Raithby (1976}, is to extrapolate from
the upwind side, but along a streamline rather than a grid line (skew upwind
schemes). First- and second-order schemes corresponding to the upwind and
linear upwind schemes have been proposed. They have better accuracy than
schemes based on extrapolation along grid lines. However, these schemes are
very complex (there are many possible directions of flow) and a lot of inter-
polation is required. Since these schemes may produce oscillatory solutions
when the grid is not sufficiently fine and are difficult to program, they have
not, found widespread use.

It is also possible to blend two or more different approximations. One
example that saw a great deal of use in the 1970s and early 1980s is the
hybrid scheme of Spalding (1972), which switches between UDS and CDS,
depending on the local value of the Peclet number. Other researchers have
proposed blending of lower and higher-order schemes to avoid unphysical
oscillations, especially for compressible flows with shocks. Some of these ideas
will be mentioned in Chap. 10. Blending may be used to improve the rate of
convergence of some iterative solvers, as we shall show below.

4.5 Implementation of Boundary Conditions

Each CV provides one algebraic equation. Volume integrals are calculated
in the same way for every CV, but fluxes through CV faces coinciding with
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the domain boundary require special treatment. These boundary fluxes must
either be known, or be expressed as a combination of interior values and
boundary data. Since they do not give additional equations, they should
not introduce additional unknowns. Since there are no nodes outside the
boundary, these approximations must be based on one-sided differences or
extrapolations.

Usually, convective fluxes are prescribed at the inflow boundary. Convec-
tive fluxes are zero at impermeable walls and symmetry planes, and are
usually assumed to be independent of the coordinate normal to an outflow
boundary; in this case, upwind approximations can be used. Diffusive fluxes
are sometimes specified at a wall e.g. specified heat flux (including the spe-
cial case of an adiabatic surface with zero heat flux) or boundary values of
variables are prescribed. In such a case the diffusive fluxes are evaluated us-
ing one-sided approximations for normal gradients as outlined in Sect. 3.7.
If the gradient itself is specified, it is used to calculate the flux, and an ap-
proximation for the flux in terms of nodal values can be used to calculate
the boundary value of the variable. This will be demonstrated in an example
below.

4.6 The Algebraic Equation System

By summing all the flux approximations and source terms, we produce an
algebraic equation which relates the variable value at the center of the CV
to the values at several neighbor CVs. The numbers of equations and un-
knowns are both equal to the number of CVs so the system is well-posed.
The algebraic equation for a particular CV has the form (3.42), and the sys-
tem of equations for the whole solution domain has the matrix form given
by Eq. (3.43). When the ordering scheme of Sect. 3.8 is used, the matrix A
has the form shown in Fig. 3.5. This is true only for structured grids with
quadrilateral or hexahedral CVs; for other geometries, the matrix structure
will be more complex (see Chap. 8 for details) but it will always be sparse.
The maximum number of elements in any row is equal to the number of near
neighbors for second order approximations. For higher-order approximations,
it depends on the number of neighbors used in the scheme.

4.7 Examples

In order to demonstrate the FV method and to display some of the properties
of the discretization methods presented above, we shall present two examples.

First consider the problem, illustrated in Fig. 4.4, of transport of a scalar
quantity in a known velocity fleld. The latter is given by u, = z and uy, = —y,
which represents the flow near a stagnation point. The streamlines are the
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lines zy =const. and change direction with respect to the Cartesian grid. On
the other hand, on any cell face the normal velocity component is constant
so the error in the approximation of the convective flux depends only on the
approximation used for ¢.. This aids in the analysis of the accuracy.

The scalar transport equation to be solved reads:

/p¢v-ndS=/Fgrad¢-ndS, (4.28)
s s

and the following boundary conditions are to be applied:

o ¢ = 0 along the north (inlet) boundary;

e Linear variation of ¢ from ¢ =0 at y = 1to ¢ =1 at y = 0 along the west
boundary;

e Symmetry condition (zero gradient normal to boundary) on the south
boundary;

o Zero gradient in the flow direction at outlet (east) boundary.

The geometry and the flow field are sketched in Fig. 4.4. We shall give the
details of discretization for the ‘e’ face.

; ,Outlet,
/ 50 =0
Ox

Streamlines

Fig. 4.4. Geometry and

----- — — boundary conditions for the
Symmetry, 80 _ 0 scalar transport in a stagna-
8y tion point flow

The convective flux will be evaluated using the midpoint rule and either
UDS or CDS interpolation. Since the normal velocity is constant along cell
faces, we express the convective flux as a product of the mass flux and the
mean value of ¢:

FC = / pév -1 dS & Thede | (4.29)

Se

where 1h, is the mass flux through the ‘e’ face:
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e = / pv - ndS = (pug)e Ay . (4.30)
S

Expression (4.30) is ezact on any grid, since the velocity u, ¢ is constant along
the face. The flux approximation is then:

max(rhe,0.) ¢p + min(rhe,0.) ¢g for UDS ;

Fe= {meu —Xe) 6P + THee BB for CDS . (4.31)

The linear interpolation coefficient A is defined by Eq. (4.14). Analogous
expressions for the fluxes through the other CV faces produce the following
coefficients in the algebraic equation for the case of UDS:

Af, = min(rhe, 0.) ; Afy = min(rhy,0.) ,
A§ = min(rig, 0.) ; § = min(rm, 0.), (4.32)
A} = —(Af + Ay + AR + A49) .

For the CDS case, the coefficients are:

AL = mhele ; W = MwAw ,

Ay = ThnAn Ag =g, (4.33)

A = — (4§ + Ay + AR + A9) .
The expression for Ag follows from the continuity condition:

e + My + 1y + 1705 =0
which is satisfied by the velocity field. Note that rm,, and A, for the CV cen-
tered around node P are equal to —r, and 1— A, for the CV centered around
node W, respectively. In a computer code the mass fluxes and interpolation
factors are therefore calculated once and stored as i, T, and Ae, A, for
each CV.

The diffusive flux integral is evaluated using the midpoint rule and CDS

approximation of the normal derivative; this is the simplest and most widely
used approximation:

I' Ay
ZE — Tp

Fd = I'grad¢ -ndS = (Fa—d)) Ay =
Se Oz e

(e — ¢p) . (4.34)

Note that g = 3(z;41+2;) and zp = §(z;+2;_1), see Fig. 4.2. The diffusion
coefficient I' is assumed constant; if not, it could be interpolated linearly
between the nodal values at P and E. The contribution of the diffusion term
to the coefficients of the algebraic equation are:

I' Ay ra
A% = — Ay = - L ’
ITE — Tp Ip — IwW
I' Az I' Az 4.35
A = - . Ad=- : (4.35)
YN —Yp Yp —Ys

Ad = — (A8 + Ag, + A¢ + 49) .
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With same approximations applied to other CV faces, the integral equa-
tion becomes:

Awow + Asgs + Apgp + Angn + Argr = Qp (4.36)

which represents the equation for a generic node P. The coefficients A; are

obtained by summing the convective and diffusive contributions, see Egs.
(4.32), (4.33) and (4.35):

A = A + AY (4.37)

where [ represents any of the indices P, E, W, N, S. That Ap is equal to
the negative sum of all neighbor coefficients is a feature of all conservative
schemes and ensures that a uniform field is a solution of the discretized
equations.

The above expressions are valid at all internal CVs. For CVs next to
boundary, the boundary conditions require that the equations be modified
somewhat. At the north and west boundaries, where ¢ is prescribed, the
gradient in the normal direction is approximated using one-sided differences,
e.g. at the west boundary:

(6¢> ~ PP OW (4.38)

Oz Tp — Tw

where W denotes the boundary node whose location coincides with the cell-
face center ‘w’. This approximation is of first-order accuracy, but it is applied
on a half-width CV. The product of the coefficient and the boundary value is
added to the source term. For example, along the west boundary (CVs with
index i = 2), Awo¢w is added to Qp and the coeflicient Aw is set to zero.
The same applies to the coefficient Ax at the north boundary.

At the south boundary, the normal gradient of ¢ is zero which, when the
above approximation is applied, means that the boundary values are equal
to the values at CV centers. Thus, for cells with index j = 2, ¢g = ¢p and
the algebraic equation for those CVs is modified to:

(Ap + Ag) ¢p + Andn + Awodw + Ar¢r = Qp , (4.39)

which requires adding Ag to Ap and then setting Ag = 0. The zero-gradient
condition at the outlet (east) boundary is implemented in a similar way.

We now turn to the results. The isolines of ¢ calculated on a 40 x 40
CV uniform grid using CDS for the convective fluxes with two values of I':
0.001 and 0.01 (p = 1.0) are presented in Fig. 4.5. We see that transport by
diffusion across the flow is much stronger for higher I', as expected.

In order to assess the accuracy of the prediction, we monitor the total lux
of ¢ through the west boundary, at which ¢ is prescribed. This quantity is
obtained by summing diffusive fluxes over all CV faces along this boundary,
which are approximated by Eqs. (4.34) and (4.38). Figure 4.6 shows the vari-
ation of the flux as the grid is refined for the UDS and CDS discretizations of
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a
a

Fig. 4.5. Isolines of ¢, from 0.05 to 0.95 with step 0.1 (top to bottom), for I' = 0.01
(left) and I" = 0.001 (right)

the convective fluxes; the diffusive fluxes are always discretized using CDS.
The grid was refined from 10 x 10 CV to 320 x 320 CV. On the coarsest
grid, the CDS does not produce a meaningful solution for I' = 0.001; con-
vection dominates and, on such a coarse grid, the rapid change in ¢ over
short distance near the west boundary (see Fig. 4.5) results in oscillations so
strong that most iterative solvers fail to converge (the local cell Peclet num-
bers, Pe = pu, Az /I, range between 10 and 100 on this grid). (A converged
solution could probably be obtained with the aid of deferred correction but
it would be very inaccurate.) As the grid is refined, the CDS result converges
monotonically towards a grid-independent solution. On the 40 x 40 CV grid
the local Peclet numbers range from 2.5 to 25, but there are no oscillations
in the solution, as can be seen in Fig. 4.5.

The UDS solution does not oscillate on any grid, as expected. The conver-
gence is, however, not monotonic: the flux on the two coarsest grids lies below
the converged value; it is too high on the next grid and then approaches the
correct result monotonically. By assuming second-order convergence of the
CDS scheme, we estimated the grid-independent solution via Richardson ex-
trapolation (see Sect. 3.9 for details) and were able to determine the error in
each solution. The errors are plotted vs. normalized grid size (Az = 1 for the
coarsest grid) in Fig. 4.6 for both UDS and CDS. The expected slopes for
first- and second-order schemes are also shown. The CDS error curve has the
slope expected of a second-order scheme. The UDS error shows irregular be-
havior on the first three grids. From the fourth grid onwards the error curve
approaches the expected slope. The solution on the grid with 320 x 320 CV
is still in error by over 1%; CDS produces a more accurate result on the 80
x 80 grid!

Another popular test case is the convection of a step profile in a uniform
flow oblique to grid lines, see Fig. 4.7. It can be solved using the method de-
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Fig. 4.6. Convergence of total flux of ¢ through the west wall (left) and the error
in computed flux as a function of grid spacing, for I' = 0.001

scribed above by adjusting the boundary conditions (prescribed values of ¢ at
west and south boundaries, outflow conditions at north and east boundaries).
We show below the results obtained using the UDS and CDS discretizations.

Since diffusion is not present in this case, the equation to be solved is (in
differential form):

0¢ 0¢

Us g+ uya—y =0. (4.40)

For this case, the UDS on a uniform grid in both directions gives the very
simple equation:

op — dw op — s
U = Uy =0, (4.41)

which is readily solved in a sequential manner without iteration. On the other
hand, CDS gives a zero value for the coefficient on the main diagonal, Ap,
making solution difficult. Most iterative solvers would fail to converge for
this problem; however, by using the deferred correction approach described
above, it is possible to obtain the solution.

If the flow is parallel to z-coordinate, both schemes give the correct result:
the profile is simply convected downstream. When the flow is oblique to grid
lines, UDS produces a smeared step profile at any downstream cross-section,
while CDS produces oscillations. In Fig. 4.8 we show the profile of ¢ at
z = 0.45 for the the case when the flow is at 45° to the grid (u; = uy),
obtained on a uniform 10 x 10 CV grid. The same figure shows the profile
at z = 0.475 for the same case obtained on a uniform 20 x 20 CV grid.
The effect of numerical diffusion is clearly seen in the UDS solution; little
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improvement is found in the solution on the refined grid. On the other hand,
CDS produces a profile with the proper steepness, but it oscillates. Local grid
refinement would help localize and, perhaps even remove, the oscillations as
will be discussed in Chap. 11. The oscillations could also be removed by
locally introducing numerical diffusion (e.g. by blending CDS with UDS).
This is sometimes done in compressible flows near shocks.

0. >\\\I&Ill\=|\|1ll|l[l|lJtll N S S0 Y WO O Y T T 0 SR S
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Fig. 4.8. Profile of ¢ at z = 0.45, calculated on a 10 x 10 CV grid (left), and at
z = 0.475, calculated on a 20 x 20 CV grid (right)

One can show that the UDS method embodied in Eq. (4.41) is more nearly
solving the convection-diffusion problem:
9¢ 9¢ 8¢ 8%¢

e b, 2 = Az S b, Ay 22 4.42
u8z+uy8y u I8z2+uy y8y2 ( )
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than the original Eq. (4.40). Equation (4.42) is called the modified equation
for this problem. By transforming this equation into coordinates parallel and
perpendicular to the flow, one can show that the effective diffusivity in the
normal direction is:

I'g = U sinf cosB(Az cosf + Ay sinb) , (4.43)

where U is the magnitude of the velocity and 6 is the angle of the flow with
respect to the z-direction. A similar and widely quoted result was derived by
de Vahl Davis and Mallinson (1972).

To sum up our findings, we have shown:

e High-order schemes oscillate on coarse grids but converge to an accurate
solution more rapidly than low order schemes as the grid is refined.

e First-order UDS is inaccurate and should not be used. This scheme is
mentioned because it is still used in some commercial codes. Users should
be aware that high accuracy cannot be obtained on affordable grids with
this method, especially in 3D. It introduces a large diffusive error in both
the streamwise and normal directions.

e CDS is the simplest scheme of second-order accuracy and offers a good
compromise among accuracy, simplicity and efficiency.



5. Solution of Linear Equation Systems

5.1 Introduction

In the previous two chapters we showed how the convection-diffusion equation
may be discretized using FD and FV methods. In either case, the result of
the discretization process is a system of algebraic equations, which are linear
or non-linear according to the nature of the partial differential equation(s)
from which they are derived. In the non-linear case, the discretized equations
must be solved by an iterative technique that involves guessing a solution,
linearizing the equations about that solution, and improving the solution;
the process is repeated until a converged result is obtained. So, whether the
equations are linear or not, efficient methods for solving linear systems of
algebraic equations are needed.

The matrices derived from partial differential equations are always sparse,
i.e. most of their elements are zero. Some methods for solving the equations
that arise when structured grids are used will be described below; all of the
non-zero elements of the matrices then lie on a small number of well-defined
diagonals; we may take advantage of this structure. Some of the methods are
applicable to matrices arising from unstructured grids as well.

The structure of the coefficient matrix for a 2D problem discretized with
a five point approximation (upwind or central difference) is shown in Fig. 3.5.
The algebraic equation for one CV or grid node is given by Eq. (3.42), and
the matrix version of the complete problem is given by Eq. (3.43), see Sect.
3.8, which is repeated here:

A6 =Q. (5.1)

In addition to describing some of the better solution methods for linear
algebraic systems representing discretized partial differential equations, we
shall discuss the solution of non-linear systems of equations in this chapter.
However, we begin with linear equations. It is assumed that the reader has
had some contact with methods for solving linear systems so the descriptions
are brief.
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5.2 Direct Methods

The matrix A is assumed to be very sparse. In fact, the most complicated
matrix we shall encounter is a banded matrix of block type; this greatly
simplifies the task of solution but we shall briefly review methods for general
matrices as methods for sparse matrices are closely related to them. For the
description of methods designed to deal with full matrices, use of full-matrix
notation (as opposed to the diagonal notation introduced earlier) is more
sensible and will be adopted.

5.2.1 Gauss Elimination

The basic method for solving linear systems of algebraic equations is Gauss
elimination. Its basis is the systematic reduction of large systems of equations
to smaller ones. In this procedure, the elements of the matrix are modified
but, as the dependent variable names do not change, it is convenient to
describe the method in terms of the matrix alone:

Ay A Az .. Arg
3 Aoy Agy Aas ... Asn

(5.2)

Anl An2 AnS e Ann

The heart of the algorithm is the technique for eliminating As; i.e., replacing
it with a zero. This is accomplished by multiplying the first equation (first
row of the matrix) by Aa;/A;; and subtracting it from the second row or
equation; in the process, all of the elements in the second row of the matrix
are modified as is the second element of the forcing vector on the right hand
side of the equation. The other elements of the first column of the matrix,
Asy, Ag1, ..., Ay are treated similarly; for example, to eliminate A;;, the
first row of the matrix is multiplied by A;;/A;; and subtracted from the ith
row. By systematically proceeding down the first column of the matrix, all of
the elements below A;; are eliminated. When this process is complete, none
of the equations 2,3,...,n contain the variable ¢,; they are a set of n — 1
equations for the variables ¢2, ¢3, ..., ¢,. The same procedure is then applied
to this smaller set of equations — all of the elements below Az in the second
column are eliminated.

This procedure is carried out for columns 1,2, 3,...,n— 1. After this pro-
cess is complete, the original matrix has been replaced by an upper triangular
one:

A1 Az Ars ... Alg
0 Ags Asz ... Aoy
e . (5.3)

0 0 0 ...4,.,
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All of the elements except those in the first row differ from those in the original
matrix A. As the elements of the original matrix will never be needed again,
it is eflicient to store the modified elements in place of the original ones.
(In the rare case requiring that the original matrix be saved, a copy can be
created prior to starting the elimination procedure.)

This portion of the algorithm just described is called forward elimination.
The elements on the right hand side of the equation, Q;, are also modified in
this procedure.

The upper triangular system of equations resulting from forward elimina-
tion is easily solved. The last equation contains only one variable, ¢, and is
readily solved:

_ Qy
ATLTL
The next to last equation contains only ¢,_; and ¢, and, once ¢, is known,

it can be solved for ¢,_;. Proceeding upward in this manner, each equation
is solved in turn; the ¢th equation yields ¢;:

bn

(5.4)

Q; — Z Aixdr
k—it1
Ay

The right hand side is calculable because all of the ¢; appearing in the
sum have already been evaluated. In this way, all of the variables may be
computed. The part of the Gauss elimination algorithm which starts with
the triangular matrix and computes the unknowns is called back substitution.

¢ = (5.5)

It is not difficult to show that, for large n, the number of operations
required to solve a linear system of n equations by Gauss elimination is pro-
portional to n®/3. The bulk of this effort is in the forward elimination phase;
the back substitution requires only n?/2 arithmetic operations and is much
less costly than the forward elimination. Gauss elimination is thus expensive
but, for full matrices, it is as good as any method available. The high cost
of Gauss elimination provides incentive to search for more efficient special
solvers for matrices such as the sparse ones arising from the discretization of
differential equations.

For large systems that are not sparse, Gauss elimination is susceptible
to accumulation of errors (see Golub and van Loan, 1990) which makes it
unreliable if not modified. The addition of pivoting or interchange of rows
in order to make the pivot elements (the diagonal elements that appear in
the denominators) as large as possible, keeps the error growth in check. For-
tunately, for sparse matrices, error accumulation is rarely a problem so this
issue is not important here.

Gauss elimination does not vectorize or parallelize well and is rarely used
without modification in CFD problems.
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5.2.2 LU Decomposition

A number of variations on Gauss elimination have been proposed. Most are
of little interest here. One variant of value to CFD is LU decomposition. It
is presented without derivation.

We have seen that, in Gauss elimination, forward elimination reduces a
full matrix to an upper triangular one. This process can be carried out in a
more formal manner by multiplying the original matrix A by a lower trian-
gular matrix. By itself, this is of little interest but, as the inverse of a lower
triangular matrix is also lower triangular, this result shows that any matrix
A, subject to some limitations that can be ignored here, can be factored into
the product of lower (L) and upper (U) triangular matrices:

A=1LU. (5.6)

To make the factorization unique, we require that the diagonal elements of
L, L;;, all be unity; alternatively, one could require the diagonal elements of
U to be unity.

What makes this factorization useful is that it is easily constructed. The
upper triangular matrix U is precisely the one produced by the forward phase
of Gauss elimination. Furthermore, the elements of L are the multiplicative
factors (e.g. Aji/Ai) used in the elimination process. This allows the fac-
torization to be constructed by a minor modification of Gauss elimination.
Furthermore, the elements of L and U can be stored where the elements of
A were.

The existence of this factorization allows the solution of the system of
equations (5.1) in two stages. With the definition:

Up=Y, (5.7)
the system of equations (5.1) becomes:
LY =Q. (5.8)

The latter set of equations can be solved by a variation of the method used
in the backward substitution phase of Gauss elimination in which one starts
from the top rather than the bottom of the system. Once Eq. (5.8) has been
solved for Y, Eq. (5.7), which is identical to the triangular system solved in
the back substitution phase of Gauss elimination, can be solved for ¢.

The advantage of LU factorization over Gauss elimination is that the
factorization can be performed without knowing the vector Q. As a result,
if many systems involving the same matrix are to be solved, considerable
savings can be obtained by performing the factorization first; the systems
can then be solved as required. As we shall see below, variations on LU
factorization are the basis of some of the better iterative methods of solving
systems of linear equations; this is the principal reason for introducing it
here.
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5.2.3 Tridiagonal Systems

When ordinary differential equations (1D problems) are finite differenced, for
example, with the CDS approximation, the resulting algebraic equations have
an especially simple structure. Each equation contains only the variables at
its own node and its immediate left and right neighbors:

Whi-1 + Apdi + Apdiv1 = Q- (5.9)
The corresponding matrix A has non-zero terms only on its main diagonal
(represented by Ap) and the diagonals immediately above and below it (rep-
resented by Ag and Aw, respectively). Such a matrix is called tridiagonal;
systems containing tridiagonal matrices are especially easy to solve. The ma-
trix elements are best stored as three n x 1 arrays.

Gauss elimination is especially easy for tridiagonal systems: only one el-
ement needs to be eliminated from each row during the forward elimination
process. When the algorithm has reached the ith row, only A% needs to be
modified; the new value is:

Ay Ag!

A%’ = Ai:’ - A%;l )

(5.10)

where this equation is to be understood in the programmer’s sense that the
result is stored in place of the original Ap. The forcing term is also modified:

i *
* Wwi-1
=, — ——=2L 5.11
@i =Qi- 5 (5.11)
The back substitution part of the method is also simple. The ith variable is
computed from:

Qf — Aiia¢i+1

This tridiagonal solution method is sometimes called the Thomas Algo-
rithm or the Tridiagonal Matrix Algorithm (TDMA). It is easily programmed
(a FORTRAN code requires only eight executable lines) and, more impor-
tantly, the number of operations is proportional to n, the number of un-
knowns, rather than the n® of full matrix Gauss elimination. In other words,
the cost per unknown is independent of the number of unknowns, which is
almost as good a scaling as one could desire. The low cost suggests that
this algorithm be employed whenever possible. Many solution methods take
advantage of the low cost of this method by reducing the problem to one
involving tridiagonal matrices.
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5.2.4 Cyclic Reduction

There are cases even more special that allow still greater cost reduction than
that offered by TDMA. An interesting example is provided by systems in
which the matrix is not only tridiagonal but all of the elements on each
diagonal are identical. The cyclic reduction method can be used to solve
such systems with a cost per variable that actually decreases as the system
becomes larger. Let us see how that is possible.

Suppose that, in the system (5.9), the coefficients A%, AL and A% are
independent of the index ¢; we may then drop the index. Then, for even
values of ¢, we multiply row ¢ — 1 by Aw/Ap and subtract it from row i.
Then we multiply row ¢ + 1 by Ag/Ap and subtract it from row ¢. This
eliminates the elements to the immediate left and right of the main diagonal
in the even numbered rows but replaces the zero element two columns to the
left of the main diagonal by — A%, /Ap and the zero element two columns to
the right of the main diagonal by —AZ%/Ap; the diagonal element becomes
Ap — 2Aw Ar/Ap. Because the elements in every even row are the same, the
calculation of the new elements needs to be done only once; this is where the
savings come from.

At the completion of these operations the even numbered equations con-
tain only even indexed variables and constitute a set of n/2 equations for
these variables; considered as a separate system, these equations are tridi-
agonal and the elements on each diagonal of the reduced matrix are again
equal. In other words, the reduced set of equations has the same form as the
original one but is half the size. It can be further reduced in the same way. If
the number of equations in the original set is a power of two (or certain other
convenient numbers), the method can be continued until only one equation
remains; the latter is solved directly. The remaining variables can then be
found by a variant of back substitution.

One can show that the cost of this method is proportional to log, n, so that
the cost per variable decreases with the number of variables. Although the
method may seem rather specialized, there are CFD applications in which it
plays arole. These are flows in very regular geometries such as the rectangular
boxes which are used, for example, in direct or large eddy simulations of
turbulence and in some meteorological applications.

In these applications, cyclic reduction and related methods provide the
basis for methods of solving elliptic equations such as Laplace and Poisson
equations directly, that is, non-iteratively. Since the solutions are also exact
in the sense that they contain no iteration error, this method is invaluable
whenever it can be used.

Cyclic reduction is closely related to the fast Fourier transform which is
also used to solve elliptic equations in simple geometries. Fourier methods
may also be used for evaluating derivatives, as was shown in Sect. 3.10.
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5.3 Iterative Methods

5.3.1 Basic Concept

Any system of equations can be solved by Gauss elimination or LU decompo-
sition. Unfortunately, the triangular factors of sparse matrices are not sparse,
so the cost of these methods is quite high. Furthermore, the discretization
error is usually much larger than the accuracy of the computer arithmetic so
there is no reason to solve the system that accurately. Solution to somewhat
more accuracy than that of the discretization scheme suffices.

This leaves an opening for iterative methods. They are used out of neces-
sity for non-linear problems, but they are just as valuable for sparse linear
systems. In an iterative method, one guesses a solution, and uses the equa-
tion to systematically improve it. If each iteration is cheap and the number
of iterations is small, an iterative solver may cost less than a direct method.
In CF¥D problems this is usually the case.

Consider the matrix problem represented by Eq. (5.1) which might result
from FD or FV approximation of a flow problem. After n iterations we have
an approximate solution ¢™ which does not satisfy these equations exactly.
Instead, there is a non-zero residual p™:

APt =Q -~ p". (5.13)

By subtracting this equation from Eq. (5.1), we obtain a relation between
the iteration error defined by:

e =0¢-0¢", (5.14)
where ¢ is the converged solution, and the residual:
Ae™" =p" . (5.15)

The purpose of the iteration procedure is to drive the residual to zero; in
the process, € also becomes zero. To see how this can be done, consider an
iterative scheme for a linear system; such a scheme can be written:

M¢"t!' = N¢"+ B . (5.16)

An obvious property that must be demanded of an iterative method is that
the converged result satisfies Eq. (5.1). Since, by definition, at convergence,
@™l = @™ = ¢, we must have:

A=M-N and B=Q, (5.17)
or, more generally,
PA=M-N and B =PFPQ, (5.18)

where P is a non-singular pre-conditioning matriz.
An alternative version of this iterative method may be obtained by sub-
tracting M ¢™ from each side of Eq. (5.16). We obtain:
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M(¢"™' —¢") = B— (M ~N)¢" or M&"=p", (5.19)

where 6™ = ¢t — ¢" is called the correction or update and is an approxi-
mation to the iteration error.

For an iterative method to be effective, solving the system (5.16) must be
cheap and the method must converge rapidly. Inexpensive iteration requires
that computation of N¢@™ and solution of the system must both be easy to
perform. The first requirement is easily met; since A is sparse, NV is also
sparse, and computation of N¢" is simple. The second requirement means
that the iteration matrix M must be easily inverted; from a practical point
of view, M should be diagonal, tridiagonal, triangular, or, perhaps, block
tridiagonal or triangular; another possibility is described below. For rapid
convergence, M should be a good approximation to A, making N¢ small in
some sense. This is discussed further below.

5.3.2 Convergence

As we have noted, rapid convergence of an iterative method is key to its effec-
tiveness. Here we give a simple analysis that is useful in understanding what
determines the convergence rate and provides insight into how to improve it.

To begin, we derive the equation that determines the behavior of the
iteration error. To find it, we recall that, at convergence, ¢"t! = ¢" = ¢, so
that the converged solution obeys the equation:

M¢$p=Nop+B. (5.20)

Subtracting this equation from Eq. (5.16) and using the definition (5.14) of
the iteration error, we find:

Me™! = Ne™ (5.21)
or

€l = M~'Ne™ . (5.22)
The iterative method converges if nll}n;o €™ = 0. The critical role is played by

the eigenvalues Ay and eigenvectors 9* of the iteration matrix M ~! N which
are defined by:

M7INY* = N9p*, k=1,... K, (5.23)

where K is the number of equations (grid points). We assume that the eigen-
vectors form a complete set i.e. a basis for R", the vector space of all n-
component vectors. If that is so, the initial error may be expressed in terms
of them:

K
0 = Za’“'bk , (5.24)
k=1
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where ag is a constant. Then the iterative procedure (5.22) yields:

K K
€ =MTN =MTNY apt =Y arhep* (5.25)
k=1

k=1

and, by induction, it is not difficult to show that

K
e = z ak(/\k)n’l/Jk . (526)
k=1

It is clear that, if €™ is to become zero when n is large, the necessary and
sufficient condition is that all of the eigenvalues must be less than unity in
magnitude. In particular, this must be true of the largest eigenvalue, whose
magnitude is called the spectral radius of the matrix M ~'N. In fact, after
a number of iterations, the terms in Eq. (5.26) that contain eigenvalues of
small magnitude become very small and only the term containing the largest
eigenvalue (which we can take to be A; and assume to be unique) remains:

€ ~ar(A)"pt . (5.27)

If convergence is defined as the reduction of the iteration error below some
tolerance §, we require:

a (M) ~ 6. (5.28)

Taking the logarithm of both sides of this equation, we find an expression for
the required number of iterations:

We see that, if the spectral radius is very close to unity, the iterative procedure
will converge very slowly.

As a simple (trivial might be more descriptive) example consider the case
of a single equation (for which one would never dream of using an iterative
method). Suppose we want to solve:

ar =b (5.30)

and we use the iterative method (note that m = a + n and p is the iteration
counter):

mzPt! = nzP + 5. (5.31)

Then the error obeys the scalar equivalent of Eq. (5.22):

= e (5.32)
m
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We see that the error is reduced quickly if n/m is small i.e. if n is small,
which means that m ~ a. In constructing iterative methods for systems, we
shall find that an analogous result holds: the more closely M approximates
A, the more rapid the convergence.

In an iterative method it is important to be able to estimate the iteration
error in order to decide when to stop iterating. Calculation of the eigenvalues
of the iteration matrix is difficult (it is often not explicitly known), so ap-
proximations have to be used. We shall describe some methods of estimating
the iteration error and criteria for stopping iterations later in this chapter.

5.3.3 Some Basic Methods

In the simplest method, the Jacobi method, M is a diagonal matrix whose
elements are the diagonal elements of A. For the five-point discretization
of Laplace equation, if each iteration is begun at the lower left (southwest)
corner of the domain and we use the geographic notation introduced above,
the method is:

Qr — As¢s — Awdly — AndR — AedR

!l = ym ) (5.33)

It may be shown that, for convergence, this method requires a number of
iterations proportional to the square of the number of grid points in one
direction. This means that it is more expensive than a direct solver so there
is little reason to use it.

In the Gauss-Seidel method, M is the lower triangular portion of A. As
it is a special case of the SOR method given below, we shall not give the
equations separately. It converges twice as fast as the Jacobi method but this
is not enough of an improvement to be useful.

One of the better methods is an accelerated version of the Gauss-Seidel
method called successive over-relazation or SOR, which we shall describe be-
low. For an introduction and analysis of the Jacobi and Gauss-Seidel meth-
ods, see an introductory text on numerical methods such as Ferziger (1998)
or Press et al. (1987).

If each iteration is begun at the lower left (southwest) corner of the domain
and we again use the geographic notation, the SOR method can be written:

ntl _ Qp — AspiT! — Awoit! — Aol — AE¢E+
ntl
Ap

(1-w)¢p ,(5.34)

where w is the over-relaxation factor, which must be greater than 1 for accel-
eration, and n is the iteration counter. There is theory to guide the selection
of the optimum over-relaxation factor for simple problems such as Laplace
equation in a rectangular domain but it is hard to apply that theory to more
complex problems; fortunately, the behavior of the method is usually similar
to that found in the simple case. Generally, the larger the grid, the larger the
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optimum over-relaxation factor. For values of w less than the optimum, the
convergence is monotonic and the rate of convergence increases as w increases.
When the optimum w is exceeded, the convergence rate deteriorates and the
convergence is oscillatory. This knowledge can be used to search for the op-
timum over-relaxation factor. When the optimum over-relaxation factor is
used, the number of iterations is proportional to the number of grid points in
one direction, a substantial improvement over the methods mentioned above.
For w = 1, SOR reduces to the Gauss-Seidel method.

5.3.4 Incomplete LU Decomposition: Stone’s Method

We make two observations. LU decomposition is an excellent general-purpose
linear systems solver but it cannot take advantage of the sparseness of a ma-
trix. In an iterative method, if M is a good approximation to A, rapid con-
vergence results. These observations lead to the idea of using an approximate
LU factorization of A as the iteration matrix M i.e.:

M:LU:A+N, (535)

where L and U are both sparse and N is small.

A version of this method for symmetric matrices, known as incomplete
Cholesky factorization is often used in conjunction with conjugate gradient
methods. Since the matrices that arise from discretizing convection-diffusion
problems or the Navier-Stokes equations are not symmetric, this method
cannot be applied to them. An asymmetric version of this method, called
incomplete LU factorization or ILU, is possible but has not found widespread
use. In the ILU method one proceeds as in LU decomposition but, for every
element of the original matrix A that is zero, the corresponding element of L
or U is set to zero. This factorization is not exact, but the product of these
factors can be used as the matrix M of the iterative method. This method
converges rather slowly.

.
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Fig. 5.1. Schematic presentation of the matrices L and U and the product matrix
M; diagonals of M not found in A are shown by dashed lines
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Another incomplete lower-upper decomposition method, which has found
use in CFD, was proposed by Stone (1968). This method, also called the
strongly implicit procedure (SIP), is specifically designed for algebraic equa-
tions that are discretizations of partial differential equations and does not
apply to generic systems of equations.

We shall describe the SIP method for the five-point computational molecule,
i.e. a matrix with the structure shown in Fig. 3.5. The same principles can be
used to construct solvers for 7-point (in three-dimensions) and 9-point (for
two-dimensional non-orthogonal grids) computational molecules.

As in ILU, the L and U matrices have non-zero elements only on diagonals
on which A has non-zero elements. The product of lower and upper triangular
matrices with these structures has more non-zero diagonals than A. For the
standard five-point molecule there are two more diagonals (corresponding
to nodes NW and SE or NE and SW, depending on the ordering of the
nodes in the vector), and for seven-point molecules in 3D, there are six more
diagonals. For the ordering of nodes used in this book for 2D problems, the
extra two diagonals correspond to the nodes NW and SE (see Table 3.2 for
the correspondence of the grid indices (7, j) and the one-dimensional storage
location index ).

To make these matrices unique, every element on the main diagonal of U
is set to unity. Thus five sets of elements (three in L, two in U) need to be
determined. For matrices of the form shown in Fig. 5.1, the rules of matrix
multiplication give the elements of the product of L and U, M = LU:

My = Ly
- N;
Mll\xw = LiNUN
Mé = Lls
ML = L U™ + LUK + LY (5.36)
Ml = ULLL
Mg = LZSUPIJ_1
ML = ULLL

We wish to select L and U, such that M is as good an approximation to
A as possible. At minimum, N must contain the two diagonals of M that
correspond to zero diagonals of A4, see Eq. (5.36). An obvious choice is to let
N have non-zero elements on only these two diagonals, and force the other
diagonals of M to equal the corresponding diagonals of A. This is possible;
in fact, this is the standard ILU method mentioned earlier. Unfortunately,
this method converges slowly.

Stone (1968) recognized that convergence can be improved by allowing NV
to have non-zero elements on the diagonals corresponding to all seven non-
zero diagonals of LU. The method is most easily derived by considering the
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vector M ¢:

(M@)p = Mpodp + Msds + Mnodn + Mpds + Mwow +
Mnwénw + MsedsE . (5.37)

The last two terms are the ‘extra’ ones. Each term in this equation corre-
sponds to a diagonal of M = LU.

The matrix N must contain the two ‘extra’ diagonals of M, and we want
to choose the elements on the remaining diagonals so that N¢ = 0 or, in
other words,

Npop + Nnon + Nsos+

Ne¢g + Nwow + Mnwodnw + Mspdse = 0. (5.38)

This requires that the contribution of the two ‘extra’ terms in the above
equation be nearly canceled by the contribution of other diagonals. In other
words, Eq. (5.38) should reduce to the following expression:

Mnw(dnw — d\w) + Mse(dse — ¢sg) = 0, (5.39)

where ¢ and @¢ig are approximations to ¢nw and ¢sg.

Stone’s key idea is that, since the equations approximate an elliptic par-
tial differential equation, the solution can be expected to be smooth. This
being so, ¢xw and ¢35 can be approximated in terms of the values of ¢
at nodes corresponding to the diagonals of A. Stone proposed the following
approximation (other approximations are possible, see Schneider and Zedan,
1981, for an example):

dw = a(dw + N — dp)
ot ~ alds + b — ép) (5.40)

If a = 1, these are second order accurate interpolations but Stone found that
stability requires a < 1. These approximations are based on the connection
to partial differential equations and make little sense for generic algebraic
equations.

If these approximations are substituted into Eq. (5.39) and the result is
equated to Eq. (5.38), we obtain all elements of N as linear combinations of
Mnw and Msg. The elements of M, Eq. (5.36), can now be set equal to the
sum of elements of A and N. The resulting equations are not only sufficient to
determine all of the elements of I and U, but they can be solved in sequential
order beginning at the southwest corner of the grid:

Ly = Ay /(1 + aUy ™)
Ly = AL/ (1 +aUg ™)

Lh = AL + a (L USN + LU - Ly Us ™ — LAULT (5.41)
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I-N;
Un = (Ak —aLliyUy ) /Lb

Up = (AL — oL§UE) /LY

The coefficients must be calculated in this order. For nodes next to bound-
aries, any matrix element that carries the index of a boundary node is un-
derstood to be zero. Thus, along the west boundary (¢ = 2), elements with
index I — N; are zero; along the south boundary (j = 2), elements with index
[ — 1 are zero; along the north boundary (j = N; — 1), elements with index
[ + 1 are zero; finally, along the east boundary (i = N; — 1), elements with
index I + N; are zero.

We now turn to solving the system of equations with the aid of this
approximate factorization. The equation relating the update to the residual
is (see Eq. (5.19)):

LU = p" . (5.42)

The equations are solved as in in generic LU decomposition. Multiplication
of the above equation by L~! leads to:

Ut =L 'p" = R". (5.43)
R" is easily computed:
R = (p' = LER'™! — Liy RN /I (5.44)

This equation is to be solved by marching in the order of increasing {. When
the computation of R is complete, we need to solve Eq. (5.43):

ot = Rt — UL o+t — Utsttli (5.45)

in order of decreasing index I.

In the SIP method, the elements of the matrices L and U need be cal-
culated only once, prior to the first iteration. On subsequent iterations, we
need calculate only the residual, then R and finally 4, by solving the two
triangular systems.

Stone’s method usually converges in a small number of iterations. The rate
of convergence can be improved by varying « from iteration to iteration (and
point to point). These methods converge in fewer iterations but they require
the factorization to be redone each time « is changed. Since computing L and
U is as expensive as an iteration with a given decomposition, it is usually
more efficient overall to keep « fixed.

Stone’s method can be generalized to yield an efficient solver for the nine-
diagonal matrices that arise when compact difference approximations are
applied in two dimensions and for the seven-diagonal matrices that arise when
central differences are used in three dimensions. A 3D (7-point) vectorized
version is given by Leister and Perié¢ (1994); two 9-point versions for 2D
problems are described by Schneider and Zedan (1981) and Perié (1987).
Computer codes for five-diagonal (2D) and seven-diagonal (3D) matrices are
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available via Internet; see appendix for details. The performance of SIP for
a model problem will be presented in Sect. 5.8.

Unlike other methods, Stone’s method is both a good iterative technique
in its own right and a good basis for conjugate gradient methods (where
it is called a preconditioner) and multigrid methods (where it is used as a
smoother). These methods will be described below.

5.3.5 ADI and Other Splitting Methods

A common method of solving elliptic problems is to add a term containing the
first time derivative to the equation and solve the resulting parabolic problem
until a steady state is reached. At that point, the time derivative is zero and
the solution satisfies the original elliptic equation. Many iterative methods of
solving elliptic equations, including most of those already described, can be
interpreted in this way. In this section we present a method whose connection
to parabolic equations is so close that it might not have been discovered if
one were thinking only of elliptic equations.

Considerations of stability require methods for parabolic equations to be
implicit in time. In two or three dimensions, this requires solution of a two or
three dimensional elliptic problem at each time step; the cost can be enormous
but it can be reduced considerably by using the alternating direction implicit
or ADI method. We give only the simplest such method in two dimensions
and a variant. ADI is the basis for many other methods; for more details of
some of these methods see Hageman and Young (1981).

Suppose we want to solve Laplace equation in two dimensions. Adding a
time derivative to it converts it to the heat equation in two dimensions:

% _p (2,28

5 =T (52 + 5 (5.46)

+
0z? = Oy?
If this equation is discretized using the trapezoid rule in time (called Crank-
Nicolson when applied to partial differential equations; see next chapter),
and central differences are used to approximate the spatial derivatives on a
uniform grid, we obtain:

¢n+1 _ ¢n B r 52¢n 52¢n 52¢n+1 52¢n+1
A s\ G ) T\ )| 040

where we have used the shorthand notation:

<52¢) _ Pir15 — 2405+ dio1j

622 ), (Az)? ’

52_¢ _ Gijr1 — 2055 + di i1
6% ) s (Ay)?
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for the spatial finite differences. Rearranging Eq. (5.47), we find that, at time
step » + 1, we have to solve the system of equations:

At &2 LAt 02\
(1_ 2 5?)(1_ 2 52>¢ -

rAt 8 rat 82\
<1+ Tm) <1+ o )qs (5.48)
(rat? 8 [52(¢n+1 o)
4 oz dy? ] )

As ¢"1 — ¢ ~ At 8¢ /0t, the last term is proportional to (At)® for small
At. Since the FD approximation is of second order, for small At, the last
term is small compared to the discretization error and may be neglected.
The remaining equation can be factored into two simpler equations:

rat s\ . rAt 6
(-5 = (14 50 s ) o, (549)
rAt §2 At §2
(-5 e = (14 5D o (5.50)

Each of these systems of equations is a set of tridiagonal equations that can be
solved with the efficient TDMA method; this requires no iteration and is much
cheaper than solving Eq. (5.47). Either Eq. (5.49) or (5.50), as a method in its
own right, is only first-order accurate in time and conditionally stable but the
combined method is second-order accurate and unconditionally stable! The
family of methods based on these ideas are known as splitting or approzimate
factorization methods; a wide variety of them has been developed.

Neglect of the third-order term, which is essential to the factorization,
is justified only when the time step is small. So, although the method is
unconditionally stable, it may not be accurate in time if the time step is large.
For elliptic equations, the objective is to obtain the steady state solution
as quickly as possible; this is best accomplished with the largest possible
time step. However, the factorization error becomes large when the time step
is large so the method loses some of its effectiveness. In fact, there is an
optimum time step which gives the most rapid convergence. When this time
step is used, the ADI method is very eflicient — it converges in a number of
iterations proportional to the number of points in one direction.

A better strategy uses different time steps for several iterations in a cyclic
fashion. This approach can make the number of iterations for convergence
proportional to the square root of the number of grid points in one direction,
making ADI an excellent method.

Equations which involve the convection and source terms require some
generalization of this method. In CFD, the pressure or pressure-correction
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equation is of the above type and the variants of the method just described
are often used to solve it. ADI methods are very commonly used when solving
compressible flow problems. They are also well adapted to parallel computa-
tion.

The method described in this section takes advantage of the structure of
the matrix which is, in turn, due to the use of a structured grid. However,
closer inspection of the development shows that the basis of the method is
an additive decomposition of the matrix:

A=H+V, (5.51)

where H is the matrix representing the terms contributed by the second
derivative with respect to  and V, the terms coming from the second deriva-
tive in the y-direction.

There is no reason why other additive decompositions cannot be used.
One useful suggestion is to consider the additive LU decomposition:

A=L+U. (5.52)

This is different from the multiplicative LU decomposition of Sect. 5.2.2.
With this decomposition, Eqgs. (5.49) and (5.50) are replaced by:

(I - LAty ={I+Uat)e™,
(I-U A" = (I + L At)p* . (5.53)
Fach of these steps is essentially a Gauss-Seidel iteration. The rate of con-
vergence of this method is similar that of the ADI method given above. It
also has the very important advantage that it does not rely on the structure
of the grid or of the matrix and may therefore be applied to problems on un-
structured grids as well as structured ones. However, it does not parallelize
as well as the HV version of ADL

5.3.6 Conjugate Gradient Methods

In this section, we present a class of methods based on techniques for solv-
ing non-linear equations. Non-linear solvers can be grouped into two broad
categories: Newton-like methods and global methods. The former converge
very quickly if an accurate estimate of the solution is available but may fail
catastrophically if the initial guess is far from the exact solution. ‘Far’ is a
relative term; it is different for each equation. One cannot determine whether
an estimate is ‘close enough’ except by trial and error. Global methods are
guaranteed to find the solution (if one exists) but are not very fast. Combi-
nations of the two types of methods are often used; global methods are used
initially and followed by Newton-like methods as convergence is approached.

Many global methods are descent methods. These methods begin by con-
verting the original system of equations into a minimization problem. Suppose
that the set of equations to be solved is given by Eq. (5.1) and that the matrix
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A is symmetric and its eigenvalues are positive; such a matrix is called posi-
tive definite. (Most matrices associated with problems in fluid mechanics are
not symmetric or positive definite so we will need to generalize this method
later.) For positive definite matrices, solving the system of equations (5.1) is
equivalent to the problem of finding the minimum of

F= %¢TA¢ -¢'Q= % DD Aydibi— Y $iQs (5.54)
j=1 i=1

=1

with respect to all the ¢;; this may be verified by taking the derivative of F
with respect to each variable and setting it equal to zero. A way to convert the
original system into a minimization problem that does not require positive
definiteness is to take the sum of the squares of all of the equations but this
introduces additional difficulties.

The oldest and best known method for seeking the minimum of a function
is steepest descents. The function F' may be thought of as a surface in (hyper)-
space. Suppose we have some starting guess which may be represented as a
point in that (hyper-)space. At that point, we find the steepest downward
path on the surface; it lies in the direction opposite to the gradient of the
function. We then search for the lowest point on that line. By construction,
it has a lower value of F' than the starting point; in this sense, the new
estimate is closer to the solution. The new value is then used as the starting
point for the next iteration and the process is continued until it converges.
Unfortunately, while it is guaranteed to converge, steepest descents often
converges very slowly. If the contour plot of the magnitude of the function F'
has a narrow valley, the method tends to oscillate back and forth across that
valley and many steps may be required to find the solution. In other words,
the method tends to use the same search directions over and over again.

Many improvements have been suggested. The easiest ones require the
new search directions to be as different from the old ones as possible. Among
these is the conjugate gradient method. We shall give only the general idea
and a description of the algorithm here; a more complete presentation can
be found in the book by Golub and van Loan (1990).

The conjugate gradient method is based on a remarkable discovery: it
is possible to minimize a function with respect to several directions simul-
taneously while searching in one direction at a time. This is made possible
by a clever choice of directions. We shall describe this for the case of two
directions; suppose we wish to find values of a; and as in

¢=¢°+ap' +arp’ (5.55)

which minimize F; that is, we try to minimize F in the p! — p? plane. This
problem can be reduced to the problem of minimizing with respect to p!
and p? individually provided that the two directions are conjugate in the
following sense:
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p'-Ap=0. (5.56)

This property is akin to orthogonality; the vectors p! and p? are said to be
conjugate with respect to the matrix A, which gives the method its name. A
detailed proof of this statement and others cited below can be found in the
book of Golub and van Loan (1990).

This property can be extended to any number of directions. In the conju-
gate gradient method, each new search direction is required to be conjugate
to all the preceding ones. If the matrix is non-singular, as is the case in nearly
all engineering problems, the directions are guaranteed to be linearly indepen-
dent. Consequently, if exact (no round-off error) arithmetic were employed,
the conjugate gradient method would converge exactly when the number of
iterations is equal to the size of the matrix. This number can be quite large
and, in practice, exact convergence is not achieved due to arithmetic errors.
It is therefore wiser to regard the conjugate gradient method as an iterative
method.

While the conjugate gradient method guarantees that the error is reduced
on each iteration, the size of the reduction depends on the search direction. It
is not unusual for this method to reduce the error only slightly for a number
of iterations and then find a direction that reduces the error by an order of
magnitude or more in one iteration.

It can be shown that the rate of convergence of this method depends on
the condition number k of the matrix where

AI'(IEI,X
K=

Amin (5.57)
and Apax and A, are the largest and smallest eigenvalues of the matrix.
The condition numbers of matrices that arise in CFD problems are usually
approximately the square of the maximum number of grid points in any
direction. With 100 grid points in each direction, the condition number should
be about 10% and the standard conjugate gradient method would converge
slowly. Although the conjugate gradient method is significantly faster than
steepest descents for a given condition number, this basic method is not very
useful.

This method can be improved by replacing the problem whose solution we
seek by another one with the same solution but a smaller condition number.
For obvious reasons, this is called preconditioning. One way to precondition
the problem is to pre-multiply the equation by another (carefully chosen) ma-
trix. As this would destroy the symmetry of the matrix, the preconditioning
must take the following form:

clAcTlcep=Cc7'qQ. (5.58)

The conjugate gradient method is applied to the matrix C~*AC~! i.e. to the
modified problem (5.58). If this is done and the residual form of the iterative
method is used, the following algorithm results (for a detailed derivation, see
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Golub and van Loan, 1990). In this description, p* is the residual at the kth
iteration, p* is the kth search direction, z* is an auxiliary vector and ay and
B are parameters used in constructing the new solution, residual, and search
direction. The algorithm can be summarized as follows:

Initialize by setting: k = 0, ¢° = ¢in, p° = Q — Adin, p° =0, 50 = 103°
Advance the counter: k =k + 1
Solve the system: Mz* = p*~1
Calculate: s* = pk—1. 2%
Bk = g k=1
Pt = 2k 4 grpk-1
ok = s, /(p* - ApF)
d’k — d’k_l + akpk
pk — pk—l _ akApk
¢ Repeat until convergence.

This algorithm involves solving a system of linear equations at the first step.
The matrix involved is M = C~! where C is the pre-conditioning matrix,
which is in fact never actually constructed. For the method to be efficient,
M must be easy to invert. The choice of M used most often is incomplete
Cholesky factorization of A but in tests it was found that if M = LU where
L and U are the factors used in Stone’s SIP method, faster convergence is
obtained. Examples will be presented below.

5.3.7 Biconjugate Gradients and CGSTAB

The conjugate gradient method given above is applicable only to symmet-
ric systems; the matrices obtained by discretizing the Poisson equation are
often symmetric (examples are the heat conduction equation and pressure
or pressure-correction equations to be introduced in Chap. 7). To apply the
method to systems of equations that are not necessary symmetric (for exam-
ple, any convection/diffusion equation), we need to convert an asymmetric
problem to a symmetric one. There are a couple of ways of doing this of which
the following is perhaps the simplest. Consider the system:

(ar%5) (8)= (0): 6

This system can be decomposed into two subsystems. The first is the orig-
inal system; the second involves the transpose matrix and is irrelevant. (If
there were a need to do so, one could solve a system of equations involving
the transpose matrix at little extra cost.) When the pre-conditioned conju-
gate gradient method is applied to this system, the following method, called
biconjugate gradients, results:

o Initialize by setting: k = 0, ¢° = ¢in, p° = Q — Adin, P° = Q — AT i,
P’ =p"=0, 5o =10%
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e Advance the counter: k =k + 1
e Solve the systems: Mz = pk~1 MTzF = pk-!
e Calculate: s* = z* . p*~1

Bk — Sk/sk—l

pk = 2k +ﬂkpk—l

Pt = zF 4 ghph!

o* = s*/(p* Ap*)

k= gk=1 4 okph

p* = p*1 — ok Ap*

p* =kl — ok AT
o Repeat until convergence.

The above algorithm was published by Fletcher (1976). It requires almost
exactly twice as much effort per iteration as the standard conjugate gradient
method but converges in about the same number of iterations. It has not been
widely used in CFD applications but it appears to be very robust (meaning
that it handles a wide range of problems without difficulty).

Other variants of the biconjugate gradient method type which are more
stable and robust have been developed. We mention here the CGS (conjugate
gradient squared) algorithm, proposed by Sonneveld (1989); CGSTAB (CGS
stabilized), proposed by Van den Vorst and Sonneveld (1990) and another
version by Van den Vorst (1992); and GMRES, proposed by Saad and Schultz
(1986). All of these can be applied to non-symmetric matrices and to both
structured and unstructured grids. We give below the CGSTAB algorithm
without formal derivation:

e Initialize by setting: k = 0, ¢° = ¢in, p° = Q@ — Ain, u® =p° =0
e Advance the counter k = k + 1 and calculate:
ﬂk — pO . pk—l
ok = (BF1) (k=)
p* = pF1 4+ W (pt1 — gk lykoT)
Solve the system: Mz = p*
Calculate: u* = Az
v* =B/ (u* - p°)
w = ph=1 — yhyk
Solve the system: My = w
Calculate: v = Ay
of = (v-p*)/(v-v)
¢k — ¢k—1 + ,},k‘z +aky
pF=w - ofv
¢ Repeat until convergence.

Note that u, v, w, ¥ and z are auxiliary vectors and have nothing to do with
the velocity vector or the coordinates y and z. The algorithm can be pro-
grammed as given above; computer codes for the conjugate gradient method
with incomplete Cholesky preconditioning (ICCG, for symmetric matrices,
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both 2D and 3D versions) and the 3D CGSTAB solver are available via In-
ternet; see appendix for details. A biconjugate gradient solver with incomplete
Cholesky preconditioning for nine-point schemes in 2D is also provided.

5.3.8 Multigrid Methods

The final method for solving linear systems to be discussed here is the multi-
grid method. The basis for the multigrid concept is an observation about it-
erative methods. Their rate of convergence depends on the eigenvalues of the
iteration matrix associated with the method. In particular, the eigenvalue(s)
with largest magnitude (the spectral redius of the matrix) determines how
rapidly the solution is reached; see Sect. 5.3.2. The eigenvector(s) associated
with this eigenvalue(s) determines the spatial distribution of the iteration
error and varies considerably from method to method. Let us briefly review
the behavior of these entities for some of the methods presented above. The
properties are given for Laplace equation; most of them generalize to other
elliptic partial differential equations.

For Laplace equation, the two largest eigenvalues of the Jacobi method
are real and of opposite sign. One eigenvector represents a smooth function of
the spatial coordinates, the other, a rapidly oscillating function. The iteration
error for the Jacobi method is thus a mixture of very smooth and very rough
components; this makes acceleration difficult. On the other hand, the Gauss-
Seidel method has a single real positive largest eigenvalue with an eigenvector
that makes the iteration error a smooth function of the spatial coordinates.

The largest eigenvalues of the SOR method with optimum over-relaxation
factor lie on a circle in the complex plane and there are a number of them;
consequently, the error behaves in a very complicated manner. In ADI, the
nature of the error depends on the parameter but tends to be rather compli-
cated. Finally, SIP has relatively smooth iteration errors.

Some of these methods produce errors that are smooth functions of the
spatial coordinates. Let us consider one of these methods. The iteration error
€" and residual p™ after the nth iteration are related by Eq. (5.15). In the
Gauss-Seidel and SIP methods, after a few iterations, the rapidly varying
components of the error have been removed and the error becomes a smooth
function of the spatial coordinates. If the error is smooth, the update (an
approximation to the iteration error) can be computed on a coarser grid.
On a grid twice as coarse as the original one in two dimensions, iterations
cost 1/4 as much; in three dimensions, the cost is 1/8 the fine grid cost.
Furthermore, iterative methods converge much faster on coarser grids. Gauss-
Seidel converges four times as fast on a grid twice as coarse; for SIP the ratio
is less favorable but still substantial.

This suggests that much of the work can be done on a coarser grid. To
do this, we need to define: the relationship between the two grids, the finite
difference operator on the coarse grid, a method of smoothing (restricting)
the residual from the fine grid to the coarse one and a method of interpolating
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(prolonging) the update or correction from the coarse grid to the fine one;
the words in parentheses are special terms that are in common use in the
multigrid literature. Many choices are available for each item; they affect the
behavior of the method but, within the range of good choices, the differences
are not great. We shall thus present just one good choice for each item.

In a finite difference scheme, the coarse grid normally consists of every
second line of the fine grid. In a finite volume method, one usually takes the
coarse grid CVs to be composed of 2 (in two dimensions, 4, and in three
dimensions, 8) fine grid CVs; the coarse grid nodes then lie between the fine
grid nodes.

Although there is no reason to use the multigrid method in one dimension
(because the TDMA algorithm is very effective), it is easy to illustrate the
principles of the multigrid method and to derive some of the procedures used
in the general case. Thus consider the problem:

2
% = (@) (5.60)

for which the standard FD approximation on a uniform grid is:

ﬁ(%—l —2¢;i + dir1) = fi . (5.61)

After performing n iterations on the grid with Az spacing, we obtain an
approximate solution ¢™, and the above equation is satisfied to within the
residual p™:

1
(Az)? ( 1= 2¢7 + ¢?+1) =fi—p}. (5.62)

Subtracting this equation from Eq. (5.61) gives

1
(4

(€ ) —2e! +€}y) =p7 (5.63)

which is Eq. (5.15) for node 7. This is the equation we want to iterate on the
coarse grid.

Fine grid

i+2

I+1

i+l i+3

3 i2 il
L1

Coarse grid

Fig. 5.2. The grids used in the multigrid technique in one dimension
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To derive the discretized equations on the coarser grid, we note that con-
trol volume around node I of the coarse grid consists of the whole control
volume around node i plus half of control volumes ¢ — 1 and 7 + 1 of the
fine grid (see Fig. 5.2). This suggests that we add one half of equation (5.63)
with indices i — 1 and ¢ + 1 to the full equation with index 7, which leads to
(superscript n being omitted):

1

1227 (€i—2 (pi1 + 2pi + piy1) - (5.64)

ANg—-

- 26i + 61;+2) =

Using the relationship between the two grids (AX = 2 Az, see Fig. 5.2), this
is equivalent to the following equation on the coarse grid:

1
ax) (61_1 — 25 + 61+1) =Dr, (5.65)

which also serves to define 7;. The left hand side of this equation is the
standard approximation to the second derivative on the coarse grid, indicating
that the obvious discretization on the coarse grid is a reasonable one. The
right hand side is a smoothing or filtering of the fine grid forcing term and
provides the natural definition of the smoothing or restriction operation.
The simplest prolongation or interpolation of a quantity from the coarse
grid to the fine grid is linear interpolation. At coincident points of the two
grids, the value at the coarse grid point is simply injected onto the corre-
sponding fine grid point. At fine grid points that lie between the coarse grid
points, the injected value is the average of the neighboring coarse grid values.
A two-grid iterative method is thus:

e On the fine grid, perform iterations with a method that gives a smooth
€error;

Compute the residual on the fine grid;

Restrict the residual to the coarse grid;

Perform iterations of the correction equation on the coarse grid;
Interpolate the correction to the fine grid;

Update the solution on the fine grid;

Repeat the entire procedure until the residual is reduced to the desired
level.

It is natural to ask: why not use still coarser grids to further improve the
rate of convergence? This is a good idea. In fact, one should continue the
procedure until it becomes impossible to define a still coarser grid; on the
coarsest grid, the number of unknowns is so small that the equations can be
solved exactly at a negligible cost.

Multigrid is more a strategy than a particular method. Within the frame-
work just described there are many parameters that can be selected more
or less arbitrarily: the coarse grid structure, the smoother, the number of
iterations on each grid, the order in which the various grids are visited, and
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the restriction and interpolation schemes are the most important of these.
The rate of convergence does, of course, depend on the choices made but the
range of performance between the worst and the best methods is probably
less than a factor of two.

The most important property of the multigrid method is that the number
of iterations on the finest grid required to reach a given level of convergence
is roughly independent of the number of grid nodes. This is as good as one
can expect to do — the computational cost is proportional to the number of
grid nodes. In two- and three-dimensional problems with about 100 nodes
in each direction, the multigrid method may converge in one-tenth to one-
hundredth of the time required by the basic method. An example will be
presented below.

The iterative method on which the multigrid method is based must be a
good smoother; its convergence properties as a stand-alone method are less
important. Gauss-Seidel and SIP are two good choices but there are other
possibilities.

In two dimensions, there are many possibilities for the restriction operator.
If the method described above is used in each direction, the result would be
a nine point scheme. A simpler, but nearly as effective, restriction is the five
point scheme:

Pry = %(pi-H,j + pie1,j + Piji1 + pij—1 +4pij) - (5.66)
Similarly, an effective prolongator is bilinear interpolation. In two dimensions,
there are three kinds of points on the fine grid. Those which correspond to
coarse grid points are given the value at the corresponding point. Ones which
lie on lines connecting two coarse grid points receive the average of the two
coarse grid values. Finally, the points at the centers of coarse grid volumes
take the average of the four neighbor values. Similar schemes can be derived
for FV methods and 3D problems.

The initial guess in an iterative solution method is usually far from the
converged solution (a zero field is often used). It therefore makes sense to solve
the equation first on a very coarse grid (which is cheap) and use that solution
to provide a better guess for the initial field on the next finer grid. By the
time we reach the finest grid, we already have a fairly good starting solution.
Multigrid methods of this type are called full multigrid (FMG) methods. The
cost of obtaining the initial solution for the finest grid is usually more than
compensated by the savings on fine grid iterations.

Finally, we remark that it is possible to construct a method in which one
solves equations for approximations to the solution rather than for corrections
at each grid. This is called the full approzimation scheme (FAS) and is often
used for solving non-linear problems. It is important to note that the solution
obtained on each grid in FAS is not the solution that would be obtained if
that grid were used by itself but a smoothed version of the fine grid solution;
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this is achieved by passing a correction from each grid to the next coarser
grid. One variant of the FAS scheme for the Navier-Stokes equations will be
presented in Chap. 11.

For a detailed analysis of multigrid methods, see books by Hackbusch
(1985) and Brandt (1984). A 2D multigrid solver that uses the Gauss-Seidel,
SIP, or ICCG methods as the smoother is available via Internet; see the
appendix for details.

5.3.9 Other Iterative Solvers

There are many other iterative solvers that cannot be described in detail here.
We mention the ‘red-black’ variation of the Gauss-Seidel solver which is often
used in conjunction with multigrid methods. On a structured grid, the nodes
are imagined to be ‘colored’ in the same way as a checkerboard. The method
consists of two Jacobi steps: black nodes are updated first, then the red nodes.
When the values at black nodes are updated, only the ‘old’ red values are
used, see Eq. (5.33). On the next step, red values are recalculated using the
updated black values. This alternate application of the Jacobi method to
the two sets of nodes gives an overall method with the same convergence
properties as the Gauss-Seidel method. The nice feature of the red-black
Gauss-Seidel solver is that it both vectorizes and parallelizes well, since there
are no data dependencies in either step.

Another practice often applied to multi-dimensional problems is the use
of iteration matrices which correspond to lower-dimensional problems. One
version of this is the ADI method described above which reduces a 2D problem
to a sequence of 1D problems. The resulting tridiagonal problems are solved
line-by-line. The direction of solution is changed from iteration to iteration to
improve the rate of convergence. This method is usually used in the Gauss-
Seidel fashion, i.e. new variable values from lines already visited are used.

A counterpart of the red-black Gauss-Seidel method is the ‘zebra’ line—
by-line solver: first the solution is found on the even numbered lines, then
the odd numbered lines are treated. This gives better parallelization and
vectorization possibilities with no sacrifice in convergence properties.

It is also possible to use the two-dimensional SIP method to solve three-
dimensional problems, applying it plane-by—plane and relegating the con-
tributions from neighboring planes to the right hand side of the equations.
However, this method is neither cheaper nor faster than the three-dimensional
version of SIP, so it is not often used.

5.4 Coupled Equations and Their Solution

Most problems in fluid dynamics and heat transfer require solution of cou-
pled systems of equations, i.e. the dominant variable of each equation occurs
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in some of the other equations. There are two types of approaches to such
problems. In the first, all variables are solved for simultaneously. In the other,
each equation is solved for its dominant variable, treating the other variables
as known, and one iterates through the equations until the solution of the
coupled system is obtained. The two approaches also may be mixed. We
call these simultaneous and sequential methods, respectively, and they are
described in more detail below.

5.4.1 Simultaneous Solution

In simultaneous methods, all the equations are considered part of a single sys-
tem. The discretized equations of fluid mechanics have, after linearization,
a block-banded structure. Direct solution of these equations would be very
expensive, especially when the equations are non-linear and the problem is
three-dimensional. Iterative solution techniques for coupled systems are gen-
eralizations of methods for single equations. The methods described above
were chosen for their applicability to coupled systems. Simultaneous solution
methods based on iterative solvers have been developed by several authors;
see e.g. papers by Galpin and Raithby (1986), Deng et al. (1994), and Weiss
et al. (1999).

5.4.2 Sequential Solution

When the equations are linear and tightly coupled, the simultaneous approach
is best. However, the equations may be so complex and non-linear that cou-
pled methods are difficult and expensive to use. It may then be preferable to
treat each equation as if it has only a single unknown, temporarily treating
the other variables as known, using the best currently available values for
them. The equations are then solved in turn, repeating the cycle until all
equations are satisfied. When using this type of method, two points need to
be borne in mind:

e Since some terms, e.g. the coefficients and source terms that depend on
the other variables change as the computation proceeds, it is inefficient
to solve the equations accurately at each iteration. That being the case,
direct solvers are unnecessary and iterative solvers are preferred. Iterations
performed on each equation are called inner iterations.

e In order to obtain a solution which satisfies all of the equations, the coeffi-
cient matrices and source vector must be updated after each cycle and the
process repeated. The cycles are called outer iterations.

Optimization of this type of solution method requires careful choice of the
number of inner iterations per outer iteration. It is also necessary to limit
the change in each variable from one outer iteration to the next (under-
relaxation), because a change in one variable changes the coeflicients in the
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other equations, which may slow or prevent convergence. Unfortunately, it is
hard to analyze the convergence of these methods so the selection of under-
relaxation factors is largely empirical.

The multigrid method, which was described above as a convergence ac-
celerator for inner iterations (linear problems), may be applied to coupled
problems. It may also be used to accelerate the outer iterations as will be
described in Chap. 11.

5.4.3 Under-Relaxation

We shall present one under-relaxation technique that is widely used. On the
nth outer iteration, the algebraic equation for a generic variable, ¢, at a
typical point P may be written:

ApgB + > Aigf = Qp (5.67)
!

where () contains all the terms that do not depend explicitly on ¢"; the
coefficients A4; and the source Q may involve ¢"~!. The discretization scheme
is unimportant here. This equation is linear and the system of equations for
the whole solution domain is solved usually iteratively (inner iterations).

In the early outer iterations, allowing ¢ to change by as much as Eq. (5.67)
requires could cause instability, so we allow ¢" to change only a fraction ag
of the would-be difference:

¢n — ¢n—l + a¢(¢new _ ¢n—1) , (568)
where ¢"®¥ is the result of Eq. (5.67) and the under-relaxation factor satisfies
0< ay < 1.

Since the old iterate is usually no longer required after the coefficient
matrix and source vector are updated, the new solution can be written over
it. Replacing ¢"°¥ in Eq. (5.68) by

new _ Qp = 2 Aid]

P - AP 3 (569)
which follows from Eq. (5.67), leads to a modified equation at node P:
A l-a n—
o+ A = Qe+ — L Apgnt, (5.70)
073 ] o 073
~ ~ .
Ap Qr

where A} and Q} are modified main diagonal matrix elements and source
vector components. This modified equation is solved within inner iterations.
When the outer iterations converge, the terms involving ay4 cancel out and
we obtain the solution of the original problem.
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This kind of under-relaxation was proposed by Patankar (1980). It has a
positive effect on many iterative solution methods since the diagonal domi-
nance of the matrix A is increased (the element Ap is larger than Ap, while
A; remains the same). It is more efficient than explicit application of the
expression (5.68).

Optimum under-relaxation factors are problem dependent. A good strat-
egy is to use a small under-relaxation factor in the early iterations and in-
crease it towards unity as convergence is approached. Some guidance for
selecting the under-relaxation factors for solving the Navier-Stokes equations
will be given in Chaps. 7 and 8. Under-relaxation may be applied not only to
the dependent variables but also to individual terms in the equations. It is
often necessary to do so when the fluid properties (viscosity, density, Prandtl
number etc.) depend on the solution and need be updated.

We mentioned above that iterative solution methods can often be regarded
as solving an unsteady problem until a steady state is reached. Control of
the time step is then important in controlling the evolution of the solution.
In the next chapter we shall show that time step may be interpreted as an
under-relaxation factor. The under-relaxation scheme described above may
be interpreted as using different time steps at different nodes.

5.5 Non-Linear Equations and their Solution

As mentioned above, there are two types of techniques for solving non-linear
equations: Newton-like and global. The former are much faster when a good
estimate of the solution is available but the latter are guaranteed not to
diverge; there is a trade-off between speed and security. Combinations of the
two methods are often used. There is a vast literature devoted to methods
for solving non-linear equations but the state-of-the-art is still not completely
satisfactory. We cannot cover even a substantial fraction of the methods here
and give a short overview of some methods.

5.5.1 Newton-like Techniques

The master method for solving non-linear equations is Newton’s method.
Suppose that one needs to find the root of a single algebraic equation f(z) =
0. Newton’s method linearizes the function about an estimated value of z
using the first two terms of the Taylor series:

f(z) = f(mo) + f'(zo)(z — z0) - (5.71)

Setting the linearized function equal to zero provides a new estimate of the
root:

f(zo)
f'(zo)

or, in general, xp = zp_1 — M (5.72)

n=te f'(xr—1)
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and we continue until the change in the root x5 — z4_, is as small as desired.
The method is equivalent to approximating the curve representing the func-
tion by its tangent at zx. When the estimate is close enough to the root, this
method converges quadratically i.e. the error at iteration k+ 1 is proportional
to the square of the error at iteration k. This means that only a few iterations
are needed once the solution estimate is close to the root. For that reason, it
is employed whenever it is feasible to do so.

Newton’s method is easily generalized to systems of equations. A generic
system of non-linear equations can be written:

fi(il,'l,il,'g,...,il,'n)‘—‘o, i:1,2,...,n. (573)

This system can be linearized in exactly the same way as the single equation.
The only difference is that now we need to use multi-variable Taylor series:

fi(z1, 9, .., xn) = fi(xh 2k .. 2F) 4
n
Ofi(zk k.. .. ok
Z($§+1 —:L';c) fl( 1542, ) n) , (574)
' ail,'j
j=1
for i = 1,2,...,n. When this is set to zero, we have a system of linear

algebraic equations that can be solved by Gauss elimination or some other
technique. The matrix of the system is the set of partial derivatives:

i=1,2,...,n, j=1,2,...,n, (5.75)

which is called the Jacobian of the system. The system of equations is:
n
Zaij(xfﬂ - :v;“) = —fi(z* ok, ... ,xﬁ) , 1=1,2,...,n. (5.76)
j=1

For an estimate that is close to the correct root, Newton’s method for
systems converges as rapidly as the method for a single equation. However,
for large systems, the rapid convergence is more than offset by its principal
disadvantage. For the method to be effective, the Jacobian has to be evaluated
at each iteration. This presents two difficulties. The first is that, in the general
case, there are n? elements of the Jacobian and their evaluation becomes the
most expensive part of the method. The second is that a direct method
of evaluating the Jacobian may not exist; many systems are such that the
equations are implicit or they may be so complicated that differentiation is
all but impossible.

To the authors’ knowledge, Newton’s method has been used only few
times to solve the Navier-Stokes equations although it has been used to solve
simplifications of these equations many times. It was found that the cost of
generating the Jacobian and solving the system by Gauss elimination was so
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high that, even though the method does converge in just a few iterations, the
overall cost is greater than that of other iterative methods.

For generic systems of non-linear equations, secant methods are much
more effective. For a single equation, the secant method approximates the
derivative of the function by the secant drawn between two points on the
curve. This method converges more slowly than Newton’s method, but as it
does not require evaluation of the derivative, it may find the solution at lower
overall cost and can be applied to problems in which direct evaluation of the
derivative is not possible. There are a number of generalizations of the secant
method to systems, most of which are quite effective but, as they have not
been applied in CFD, we shall not review them here.

5.5.2 Other Techniques

The usual approach to the solution of coupled non-linear equations is the
sequential decoupled method described in the previous section. The non-
linear terms (convective flux, source term) are usually linearized using Picard
iteration approach. For the convective terms, this means that the mass flux
is treated as known, so the non-linear convective term in the equation for the
u; momentum component is approximated by:

puiu; = (pu;)°u; , (5.77)

where index o denotes that the values are taken from the result of the previous
outer iteration. Similarly, the source term is decomposed into two parts:

gp =bo + 1. (5.78)

The portion bg is absorbed into the right hand side of the algebraic equation,
while b; contributes to the coefficient matrix A. A similar approach can be
used for the non-linear terms that involve more than one variable.

This kind of linearization requires many more iterations than a coupled
technique using Newton-like linearization. However, the number of outer iter-
ations can be reduced using multigrid techniques, which makes this approach
attractive.

Newton’s method is sometimes used to linearize the non-linear terms; for
example, the convective term in the equation for the w; momentum conipo-
nent can be expressed as:

puju; R puu; + puiu; — pujuy . (5.79)

Non-linear source terms can be treated in the same way. This leads to a cou-
pled linear system of equations which is difficult to solve, and the convergence
is not quadratic unless the full Newton technique is used. However, special
coupled iterative techniques which benefit from this linearization technique
can be developed, as shown by Galpin and Raithby (1986).
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5.6 Deferred-Correction Approaches

If all terms containing the nodal values of the unknown variable are kept on
the left-hand side of Eq. (3.42), the computational molecule may become very
large. Since the size of the computational molecule affects both the storage
requirements and the effort needed to solve the linear equation system, we
would like to keep it as small as possible; usually, only the nearest neighbors
of node P are kept on the left hand sides of the equations. However, approxi-
mations which produce such simple computational molecules are usually not
accurate enough, so we are forced to use approximations that refer to more
nodes than just the nearest neighbors.

One way around this problem would be to leave only the terms containing
the nearest neighbors on the left-hand side of Eq. (3.42) and bring all other
terms to the right-hand side. This requires that these terms be evaluated
using values from the previous iteration. However, this is not a good practice
and may lead to the divergence of the iterations because the terms treated
explicitly may be substantial. To prevent divergence, strong under-relaxation
of the changes from one iteration to the next would be required (see Sect.
5.4.3), resulting in slow convergence.

A better approach is to compute the terms that are approximated with
a higher-order approximation explicitly and put them on the right-hand side
of the equation. Then one takes a simpler approximation to these terms (one
that gives a small computational molecule) and puts it both on the left-hand
side of the equation (with unknown variable values) and on the right-hand
side (computing it explicitly using existing values). The right-hand side is now
the difference between two approximations of the same term, and is likely to
be small. Thus it should cause no problems in the iterative solution procedure.
Once the iterations converge, the low order approximation terms drop out
and the obtained solution corresponds to the higher-order approximation.

Since iterative methods are usually necessary due to the non-linearity of
the equations to be solved, adding a small term to the part treated explicitly
increases the computing effort by only a small amount. On the other hand,
both the memory and computing time required are greatly reduced when
the size of the computational molecule in the part of the equation treated
implicitly is small.

We shall refer to this technique very often. It is used when treating
higher-order approximations, grid non-orthogonality, and corrections needed
to avoid undesired effects like oscillations in the solution. Because the right-
hand side of the equation can be regarded as a “correction” this method is
called deferred correction. Here its use will be demonstrated in conjunction
with Padé schemes in FD (see Sect. 3.3.3) and with higher-order interpola-
tions in FV-methods (see Sect. 4.4.4).

If Padé schemes are to be used in implicit FD-methods, deferred correction
must be employed since approximation of the derivative at one node involves
derivatives at neighboring nodes. One approach is to use the “old values”
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of the derivatives at neighboring nodes and variable values at distant nodes.
These are usually taken from the result of the preceding iteration and we
have:

0\ i1 — ¢ biva — bia \
(52),=* + )

2 Az 4 Az

9 old 9 old
—a (6—ﬁ> —a (6—Z> (5.80)

i+1 i—-1

In this case, only the first term on the right hand side of this equation will
be moved to the left hand side of the equation to be solved at the new outer
iteration.

However, this approach may affect the convergence rate adversely since
the implicitly treated part is not an approximation to the derivative but,
rather, some multiple of it. The following version of deferred correction is
more efficient:

(@) _ b — b1 (3_¢> Fadé _ fit1 — hi
oz ), 2Ax Oz 2Ax

old
(5.81)

i

Here, the complete second-order CDS approximation is used on the left
hand side. On the right-hand side we have the difference between the ex-
plicitly computed Padé scheme derivative and the explicitly computed CDS-
approximation. This gives a more balanced expression because, where the
second-order CDS is accurate enough, the term in square brackets is negli-
gible. Instead of CDS, we could use UDS for the implicit part; in that case,
the UDS approximation should be used on both sides of the equation.
Deferred correction is also useful in FV-methods when higher-order
schemes are used (see Sect. 4.4.4). Higher-order flux approximations are com-
puted ezplicitly and this approximation is then combined with an implicit
lower-order approximation (which uses only variable values at nearest neigh-
bors) in the following way (first suggested by Khosla and Rubin, 1974):

)old

F,=Fr+ (F!' - Fr (5.82)

FL stands for the approximation by some lower-order scheme (UDS is often
used for convective and CDS for diffusive fluxes) and F!! is the higher-order
approximation. The term in brackets is evaluated using values from the pre-
vious iteration, as indicated by the superscript ‘old’. It is normally small
compared to the implicit part, so its explicit treatment does not affect the
convergence significantly.

The same approach can be applied to all high-order approximations in-
cluding spectral methods. Although deferred correction increases the com-
putation time per iteration relative to that for a pure low-order scheme, the
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additional effort is much smaller than that needed to treat the entire higher-
order approximation implicitly. One can also multiply the “old” term with
a blending factor between zero and unity to produce a mixture of the pure
low-order and pure high-order schemes. This is sometimes used to avoid os-
cillations which result when higher-order schemes are used on grids that are
not sufficiently fine. For example, when flow around a body is computed, one
would like to use a fine grid near the body and a coarser grid far from it.
A high-order scheme may produce oscillations in the coarse-grid region, thus
spoiling the whole solution. Since the variables vary slowly in the coarse-grid
region, we may reduce the order of approximation there without affecting
the solution in the fine-grid region; this can be achieved by using a blending
factor in the outer region only.

More details on other uses of deferred-correction approach will be given
in subsequent chapters.

5.7 Convergence Criteria and Iteration Errors

When using iterative solvers, it is important to know when to quit. The most
common procedure is based on the difference between two successive iterates;
the procedure is stopped when this difference, measured by some norm, is less
than a pre-selected value. Unfortunately, this difference may be small when
the error is not small and a proper normalization is essential.

From the the analysis presented in Sect. 5.3.2, we find (see Egs. (5.14)
and (5.27)):

0" ="t — 9" x (M~ D)(M) a1¢1 (5.83)

where 6" is the difference between solution at iterations n + 1 and n, and A,
is the largest eigenvalue or spectral radius of the iteration matrix. It can be
estimated from:

167
Al & ,
P e

(5.84)

where ||a|| represents the norm (e.g. root mean square or Ly norm) of a.
Once an estimate of the eigenvalue is available, it is not difficult to esti-
mate the iteration error. In fact, by rearranging Eq. (5.83), we find:

611,
€n:¢——¢"%;\l—_1. (585)

A good estimate of the iteration error is therefore:

12
||~y L 5.
el ~ 3= (5.86)
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This error estimate can be computed from the two successive iterates of the
solution. Although the method is designed for linear systems, all systems are
essentially linear near convergence; as this is the time when error estimates
are most needed, the method can be applied to nonlinear systems as well.

Unfortunately, iterative methods often have complex eigenvalues. When
this is the case, the error reduction is not exponential and may not be mono-
tonic. Since the equations are real, complex eigenvalues must occur as con-
jugate pairs. Their estimation requires an extension of the above procedure.
In particular, data from more iterates are required. Some of the ideas used
below are found in Golub and van Loan (1990).

If the eigenvalues of largest magnitude are complex, there are at least two
of them and Eq. (5.27) must be replaced by

€' ~ar(A)"Y1 +ay(A])"YT, (5.87)

where * indicates the conjugate of a complex quantity. As before, we subtract
two successive iterates to obtain 6", see Eq. (5.83). If we further let:

w= (A —1lar¥1, (5.88)
then the following expression is obtained:
0"~ (M) w+ (A])"w™ . (5.89)

Since the magnitude of the eigenvalue A; is the quantity of greatest interest,
we write:

A =Lel? . (5.90)
A straight-forward calculation then shows that:
2P =872 6" - 67 6L = 20772 w|?[cos(29) - 1], (5.91)

from which it is easy to show that:

P (5.92)

zn—1

is an estimate of the magnitude of the eigenvalue.

Estimation of the error requires further approximations. The complex
eigenvalues cause the errors to oscillate and the shape of the error is not
independent of the iteration number, even for large n. To estimate the error,
we compute 6™ and £ from expressions given above. Due to the complex
eigenvalues and eigenvectors, the result contains terms proportional to the
cosine of the phase angle. As we are interested only in magnitudes, we assume
that these terms are zero in an average sense and drop them. This allows us
to find a simple relationship between the two quantities:

n
€ & . (5.93)
VEZ+1
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This is the desired estimate of the error. Due to the oscillations in the solution,
the estimate may not be accurate on any particular iteration, but, as we shall
show below, it is quite good on the average.

In order to remove some of the effects of the oscillation, the eigenvalue
estimates should be averaged over a range of iterations. Depending on the
problem and the number of anticipated iterations, the averaging range may
vary from 1 to 50 (typically 1% of the expected number of iterations).

Finally, we want a method that can treat both real and complex eigen-
values. The error estimator for the complex case (5.93) gives low estimates if
the principal eigenvalue (A;) is real. Also, the contribution of A, to 2™ drops
out in this case so the eigenvalue estimate is quite poor. However, this fact
can be used to determine whether A; is real or complex. If the ratio

zn
r= TP (5.94)
is small, the eigenvalue is probably real; if r is large, the eigenvalue is prob-
ably complex. For real eigenvalues,  tends to be smaller than 10~2 and, for
complex eigenvalues, r &~ 1. One can therefore adopt a value of » = 0.1 as
an indicator of type of eigenvalue and use the appropriate expression for the
error estimator.

A compromise is to use the reduction of the residual as a stopping crite-
rion. Iteration is stopped when the residual norm has been reduced to some
fraction of its original size (usually by three or four orders of magnitude). As
we have shown, the iteration error is related to the residual via Eq. (5.15) so
reduction of the residual is accompanied by reduction of the iteration error. If
the iteration is started from zero initial values, than the initial error is equal
to the solution itself. When the residual level has fallen say three to four
orders of magnitude below the initial level, the error is likely to have fallen
by a comparable amount, i.e. it is of the order of 0.1% of the solution. The
residual and the error usually do not fall in the same way at the beginning
of iteration process; caution is also needed because, if the matrix is poorly
conditioned, the error may be large even when the residual is small.

Many iterative solvers require calculation of the residual. The above ap-
proach is then attractive as it requires no additional computation. The norm
of residual prior to the first inner iteration provides a reference for checking
the convergence of inner iterations. At the same time it provides a measure
of the convergence of the outer iterations. Experience shows that inner iter-
ations can be stopped when the residual has fallen by one to two orders of
magnitude. Outer iterations should not be stopped before the residual has
been reduced by three to five orders of magnitude, depending on the desired
accuracy. The sum of absolute residuals (the L; norm) can be used instead
of the r.m.s. (L,) norm. The convergence criterion should be more stringent
on refined grids, because the discretization errors are smaller on them than
on coarse grids.
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If the order of the initial error is known, it is possible to monitor the
norm of the difference between two iterates and compare it with the same
quantity at the beginning of the iteration process. When the difference norm
has fallen three to four orders of magnitude, the error has usually fallen by
a comparable amount.

Both of these methods are only approximate; however, they are better
than the criterion based on the non-normalized difference between two suc-
cessive iterates.
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Fig. 5.3. Variation of the norm of the exact iteration error, error estimate, residual
and difference between two iterations for the Laplace problem with the SOR, solver
on a 20 x 20 CV grid: relaxation parameter smaller (left) and larger (right) than
the optimum

In order to test the method of estimating iteration errors, we first present
the solution of a linear 2D problem using the SOR solver. The linear problem
is Laplace equation in the square domain {0 < z < 1; 0 < y < 1} with
Dirichlet boundary conditions chosen to correspond to the solution ¢(z,y) =
100 zy. The advantage of this choice is that the second order central difference
approximation to the converged solution is exact on any grid so the actual
difference between the present iterate and the converged solution is easily
computed. The initial guess of the solution is zero everywhere within the
domain. We chose the SOR method as the iterative technique because, if the
relaxation parameter is greater than the optimum value, the eigenvalues are
complex.
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Results are shown for uniform grids with 20 x 20 and 80 x 80 CV in Figs.
5.3 and 5.4. In each case, the norms of the exact iteration error, the error
estimate using the above described technique, the difference between two
iterates and the residual are shown. For both cases the results of calculation
for two values of the relaxation parameter are shown: one below the optimum
value, which has real eigenvalues, and one above the optimum, leading to
complex eigenvalues. For the case of real eigenvalues, smooth exponential
convergence results. The error estimate is almost exact in this case (except in
the initial period). However, the norms of the residual and difference between
two iterates initially fall too rapidly and do not follow the fall of the iteration
error. This effect is more pronounced as the grid is refined. On the 80 x 80
CV grid, the residual norm is quickly reduced by two orders of magnitude
while the error is only slightly reduced. Once the asymptotic reduction rate
is achieved, the slopes of all four curves are the same.
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Fig. 5.4. Variation of the norm of the exact iteration error, error estimate, residual
and difference between two iterations for the Laplace problem with the SOR solver
on a 80 x 80 CV grid: relaxation parameter smaller (left) and larger (right) than
the optimum

In the case for which the eigenvalues of the iteration matrix are complex,
the convergence is not monotonic ~ there are oscillations in the error. The
comparison of predicted and exact errors is in this case also quite satisfactory.
All of the above mentioned convergence criteria seem to be equally good in
this case.

Further examples of the estimation of iteration errors, especially for the
outer iterations in case of solving coupled flow problems, will be presented
later.
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5.8 Examples

In the previous chapter we presented solutions of some 2D problems without
discussing the methods of solution. We shall now show the performance of
various solvers for the case of scalar transport in a stagnation point flow; see
Sect. 4.7 for the description of problem and discretization techniques used to
derive the linear algebraic equations.

We consider the case with I" = 0.01 and uniform grids with 20 x 20, 40 x40
and 80 x 80 CVs. The equation matrix A is not symmetric and, in case of
CDS discretization, it is not diagonally dominant. In a diagonally dominant
matrix, the element on the main diagonal satisfies the following condition:

Ap > > Al (5.95)
{

It can be shown that a sufficient condition for convergence of iterative solution
methods is that the above relation be satisfied, and that inequality must apply
at least at one node. This condition is satisfied only by UDS discretization of
convective terms. While simple solvers like Jacobi and Gauss-Seidel usually
diverge when the above condition is violated, ILU, SIP and conjugate gradient
solvers are less sensitive to diagonal dominance of the matrix.

We considered five solvers:

Gauss-Seidel, denoted by GS;

Line Gauss-Seidel using TDMA on lines z = const., denoted by LGS-X;
Line Gauss-Seidel using TDMA on lines y = const., denoted by LGS-Y;
Line Gauss-Seidel using TDMA alternately on lines £ = const. and y =
const., denoted by LGS-ADI;

e Stone’s ILU method, denoted by SIP.

Table 5.1 shows numbers of iterations required by the above solvers to reduce
the absolute residual sum by four orders of magnitude.

Table 5.1. Numbers of iterations required by various solvers to reduce the L;
residual norm by four orders of magnitude when solving the 2D scalar transport
problem in stagnation point flow

Scheme Grid GS LGS-X LGSY LGS-ADI SIP
20 x 20 68 40 35 18 14
UDS 40 x 40 211 114 110 52 21
80 x 80 720 381 384 175 44
20 x 20 - - - 12 19
CDS 40 x 40 163 95 7 39 19
80 x 80 633 349 320 153 40

From the table we see that LGS-X and LGS-Y solvers are about twice as
fast as GS; LGS-ADI is about twice as fast as LGS-X, and on the finer grids,
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SIP is about four times as fast as LGS-ADI. For the GS and LGS solvers, the
number of iterations increases by about a factor of four each time the grid
is refined; the factor is smaller in case of SIP and LGS-ADI, but, as we shall
see in the next example, the factor increases and asymptotically approaches
four in the limit of very fine grids.

Another interesting observation is that the GS and LGS solvers do not
converge on a 20 x 20 CV grid with CDS discretization. This is due to the fact
that the matrix is not diagonally dominant in this case. Even on the 40 x 40
CV grid, the matrix is not completely diagonally dominant, but the violation
is in the region of uniform distribution of the variable (low gradients) so the
effect on the solver is not as severe. The LGS-ADI and SIP solvers are not
affected.

We turn now to a test case for which an analytical solution exists and
the CDS approximation produces exact solution on any grid. This helps in
the evaluation of the iteration error but the behavior of the solver does not
benefit so this case is quite suitable for assessing solver performance. We are
solving the Laplace equation with Dirichlet boundary conditions, for which
the exact solution is ¢ = xy. The solution domain is a rectangle, the solution
is prescribed at all boundaries and the initial values in the interior are all
zero. The initial error is thus equal to the solution and is a smooth function of
spatial coordinates. Discretization is performed using FV method described
in the previous section and CDS scheme. Since the convection is absent, the
problem is fully elliptic.

The solvers considered are:

o Gauss-Seidel solver, denoted by GS;

¢ Line Gauss-Seidel solver using TDMA alternately along lines £ = const.
and y = const., denoted by LGS-ADI;

e ADI solver described in Sect. 5.3.5;

¢ Stone’s ILU method, denoted by SIP;

¢ Conjugate gradient method, preconditioned using incomplete Cholesky de-
composition, denoted ICCG;

e Multigrid method using GS as a smoother, denoted MG-GS;

o Multigrid method using SIP as a smoother, denoted MG-SIP.

Table 5.2 shows results obtained on uniform grids on a square solution
domain. LGS-ADI is again about four times as fast as GS, and the SIP is
about four times as fast as LGS-ADI. ADI is less efficient than SIP on coarse
grids but, when the optimum time step is chosen, the number of iterations
only doubles when the number of grid points in one direction is doubled, so
for fine grids it is quite effective. When the time step is varied in a cyclic
fashion, the solver becomes even more efficient. This is also true of SIP, but
cyclic variation of the parameter increases the cost per iteration. The number
of iterations required by ADI to reach convergence for various time steps is
given in Table 5.3. The optimum time step is reduced by a factor of two when
the grid is refined.
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Table 5.2. Numbers of iterations required by various solvers to reduce the normal-
ized L error norm below 10™° for the 2D Laplace equation with Dirichlet boundary
conditions on a square domain X x ¥ =1 x 1 with uniform grid in both directions

Grid GS LGS-ADI ADI SIP ICCG MG-GS MG-SIP

8§ x8 74 22 16 8 7 12 7

16 x 16 292 77 31 20 13 10 6
32 x 32 1160 294 64 67 23 10 6
64 x 64 4622 1160 132 254 46 10 6
128 x 128 - - 274 1001 91 10 6
256 x 256 - - - - 181 10 6

Table 5.3. Numbers of iterations required by ADI solver as a function of the time
step size (uniform grid in both directions, 64 x 64 CV)

1/At 80 68 64 60 32 16 8
No. Iter. 152 134 132 134 234 468 936

ICCG is substantially faster than SIP; the number of iterations doubles
when the grid is refined, so its advantage is bigger on fine grids. Multigrid
solvers are very efficient; with SIP as the smoother, only 6 iterations on the
finest grid are required. In the MG solvers, the coarsest level was 2 x 2 CV,
so there were three levels on the 8 x 8 CV grid and eight levels on the 256 x
256 CV grid. One iteration was performed on the finest grid and on all grids
after prolongation, while 4 iterations were performed during the restriction
phase. In SIP, the parameter a was set to 0.92. No attempt was made to find
optimum values of the parameters; the results obtained are representative
enough to show the trends and the relative performance of the various solvers.
Note also that the computing effort per iteration is different for each solver.
Using the cost of a GS iteration as a reference, we find the following relative
costs: LGS-ADI — 2.5, ADI - 3.0, SIP - 4.0 for the first iteration and 2.0
afterwards, ICCG — 4.5 for the first iteration and 3.0 afterwards. For MG
methods, one needs to multiply the number of iterations on the finest grid
by roughly 1.5 to account for the cost of iterations on coarse grids. MG-GS
is therefore computationally the most efficient solver in this case.

Since the rate of convergence is different for each solver, the relative cost
depends on how accurately we want to solve the equations. To analyze this
issue we have plotted the variation of the sum of absolute residuals, and the
variation of iteration error with iterations in Fig. 5.5. Two observations can
be made:

e The fall of the residual sum is irregular initially, but after a certain number
of iterations, the convergence rate becomes constant. An exception is the
ICCG solver, which becomes faster as iterations go on. When very accurate
solution is needed, MG solvers and ICCG are the best choice. If — as is the
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Fig. 5.5. Variation of the L; norm of residual (left) and iteration error (right) as
a function of the number of performed iterations for various solvers and a 64 x 64
CV grid

case when solving non-linear problems — moderate accuracy is needed, SIP
becomes competitive, and even ADI may be good enough in this case.

e The initial reduction of residual norm is not accompanied by an equal
reduction of iteration error for the GS, SIP, ICCG and ADI solvers. Only
MG solvers reduce the error and the residual norm at the same pace.

These conclusions are quite general, although there are problem dependent
features. We shall show similar results for the Navier-Stokes equations later.
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r
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I —— 32 x32CV
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- ~. Fig. 5.6. Number of iterations required to
0 T e e B reduce the L residual norm below 10™* in
o .2 4 6 .8 10 the above 2D Laplace problem using SIP

a solver, as a function of the parameter o
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Since the SIP solver is used in CFD on structured grids, we show the
dependence of the number of iterations required to reach convergence on the
parameter a in Fig. 5.6. For @ = 0 the SIP reduces to the standard ILU
solver. With the optimum value of «, SIP is about six times as fast as ILU.
The problem with SIP is that the optimum value of « lies at the end of
the range of usable values: for « slightly larger than the optimum value, the
method does not converge. The optimum value usually lies between 0.92 and
0.96. It is safe to use @ = 0.92, which is usually not optimum, but it provides
about five times the speed of the standard ILU method.

Some solvers are affected by cell aspect ratio, because the magnitudes of
coefficients becomes non-uniform. Using a grid with Az = 10 Ay makes An
and Ag 100 times larger than Aw and Ag (see example section of the previous
chapter). To investigate this effect we solved the Laplace equation problem
described above on a rectangular region X x Y = 10 x 1 using the same
number of grid nodes in each direction. Table 5.4 shows numbers of iterations
required to reduce the normalized L, residual norm below 1072 for various
solvers. The GS solver is not affected, but it is no longer a suitable smoother
for the MG method. LGS-ADI and SIP solvers become substantially faster
compared to the square grid problem. ICCG also performs slightly better.
MG-SIP is not affected but MG-GS deteriorates considerably.

Table 5.4. Numbers of iterations required by various solvers to reduce the nor-
malized L, residual norm below 107° for the 2D Laplace equation with Dirichlet
boundary conditions on a rectangular domain X x Y = 10 x 1 with uniform grid
in both directions

Grid GS LGS-ADI SIP ICCG MG-GS MG-SIP

8§ x8 74 5 4 4 54 3

16 x 16 293 8 6 6 140 4
32 x 32 1164 18 13 11 242 5
64 x 64 4639 53 38 21 288 6
128 x 128 - 189 139 41 283 6
256 x 256 - - - 82 270 6

This behavior is typical and is also found in convection/diffusion problems
(although the effect is less pronounced) and on non-uniform grids which have
both small and large cell aspect ratios. A mathematical explanation for the
worsening of GS and improvement of ILU performance with increasing aspect
ratio is given by Brandt (1984).

Finally we present some results for the solution of a Poisson equation with
Neumann boundary conditions in 3D. The pressure and pressure-correction
equations in CFD are of this type. The equation solved is:

¢ 0*¢ 0%

302 + %7 tea = sin(z*n) sin(y*n) sin(z*7) , (5.96)
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Table 5.5. Numbers of iterations required by various solvers to reduce the L,
residual norm below 107* for the 3D Poisson equation with Neumann boundary
conditions

Grid GS SIP ICCG CGSTAB FMG-GS FMG-SIP

8 66 27 10 7 10 6
163 230 81 19 12 10 6
328 882 316 34 21 9 6
643 - 1288 54 41 7 6

where z* = z/X, y* = y/Y, 2* = 2/Z, and X, Y, Z are the dimensions of
the solution domain. The equation is discretized using FV method. The sum
of the source terms over the domain is zero, and Neumann boundary con-
ditions (zero gradient normal to boundary) were specified at all boundaries.
In addition to GS, SIP and ICCG solvers introduced above, we used also
the CGSTAB method with incomplete Cholesky preconditioning. The initial
solution is zero. The numbers of iterations required to reduce the normalized
sum of absolute residuals four orders of magnitude are presented in Table
5.5.

The conclusions reached from this exercise are similar to those drawn
from 2D problems with Dirichlet boundary conditions. When an accurate
solution is required, GS and SIP become inefficient on fine grids; conjugate
gradient solvers are a better choice, and multigrid methods are best. The
FMG strategy, in which the solution on a coarse grid provides the initial
solution for the next finer grid, is better than straight multigrid. FMG with
ICCG or CGSTAB as a smoother requires even fewer iterations (three to four
on the finest grid), but the computing time is higher than for MG-SIP. The
FMG principle can be applied to other solvers as well.



6. Methods for Unsteady Problems

6.1 Introduction

In computing unsteady flows, we have a fourth coordinate direction to con-
sider: time. Just as with the space coordinates, time must be discretized. We
can consider the time “grid” in either the finite difference spirit, as discrete
points in time, or in a finite volume view as “time volumes”. The major differ-
ence between the space and time coordinates lies in the direction of influence:
whereas a force at any space location may (in elliptic problems) influence the
flow anywhere else, forcing at a given instant will affect the flow only in
the future — there is no backward influence. Unsteady flows are, therefore,
parabolic-like in time. This means that no conditions can be imposed on the
solution (except at the boundaries) at any time after the initiation of the cal-
culation, which has a strong influence on the choice of solution strategy. To
be faithful to the nature of time, essentially all solution methods advance in
time in a step-by-step or “marching” manner. These methods are very similar
to ones applied to initial value problems for ordinary differential equations
(ODEs) so we shall give a brief review of such methods in the next section.

6.2 Methods for Initial Value Problems in ODEs

6.2.1 Two-Level Methods

For initial value problems, it is sufficient to consider the first order ordinary
differential equation with an initial condition:

de(t
WO _ ft.000; otto) =0 6.)
The basic problem is to find the solution ¢ a short time At after the initial
point. The solution at t; = to + At, ¢!, can be regarded as a new initial
condition and the solution can be advanced to to = t; + At, t3 =5 + At, ...
etc.
The simplest methods can be constructed by integrating Eq. (6.1) from

tn t0 tney = tn + At
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tnt1 tnt1

[ La=g-s= [ seoma, (62)

tn. tn.

where we use the shorthand notation ¢"*! = ¢(tn+1). This equation is ex-
act. However, the right hand side cannot be evaluated without knowing the
solution so some approximation is necessary. The mean value theorem of cal-
culus guarantees that if the integrand is evaluated at the proper point ¢t = 7
between t,, and tn4+1, the integral is equal to f(7,¢(7)) At but this is of lit-
tle use since 7 is unknown. We therefore use some approximate numerical
quadrature to evaluate the integral.

Four relatively simple procedures are given below; a geometric picture is
provided in Fig. 6.1.

If the integral on the right hand side of Eq. (6.2) is estimated using the
value of the integrand at the initial point, we have:

"™t =™ + f(tn, ¢™) At (6.3)

which is known as the explicit or forward Euler method.
If, instead, we use the final point in estimating the integral, we obtain the
implicit or backward Fuler method:

"t =™ + ftnsr, 9™ At (6.4)
Still another method can be obtained by using the midpoint of the interval:
$" = @™ + f(tniy, 87T E) At (6.5)

which is known as the midpoint rule and may be regarded as the basis of
an important method for solving partial differential equations — the leapfrog
method.

- T T —l -
to t g+ At to to+ At to to+ At to tot+ AL

Fig. 6.1. Approximation of the time integral of f(t) over an interval At (from left to
right: explicit Euler, implicit Euler, trapezoidal rule and midpoint rule, respectively)

Finally, one can use straight line interpolation between the initial and
final points to construct the approximation:

= 6" 4 [t 87) + Fltnsr, 6] At (6.6)
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which is called the trapezoid rule and is the basis for a popular method of
solving partial differential equations — the Crank-Nicolson method.

Collectively, these methods are called two-level methods because they in-
volve the values of the unknown at only two times (the midpoint rule may or
may not be regarded as a two-level method depending on what further ap-
proximations are employed). Analysis of these methods can be found in texts
on the numerical solution of ordinary differential equations (see the bibliog-
raphy) and will not be repeated here. We shall simply review some of their
most important properties. First we note that all of the methods but the first
require the value of ¢(t) at some point other than t = #,, (which is the initial
point of the integration interval at which the solution is known). Therefore,
for these methods, the right hand side cannot be calculated without further
approximation or iteration. Thus, the first method belongs to the class called
ezplicit methods while all of the others are implicit.

All methods produce good solutions if At is small. However, the behavior
of methods for large step size is important because, in problems with widely
varying time scales (including many problems in fluid mechanics), the goal
is often to compute the slow, long term behavior of the solution and the
short time scales are merely a nuisance. Problems with a wide range of time
scales are called stiff and are the greatest difficulty one faces in the solution
of ordinary differential equations. It is therefore important to inquire about
the behavior of methods when the step size is large. This raises the issue of
stability.

There are a number of definitions of stability in the literature. We shall use
a rough definition that calls a method stable if it produces a bounded solution
when the solution of the underlying differential equation is also bounded. For
the explicit Euler method, stability requires:

0f(t ¢)

a5 | <1 (6.7)

|1+At

which, if f(¢, ¢) is allowed to have complex values, requires that At 3 f (¢, ¢)/0¢
be restricted to the unit circle with center at -1. {Complex values must be
considered because higher order systems may have complex eigenvalues. Only
values with zero or negative real part are of interest because they lead to
bounded solutions.} A method with this property is called conditionally sta-
ble; for real values of f, Eq. (6.7) reduces to (see Eq. (6.1)):

21(t,9)
,At 5

All of the other methods defined above are unconditionally stable i.e. they
produce bounded solutions for any time step if f(t, ¢)/0¢ < 0. However, the
implicit Euler method tends to produce smooth solutions even when At is
very large while the trapezoid rule frequently yields solutions which oscillate
with little damping. Consequently, the implicit Euler method tends to behave

<2. (6.8)
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well, even for non-linear equations, while the trapezoid rule may be unstable
for non-linear problems.

Finally, the question of accuracy needs to be considered. On a global
scale, it is difficult to say much about this issue due to the incredible variety
of equations that one might need to deal with. For a single small step it is
possible to use Taylor series to show that the explicit Euler method, starting
with the known solution at ¢,,, yields the solution at time ¢, + At with an error
proportional to (At)2. However, as the number of steps required to compute
to some finite final time ¢t = {¢ + T is inversely proportional to At, and an
error is incurred on each step, the error will at the end be proportional to At
itself. Therefore, explicit Euler method is a first order method. The implicit
Euler method is also a first order method, while the trapezoid and midpoint
rule methods have errors proportional to (At)? and are therefore second order
methods. It can be shown that second order is the highest order achievable
by a two-level scheme.

It is important to note that the order of a method is not the sole indicator
of its accuracy. While it is true that, for small enough step size, a high order
method will have a smaller error than a low order one, it is also true that two
methods of the same order may have errors that differ by as much as an order
of magnitude. The order determines only the rate at which the error goes to
zero as the step size goes to zero, and this only after the step size has become
small enough. ‘Small enough’ is both method and problem dependent and
cannot be determined a priori.

When the step size is small enough, one can estimate the discretization
error in the solution by comparing solutions obtained using two different step
sizes. This method, known as Richardson extrapolation, has been described in
Chap. 3, and applies to both spatial and temporal discretization errors. The
error can also be estimated by analyzing the difference in solutions produced
by two schemes of different order; this will be discussed in Chap. 11.

6.2.2 Predictor-Corrector and Multipoint Methods

The properties that we have found for two-level methods are quite general.
Explicit methods are very easy to program and use little computer memory
and computation time per step but are unstable if the time step is large.
On the other hand, implicit methods require iterative solution to obtain the
values at the new time step. This makes them harder to program and they
use more computer memory and time per time step, but they are much more
stable. (The implicit methods described above are unconditionally stable; this
is not true of all implicit methods but they are generally more stable than
their explicit counterparts.) One might ask whether it is possible to combine
the best of the two methods. Predictor-corrector methods are an attempt to
do this.

A wide variety of predictor-corrector methods has been developed; for the
present, we shall give just one, which is so well-known that it is often called
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the predictor-corrector method. In this method, the solution at the new time
step is predicted using the explicit Euler method:

Gn1 = 0" + f(tn,¢") AL, (6.9)

where the ¥ indicates that this is not the final value of the solution at ¢,4;.
Rather, the solution is corrected by applying the trapezoid rule using ¢,
to compute the derivative:

= " 4 5[t 6 + (b, 40)] A (6.10)

This method can be shown to be second order accurate (the accuracy of the
trapezoid rule) but has roughly the stability of the explicit Euler method.
One might think that by iterating the corrector, the stability might be im-
proved but this turns out not to be the case because this iteration procedure
converges to the trapezoid rule solution only if At is small enough.

This predictor-corrector method belongs to the two-level family, for which
the highest accuracy possible is second order. For higher-order approxima-
tions one must use information at more points. The additional points may
be ones at which data has already been computed or points between ¢,, and
tn+1 which are used strictly for computational convenience; the former are
called multipoint methods, the latter, Runge-Kutta methods. Here, we shall
present multipoint methods; Runge-Kutta methods are presented in the next
section.

The best known multipoint methods, the Adams methods, are derived
by fitting a polynomial to the derivatives at a number of points in time.
If a Lagrange polynomial is fit to f(tn—m,®™ ™), f(ta—m+1,®" ™), ...,
f(tn, ™), and the result is used to compute the integral in Eq. (6.2), we
obtain an explicit method of order m + 1; methods of this type are called
Adams-Bashforth methods. For the solution of partial differential equations,
only the lower order methods are used. The first order method is explicit
Euler while the second and third order methods are:

n n, At n n—
™ = 6"+ o [3 £(tns ") = fltn-s, "] (6.11)
and
n+1 n At n n—1 n—2
¢ = ¢+ 5 (23 f(tn, ¢")=16 £ (ta1,6"7)+5 Fltn-z, ")) (6.12)
If data at £, is included in the interpolation polynomial, implicit methods,
known as Adams-Moulton methods, are obtained. The first order method is

implicit Euler, the second order one is trapezoid rule and the third order
method is:

G = 6" L[5t 6) + 85 (10, %) ~ St 8™ (6,13
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A common method uses the (m — 1)st order Adams-Bashforth method as a
predictor and the mth order Adams-Moulton method as a corrector. Thus,
predictor-corrector methods of any order can be obtained.

The multipoint approach has the advantage that it is relatively easy to
construct methods of any order. These methods are also easy to use and
program. A final advantage is that they require only one evaluation of the
derivative per time step (which may be very complicated, especially in ap-
plications involving partial differential equations), making them relatively
cheap. (The values of f(t,#(t)) are required several times, but they can be
stored once calculated, so that only one evaluation per time step is required.)
Their principal disadvantage is that, because they require data from many
points prior to the current one, they cannot be started using only data at the
initial time point. One has to use other methods to get calculation started.
One approach is to use a small step size and a lower order method (so that
the desired accuracy is achieved) and slowly increase the order as more data
become available.

These methods are the basis for many accurate ordinary differential equa-
tion solvers. In these solvers, error estimators are used to determine the ac-
curacy of the solution at every step. If the solution is not accurate enough,
the order of the method is increased up to the maximum order allowed by
the program. On the other hand, if the solution is much more accurate than
necessary, the order of the method might be reduced to save computing time.
Because the step size is difficult to change in multipoint methods, this is done
only when the maximum order of the method has already been reached.!

Because multipoint methods use data from several time steps, they may
produce non-physical solutions. Space does not permit inclusion of the anal-
ysis here but it is worth noting that the instabilities of multipoint methods
are most often due to the non-physical solutions. These may be suppressed,
but not entirely, by a careful choice of the starting method. It is common
for these methods to give an accurate solution for some time and then be-
gin to behave badly as the non-physical component of the solution grows. A
common remedy for this problem is to restart the method every so often, a
trick that is effective but may reduce the accuracy and/or the efficiency of
the scheme.

6.2.3 Runge-Kutta Methods

The difficulties in starting multipoint methods can be overcome by using
points between t,, and ¢, rather than earlier points. Methods of this kind
are called Runge-Kutta methods. We shall give just two examples.

! The quadrature approximations used above assume a uniform time step; if the
time step is allowed to vary, the coefficients multiplying the function values at
different time levels become complicated functions of step sizes, as we saw in
Chap. 3 for finite differences in space.
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The second order Runge-Kutta method consists of two steps. The first
may be regarded as a half-step predictor based on the explicit Fuler method;
it is followed by a midpoint rule corrector which makes the method second
order:

§ = " Dt f 1y, y) - (6.15)

This method is easy to use and is self-starting i.e. it requires no data other
than the initial condition required by the differential equation itself. In fact,
it is very similar in many ways to the predictor-corrector method described
above.

Runge-Kutta methods of higher order have been developed; the most pop-
ular one is of fourth order. The first two steps of this method use an explicit
Euler predictor and an implicit Euler corrector at ¢, +1- This is followed by a
midpoint rule predictor for the full step and a Slmpson s rule final corrector
that gives the method its fourth order. The method is:

¢n+2 ¢n + a f(tn)¢n) (616)
A
By ="+ T Fltny By (6.17)
b1 = 9" + Atf(tn+%»¢;1%) ) (6.18)
G = 6 b S F(t ™) 42 fltysr sy )+
6 L/ b Oty (6.19)

2 f(tnegs @0, ) + £ (b, 6]

A number of variations on this method have been developed. In particular,
there are several methods which add a fifth step of either fourth or fifth order
to allow estimation of the error and, thereby, the possibility of automatic error
control.

The major problem with Runge-Kutta methods is that it is somewhat
difficult to develop methods of very high order and, as is readily seen from
the methods given above, an nth order Runge-Kutta method requires that
the derivative be evaluated n times per time step, making these methods
more expensive than multipoint methods of comparable order. In partial
compensation, the Runge-Kutta methods of a given order are more accurate
(i.e. the coefficient of the error term is smaller) and more stable than the
multipoint methods of the same order.
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6.2.4 Other Methods

One can approximate the integrals on both sides of Eq. (6.2) by mean values
over the integration interval.

An implicit three-level second order scheme can be constructed by inte-
grating over a time interval At centered around t,4; (i.e. from t,; — At/2
to tny1 + At/2) and applying the midpoint rule to both the left and right
hand sides of the equation. The time derivative at t,+: can be approximated
by differentiating a parabola forced through solutions at three time levels,
tn—1, tn, and t,1:

d(ﬁ 3¢n+1 _ 4¢n + ¢n—l
n+1
This leads to the following method:
4 1, 2 n
"t = 545" - 545" L4 3 Fltng1, @™ ) At (6.21)

The scheme is implicit, since f is evaluated at the new time level. It is of
second order and very easy to implement, but as it is implicit, it requires
iteration at each time step.

6.3 Application to the Generic Transport Equation

We next consider application of some of the methods given above to the
generic transport equation (1.28). In Chaps. 3 and 4, discretization of the
convective and diffusive fluxes and source terms for steady problems was
discussed. These terms can be treated in the same way for unsteady flows;
however, the question of the time at which the fluxes and sources are to be
evaluated must be answered.

If the conservation equation is rewritten in a form which resembles the
ordinary differential equation (6.1), e.g.:

@ = —div (p¢v) + div (I"grad ¢) + g4 = f(t,9(t)) , (6.22)
any method of time integration can be used. The function f(¢,¢) represents
the sum of convective, diffusive and source terms, all of which now appear on
the right hand side of the equation. Since these terms are not known, we must
use one of the quadrature approximations introduced above. The convective,
diffusive and source terms are discretized using one of the methods presented
in Chaps. 3 and 4 at one or more time levels. If an explicit method is used for
time integration, these terms have to be evaluated only at times for which the
solution is already known, so they can be calculated. For an implicit method,
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the discretized right hand side of the above equation is required at the new
time level, for which the solution is not known yet. Therefore, an algebraic
system of equations, which differs from the one obtained for steady problems,
must be solved. We shall analyze properties of some of the common schemes
when applied to a 1D problem below; solutions of a 1D and a 2D problem
will be discussed in the examples section.

6.3.1 Explicit Methods

Explicit Euler Method. The simplest method is explicit Euler in which
all fluxes and sources are evaluated using known values at t,. In the equation
for a CV or grid point, the only unknown at the new time level is the value at
that node; the neighbor values are all evaluated at earlier time levels. Thus
one can explicitly calculate the new value of the unknown at each node.

In order to study properties of the explicit Euler and other simple schemes,
we consider the 1D version of Eq. (6.22) with constant velocity, constant fluid
properties, and no source terms:

2
@=—u6—¢ E?——f (6.23)
ot Oz p Ox2

This equation is often used in the literature as a model equation for the
Navier-Stokes equations. It is the time dependent version of the equation
(3.61) used to illustrate methods for steady problems. Like that equation,
it assumes that the important balance is between advection and streamwise
diffusion, a balance that rarely occurs in real flows. For this reason, one
must be careful about extending what is learned from this equation to the
Navier-Stokes equations. Despite this important shortcoming, we can learn
something by considering Eq. (6.23).

We first assume that the spatial derivatives are approximated using CDS
and that the grid is uniform in z-direction. In this case the same algebraic
equation results from both FD and FV discretizations. The new variable
value, ¢7!, is:

G =" T gl + P — 247
n—}-l — A7 _ 1+1 i—1 S 741 i—1 i At 6.24
A . (629)
which can be rewritten:
ntl (] n _ S\ yn Y on
ot = (12 ¢ + (d= o) ¢ + (d+5) o2 (6.25)
where we introduced the dimensionless parameters:
I At At
d= and c¢=— (6.26)

p(Az)? Az
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The parameter d is the ratio of time step At to the characteristic diffusion
time p(Az)?/I", which is roughly the time required for a disturbance to be
transmitted by diffusion over a distance Az. The second quantity (¢) is the
ratio of time step At to the characteristic convection time, u/Az, the time
required for a disturbance to be convected a distance Az. This ratio is called
Courant number and is one of the key parameters in computational fluid
dynarmnics.

If ¢ were the temperature (a possibility), Eq. (6.25) would need to satisfy
several conditions. By virtue of diffusion, an increase in temperature at any
of the three points x;_;, z; and z;4+; at the old time level should increase
the temperature at point z; at the new time level. The same can be said
for the points z;_; and z; with respect to convection, assuming uv > 0. If ¢
represents the concentration of a substance, it should not be negative.

The possibility that some of the coefficients of 7' and Bi ! in Eq. (6.25)
can become negative should alert us to possible trouble and demands a more
detailed analysis. To the extent possible, we want this analysis to mimic
the one used for ordinary differential equations. A simple way to do this was
invented by von Neumann for whom the method is named. He argued that the
boundary conditions are rarely the cause of problems (there are exceptions
that are not relevant here) so why not ignore them altogether? If that is
done, the analysis is simplified. Since this method of analysis can be applied
to essentially all of the methods discussed in this chapter, we shall describe
it in a little detail; for further details, see the book by Strikwerda {1983).

In essence the idea can be arrived at as follows. The set of Egs. (6.25) can
be written in matrix form:

¢n+1 — A¢n , (627)

where the elements of the tridiagonal matrix A can be derived by inspection
of Eq. (6.25). This equation gives the solution at the new step in terms of
the solution at the previous step. The solution at ¢,41 can thus be obtained
by repetitive multiplication of the initial solution ¢° by the matrix A. The
question is: do the differences between solutions at successive time steps (for
non-varying boundary conditions), measured in any convenient way, increase,
decrease, or stay the same as n is increased? For example, one measure is the
norm:

=g -4t = \/Zw - (6.29

The differential equation requires this quantity to decrease with time through
the action of dissipation. Eventually, a steady-state solution will be obtained
if the boundary conditions do not vary. Naturally, we would like the numerical
method to preserve this property of the exact equations.

This issue is closely connected with the eigenvalues of the matrix A. If
some of them are greater than 1, it is not difficult to show that ¢ will grow
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with n while, if all of them are smaller than 1, € will decay. Normally, the
eigenvalues of a matrix are difficult to estimate and, for a problem more
difficult than this, we would be in serious trouble. The saving feature of
this problem is that, because each diagonal of the matrix is constant, the
eigenvectors are easily found. They can be represented in terms of sines and
cosines but it is simpler to use the complex exponential form:

¢ = otel®d | (6.29)
where i = v/—1 and « is a wavenumber that can be chosen arbitrarily; the
choice will be discussed below. If Eq. (6.29) is substituted into Eq. (6.25), the
complex exponential term e'®/ is common to every term and can be removed
and we obtain an explicit expression for the eigenvalue o:

=1+ 2d(cosa —1)+i2¢csina. (6.30)

The magnitude of this quantity is what is important. Since the magnitude of
a complex quantity is the sum of the squares of the real and imaginary parts,
we have:

0 = [L+2d(cosa — 1)]* + 4c’sin’ . (6.31)

We now investigate the conditions for o2 to be smaller than unity.

Since there are two independent parameters in the expression for o, it is
simplest to consider special cases first. When there is no diffusion (d = 0),
o > 1 for any o and this method is unstable for any value of ¢, i.e. the method
is unconditionally unstable, rendering it useless. On the other hand, when
there is no convection (¢ = 0), we find that ¢ is maximum when cosa = —1
so the method is stable provided d < % i.e. it is conditionally stable.

The requirement that the coefficients of all old nodal values be positive
leads to similar conclusions: d < 0.5 and ¢ < 2d. The first condition leads to
the limit on At:

p(Az)?
of

At < (6.32)

The second requirement imposes no limit on the time step, but gives a relation
between convection and diffusion coefficients:

pu Az
r

<2 or Pe <2, (6.33)

i.e., the cell Peclet number should be smaller than two. This has already been
mentioned as a sufficient (but not necessary) condition for boundedness of
solutions obtained using CDS for convective fluxes.

Since the method is based on a combination of the explicit Euler method
for ordinary differential equations and the central difference approximation
for the spatial derivatives, it inherits the accuracy of each. The method is
therefore first order in time and second order in space. The requirement that
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d < 0.5 means that, each time the spatial mesh is halved, the time step
has to be reduced by a factor of four. This makes the scheme unsuitable
for problems which do not require high temporal resolution (slowly varying
solutions, solutions approaching steady state); these are normally the cases
in which one would like to use first order methods in time. An example which
illustrates the stability problem will be shown below.

The problem of instability in connection with the condition of Eq. (6.33)
was recognized in the 1920’s by Courant and Friedrichs and they suggested
a cure which is still used today. They noted that, for problems dominated by
convection, it is possible for the coefficient of d)?;ll in Eqg. (6.25) to be negative
and suggested that the problem could be cured by using upwind differences.
Instead of evaluating the convective term by a CDS approximation as we
have done above, we use UDS (see Chap. 3). We then get, in place of Eq.
(6.24):

gt = o7 +

n_ gn T ot ot — 247
Bl S S S ‘ﬂ At . (6.34)

Az p (Azx)?
which yields, in place of Eq. (6.25):

Pt = (1—2d—c)o? +doly + (d+)o}, . (6.35)
Since the coefficients of the neighbor values are always positive, they cannot
contribute to unphysical behavior of instability. However, the coeflicient ¢}

can be negative, thus creating a potential problem. For this coefficient to be
positive, the time step should satisfy the following condition:

1
_ar L u
p(Azx)? Az

At < (6.36)

When convection is negligible, the restriction on the time step required for
stability is the same as Eq. (6.32). For negligible diffusion, the criterion to be
satisfied is:

A
c<1l or At< _uz (6.37)

i.e. the Courant number should be smaller than unity.

One can also apply the von Neumann stability analysis to this problem;
the analysis is in accord with the conclusions just reached. Thus, unlike the
central difference method, the upwind approximation provides some stability
which, combined with its ease of use, made this type of method very pop-
ular for many years. It continues to be used today. When both convection
and diffusion are present, the stability criterion is more complicated. Rather
than dealing with this complexity, most people require that each individual
criterion be satisfied, a condition that may be a little more restrictive than
necessary but is safe.
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This method has first order truncation errors in both space and time and
requires very small step sizes in both variables if errors are to be kept small.

The restriction on the Courant number also has the interpretation that a
fluid particle cannot move more than one grid length in a single time step.
This restriction on the rate of information propagation appears very reason-
able but can limit the rate of convergence when methods of this kind are
employed for the solution of steady state problems.

Other explicit schemes may be based on other methods for ordinary dif-
ferential equations. Indeed, all of the methods described earlier have been
used at one time or another in CFD. A central difference based three time
level method, known as the leapfrog method, will be described next.

Leapfrog Method. A commonly used three-level scheme is the leapfrog
method; it is essentially the application of the midpoint rule integration to a
time interval of size 2At:

¢r = 977! 4 f(ta, ") 24t . (6.38)
When it is applied to the generic transport equation, Eq. (6.23), in which

CDS is used for spatial discretization, we obtain:

Pl — 9ty T ol + 90, 247

n+l __ n—l _
A 2 Az P (Ax)?

2At . (6.39)

In terms of the dimensionless coefficients d and ¢, the above equation reads:
¢t = @27l — 4dg? + (2d — )¢y + (2d + )@}, . (6.40)

In this method, the heuristic requirements for a physically realistic simu-
lation of heat conduction are never satisfied, since the coefficient of ¢7 is
unconditionally negative! Indeed, stability analysis shows this scheme to be
unconditionally unstable and it appears not to be useful for the numerical
solution of unsteady problems. However, the instability is very weak if the
time step is small and wave-like solutions are very weakly damped compared
to other methods. For these reasons, this method is actually used (with some
tricks to stabilize it) in a number of applications, especially in metecrology
and oceanography.
One way to stabilize the scheme is to use the approximation:

1

RN 5 (o071 + 42t (6.41)

which is a central difference approximation in time. This approximation is
known as the DuFort-Frankel method and recasts the above equation into
the following form:

(L+2d)¢t = (1 —2d)¢? " + (2d — ¢)¢}y + (2d + )87, . (6.42)

Surprisingly, the scheme is now unconditionally stable, but the above approx-
imation introduces another truncation error, which has the unusual property



148 6. Methods for Unsteady Problems

of being proportional to (At/Az)%. This term stems from the substitution
(6.41) and is an undesirable feature of the method because the method is
consistent (that is, it yields a solution of the partial differential equation in
the limit of small step sizes) only if At tends faster to zero than Az.

To obtain higher order accuracy in time, with reasonable limits on sta-
bility, a number of authors have used the Adams-Bashforth second and third
order methods and, more commonly, third and fourth order Runge-Kutta
methods.

6.3.2 Implicit Methods

Implicit Euler Method. If stability is a prime requirement, the analysis
of methods for ordinary differential equations suggests use of the backward
or implicit Euler method. Applied to the generic transport equation (6.23),
with the CDS approximation to the spatial derivatives, it gives:

¢T.l+1 _ ¢T.‘ N ?:_11 - ¢?_+11 E ¢?:_11 + ¢?j_11 - 2¢?+1 At (6 43)
i ‘ 24 p (Az)? o
or, rearranged:
n+l ¢ n+1 _¢_ ntl _ 40
(1+2d) 7+ + (2 d) ¢ + ( 5 d) ¢t =47 (6.44)

In this method, all of the fluxes and source terms are evaluated in terms of
the unknown variable values at the new time level. The result is a system
of algebraic equations very similar to the one obtained for steady problems;
actually, the only difference lies in an additional contribution to the coefficient
Ap and to the source term (Jp, which stem from the unsteady term. The
above equations may be written:

Ap¢tH! + Apd + Awolt = Qe , (6.45)
where
R U TR
2Ax  (Ax)? 2Az (Az)?’ (6.46)
Ap = —(AE+AW)+ﬁ ;o Qe = %‘f’?

As was the case for ordinary differential equations, use of the implicit
Euler method allows arbitrarily large time steps to be taken; this property
is useful in studying flows with slow transients or steady flows. Problems
may arise when CDS is used on coarse grids (if the Peclet number is too
large in regions of strong change in variable gradient); oscillatory solutions
are produced but the scheme remains stable.

The shortcomings of this method are its first order truncation error in
time and the need to solve a large coupled set of equations at each time step.
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It also requires much more storage than the explicit scheme, since the entire
coefficient matrix A and the source vector have to be stored. The advantage is
the possibility of using a large time step, which may result in a more efficient
procedure despite the shortcomings.

This method is especially useful for solving steady flow problems. As
noted in the previous chapter, the solution of coupled non-linear equations
may require use of under-relaxation and nested (inner and outer) iterations,
see Sect. 5.4.2. There is a strong similarity between the algebraic equations
resulting from the use of under-relaxation when solving steady problems and
those resulting from implicit Euler scheme applied to unsteady equations.
Both under-relaxation and implicit time discretization result in an additional
source term and a contribution to the central coefficient Ap. The following
relation between the under-relaxation factor ay and time step At can be
derived by requiring that the contributions be same in both cases (see Egs.
(5.70) and (6.46)):

pay Af2 Ap At

At = or a¢=m.

In the iteration at the new time step, the best initial guess is the converged
solution at the preceding step. If the final steady state is the only result of
interest and the details of the development from the initial guess to the final
stage are not of importance, it might suffice to perform only one iteration
per time step. Then one does not have to store the old solution — it is needed
only to assemble the matrix and source terms. The major difference between
using pseudo-time marching and under-relaxation is that using the same time
step for all CVs is equivalent to using a variable under-relaxation factor;
conversely, use of a constant under-relaxation factor is equivalent to applying
a different time step to each control volume.

It is important to note that, if only one iteration is performed at each
time step, the scheme may not retain all of the stability of the implicit Euler
method. There may then be a limitation on the time step that can be em-
ployed (when under-relaxation is used in outer iterations, the choice of the
parameter o is also limited and certainly has to be smaller than unity).

Crank-Nicolson Method. The second order accuracy of the trapezoid rule
method and its relative simplicity suggest its application to partial differential
equations when time accuracy is of importance. It is then known as the Crank-
Nicolson method. In particular, when applied to the 1D generic transport
equation with CDS discretization of spatial derivatives one has:

At [_u O — ot LR+ e - 2¢;‘“}

nt+l _ n =
HTEer 245 P (4a)?

At [_u Sk N N O . 8 2¢?] ' (6.48)

2 24z p (Azx)?
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The scheme is implicit; the contributions from fluxes and sources at the new
time level give rise to a coupled set of equations similar to those of implicit
Euler scheme. The above equation can be written as:

ApgPt + Apgll! + Awell! = Qt, (6.49)
where:
g o e T
PT %Az 204z’ 7V 4Ar  2(Ax)?°
Ap = it — (Ap + Aw), (6.50)

Q= éw+AE+—)¢n Apgly — Awdl,

The term Q! represents an “additional” source term, which contains the con-
tribution from the previous time level; it remains constant during iterations
at the new time level. The equation may also contain a source term dependent
on the new solution, so the above term needs to be stored separately.

This scheme requires very little more computational effort per step than
the first order implicit Euler scheme. Von Neumann stability analysis shows
that the scheme is unconditionally stable, but oscillatory solutions (and even
instability) are possible for large time steps. This may be attributed to the
possibility of the coefficient of ¢! becoming negative at large At, but is
guaranteed to be positive if At < p(Az)?/I", which is twice the maximum step
size allowed by the explicit Euler method. In practice, much larger time steps
can be used without producing oscillations; the limit is problem dependent.

This scheme can be regarded as an equal blend of first order explicit
and implicit Euler schemes. Only for equal blending is second order accuracy
obtained; for other blending factors, which may vary in space and time, the
method remains first order accurate. The stability is increased if the implicit
contribution is increased, but the accuracy is reduced.

Three Time Level Method. A fully implicit scheme of second order accu-
racy can be obtained by using a quadratic backward approximation in time,
as described in Sect. 6.2.4. For the 1D generic transport equation and CDS
discretization in space we obtain:

3¢t — 490 + o7

At =
2At
gl — grt] @Y 4 gt _ ggntl (6.51)
i+1 +T i+1 i—1 1 At .
2Azx (Ax)?
The resulting algebraic equation can be written:

A 7}+1 ’{H—l A 71+1 p n _ n—1 6.52

P¢z + AE¢1+1 + ¢ At ¢ 9 At ¢ ( )
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The coefficients Ag and Aw are the same as in case of implicit Euler scheme,
see Eq. 6.46. The central coefficient has now a stronger contribution from the
time derivative:

Ap = —(Ag + Aw) + ;’X—t , (6.53)
and the source term contains contribution from time ¢,_;, see Eq. 6.52.

This scheme is easier to implement than the Crank-Nicolson scheme; it is
also less prone to producing oscillatory solutions, although this may happen
with large values of A¢. One has to store the variable values from three time
levels, but the memory requirements are the same as for the Crank-Nicolson
scheme. The scheme is second order accurate in time, but for small time steps,
this method is less accurate than the Crank-Nicolson method (the truncation
error is four times as large as in the Crank-Nicolson method). One can show
that this scheme is unconditionally stable. We also see from Eq. (6.52) that
the coefficient of the old value at node i is always positive; however, the
coefficient of the value at ¢,_; is always negative, which is why the scheme
may produce oscillatory solutions if the steps are large.

This scheme can be blended with the first order implicit Euler scheme.
Only the contributions to the central coefficient and source term need be
modified in the manner of the deferred correction approach described in Sect.
5.6. This is useful when starting the calculation, since only one old level
solution is available. Also, if one is after a steady state solution, switching
to implicit Euler scheme ensures stability and allows large time steps to be
used. Blending in a small amount of the first order scheme helps prevent
oscillations which contributes to the esthetics of the solution (the accuracy is
no better without oscillations, but it looks nicer graphically). If oscillations do
occur, one has to reduce the time step as the oscillations are an indication of
large temporal discretization errors. This comment does not apply to schemes
which are only conditionally stable.

6.3.3 Other Methods

The schemes described above are the ones most often used in general pur-
pose CFD codes. For special purposes, for example, in large eddy and direct
simulation of turbulence, one often uses higher-order schemes, such as third
or fourth order Runge-Kutta or Adams methods. Usually, higher-order tem-
poral discretization is used when the spatial discretization is also of higher
order, which is the case when the solution domain is of regular shape so that
higher-order methods in space are easy to apply. Application of higher-order
methods for ordinary differential equations to CFD problems is straightfor-
ward.
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6.4 Examples

In order to demonstrate the performance of some of the methods described
above, we look first at the unsteady version of the example problem of Chap.
3. The problem to be solved is given by Eq. (6.23), with the following initial
and boundary conditions: at t = 0, ¢ = 0; for all subsequent times, ¢ = 0
atz=0,¢p=1latz=L=1p=1u=1and I'=0.1. Since the boundary
conditions do not change in time, the solution develops from the initial zero
field to the steady state solution given in Sect. 3.11. For spatial discretization,
second order CDS is used. For temporal discretization, we use both explicit
and implicit first order Euler methods, the Crank-Nicolson method and the
fully implicit method with three time levels.

We first demonstrate what happens when the explicit Euler scheme (which
is only conditionally stable) is used with time steps which violate the stability
condition. Figure 6.2 shows the evolution of the solution over a small time
period calculated using a time step slightly below and another slightly above
the critical value given by Eq. (6.32). When the time step is larger than the
critical value, oscillations are generated which grow unboundedly with time.
A few time steps later than the last solution shown in Fig. 6.2, the numbers
become too large to be handled by the computer. With implicit schemes, no
problems occured even when very large time steps were used.
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Fig. 6.2. Time evolution of the solution by explicit Euler method using time steps
At = 0.00325 (left; d < 0.5 and At = 0.003 (right, d > 0.5)

In order to investigate the accuracy of temporal discretization, we look
at the solution at the node at z = 0.95 of a uniform grid with 41 nodes
(Az = 0.025) at time t = 0.01. We performed calculations up to that time
using 5, 10, 20 and 40 time steps with the four above mentioned schemes.
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The convergence of ¢ at £ = 0.95 for ¢ = 0.01 as the time step size is reduced
is shown in Fig. 6.3. The implicit Euler and the three level method under-
predict, while the explicit Euler and the Crank-Nicolson method over-predict
the correct value. All schemes show monotonic convergence towards the time
step independent solution.
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Fig. 6.3. Convergence of ¢ at z = 0.95 and £ = 0.01 as the time step size is reduced
(left) and temporal discretization errors (right) for various time integration schemes

Since we do not have an exact solution to compare with, we obtained an
accurate reference solution at time ¢ = 0.01 using the Crank-Nicolson scheme
(the most accurate method) with At = 0.0001 (100 time steps). This solution
is much more accurate than any of the above solutions so it can be treated
as an exact solution for error estimation purposes. By subtracting solutions
mentioned above from this reference solution, we obtained estimates of the
temporal discretization error for each scheme and time step size. The spatial
discretization error is the same in all cases and plays no role here. The errors
thus obtained are plotted against time step size in Fig. 6.3.

The two Euler methods show the expected first order behavior: the error
is reduced by one order of magnitude when the time step is reduced by the
same amount. The two second order schemes show also the expected error
reduction rate, which closely follow the ideal slope. However, the Crank-
Nicolson method gives a more accurate solution since its initial error is much
smaller. The three level scheme is started by the implicit Euler method, which
resulted in a large initial error. Since, in this problem, the temporal variation
is monotonic from the initial towards steady state, the initial error remains
important throughout the solution. The error reduction rate is the same in
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both methods, but the error level is in this case determined by its initial
value.

!

Fig. 6.4. Isotherms in the unsteady 2D problem at times ¢ = 0.2 (upper left),
t = 0.5 (upper right), t = 1.0 (lower left) and ¢ = 2.0 (lower right), calculated on a
uniform 20 x 20 CV grid using the CDS for spatial and the Crank-Nicolson method
for temporal discretization

We next examine the 2D test case of Chap. 4, which involves heat transfer
from a wall with prescribed temperature, exposed to a stagnation point flow,
see Sect. 4.7. The initial solution is again ¢y = 0; the boundary conditions
do not change with time and are the same as in the steady state problem
investigated in Sect. 4.7, with p = 1.2 and I" = 0.1. Spatial discretization is
by CDS, and a uniform grid with 20 x 20 CV is used. Linear equation systems
in case of implicit schemes are solved using SIP solver, and the convergence
error was reduced below 107°. We compute the time evolution of solution
towards the steady state. Figure 6.4 shows isotherms at four time instants.

In order to investigate the accuracy of the various schemes in this case,
we look at the heat flux through the isothermal wall at time ¢t = 0.12. The
variation of the heat flux, @), as a function of the time step size is shown
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Fig. 6.5. Heat flux through the isothermal wall at ¢ = 0.12 (left) and temporal
discretization errors in calculated wall heat flux (right) as a function of the time

step size for various schemes (spatial discretization by CDS, 20 x 20 CV uniform
grid)

in Fig. 6.5. As in the previous test case, the results obtained using second
order schemes change little as the number of time steps is increased, while
the first order schemes are far less accurate. The explicit Euler scheme does
not converge monotonically; the solution obtained with the largest time step
lies on the opposite side of the time step independent value from the values
obtained using smaller time steps.

For the sake of error estimation, we obtained an accurate reference so-
lution by using very small time step (At = 0.0003, 400 steps to t = 0.12)
with the Crank-Nicolson scheme. The spatial discretization was the same in
all cases, so again the spatial discretization errors cancel out. By subtracting
the heat flux value calculated using different schemes and time steps from
the reference solution, we obtain the estimates of the temporal discretization
error. These are plotted against normalized time step (normalized with the
largest time step) in Fig. 6.5.

Again, the expected asymptotic convergence rates for first and second
order schemes are obtained. However, the lowest error is now obtained with
the second order scheme with three time levels. This is, as in the previous
example, due to the dominant effect of the initial error, which turns out to
be smaller when the three level scheme is started with implicit Euler method
than in the Crank-Nicolson scheme. With both second order schemes the
errors are much smaller than with first order schemes: the result is more
accurate with second order schemes using the largest time step than with
first order schemes and an eight times smaller time step!
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Although we were dealing with simple unsteady problems which have
a smooth transition from the initial to the steady state, we see that first
order Euler schemes are very inaccurate. In both test cases the second order
schemes had errors more than two orders of magnitude lower than the Euler
schemes (whose errors were of the order of 1% with the smallest time step).
One can expect that in transient flows even larger discrepancies can occur.
Of the first order schemes only the implicit Euler method can be used when
steady solutions are sought; for transient flow problems, second {or higher)
order schemes are recommended.

An unsteady flow problem will be discussed in Sect. 8.11.



7. Solution of the Navier-Stokes Equations

7.1 Special Features of the Navier-Stokes Equations

In Chaps. 3, 4 and 6 we dealt with the discretization of a generic conser-
vation equation. The discretization principles described there apply to the
momentum and continuity equations (which we shall collectively call the
Navier-Stokes equations). In this chapter, we shall describe how the terms in
the momentum equations which differ from those in the generic conservation
equation are treated.

The unsteady and advection terms in the momentum equations have the
same form as in the generic conservation equation. The diffusive (viscous)
terms are similar to their counterparts in the generic equation but, because
the momentum equations are vector equations, these contributions become
a bit more complex and their treatment needs to be considered in more
detail. The momentum equations also contain a contribution from the pres-
sure, which has no analog in the generic equation. It may be regarded ei-
ther as a source term (treating the pressure gradient as body force — non-
conservatively) or as a surface force (conservative treatment) but, due to the
close connection of the pressure and the continuity equation, it requires spe-
cial attention. Finally, the fact that the principal variable is a vector allows
more freedom in the choice of a grid.

7.1.1 Discretization of Convective and Viscous Terms

The convective term in the momentum equation is non-linear; its differential
and integral forms read:

Hpui;) and /puiv -ndS. (7.1)
Oz; s

The treatment of the convective term in the momentum equations follows that
of the convective term in the generic equation; any of the methods described
in Chaps. 3 and 4 can be used.

The viscous terms in the momentum equations correspond to the diffusive
term in the generic equation; their differential and integral forms are:
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OTij .
6.’13]]' and /S(Tij’Lj) ‘ndS y (72)
where, for a Newtonian fluid and incompressible flow:
_ aui 811.]'
Tij = <8-Tj + 8a:2~> . (7.3)

Because the momentum equations are vector equations, the viscous term is
more complicated than the generic diffusive term. The part of the viscous
term in the momentum equations which corresponds to the diffusive term in
the generic conservation equation is

0 Bui
a—z; <u3zj> and /Sugradm -ndS. (7.4)

This term can be discretized using any of the approaches described for the
corresponding terms of the generic equation in Chaps. 3 and 4 but it is
only one contribution of viscous effects to the ith component of momentum.
Equations (1.28), (1.26), (1.21) and (1.17) allow us to identify the others as
the contributions of the bulk viscosity (which is non-zero only in compressible
flows) and a further contribution due to the spatial variability of the viscosity.
For incompressible flow with constant fluid properties, these contributions
disappear (thanks to the continuity equation).

The extra terms which are non-zero when the viscosity is spatially variable

in an incompressible flow may be treated in the same manner as the terms
(7.4):

1o} Buj an .

8—a:j (uaz) and /S (uazi z]> -ndS, (7.5)
where n is the unit outward normal to the surface of the control volume and
summation on j applies. As noted above, for constant g, this term vanishes.
For this reason, this term is often treated explicitly even when implicit solu-
tion methods are used. It is argued that even when the viscosity varies this
term is small compared to the term (7.4) so its treatment has only a slight
impact on the rate of convergence. However, this argument applies strictly
only in an integral sense; the extra term may be quite large on any one CV
face.

7.1.2 Discretization of Pressure Terms and Body Forces

As noted in Chap. 1, we usually deal with the “pressure” in terms of the
combination p — pog - T + u%div v. In incompressible flows, the last term is
zero. One form of the momentum equations (see Eq. (1.21)) contains the
gradient of this quantity which may be approximated by the FD methods
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described in Chap. 3. However, as the pressure and velocity nodes on the
grid may not coincide, the approximations used for their derivatives may
differ.

In FV methods, the pressure term is usually treated as a surface force
(conservative approach), i.e. in the equation for u; the integral

- /Spii -ndS (7.6)

is required. Methods described in Chap. 4 for the approximation of surface
integrals can then be used. As we shall show below, the treatment of this
term and the arrangement of variables on the grid play an important role in
assuring the computational efficiency and accuracy of the numerical solution
method.

Alternatively, the pressure can be treated non-conservatively, by retaining
the above integral in its volumetric form:

—/ngradp-iidﬁ. (7.7)

In this case, the derivative (or, for non-orthogonal grids, all three derivatives)
needs to be approximated at one or more locations within the CV. The non-
conservative approach introduces a global non-conservative error; although
this error tends to zero as the grid size goes to zero, it may be significant for
finite grid size.

The difference between the two approaches is significant only in the FV
methods. In FD methods, there is no distinction between the two versions,
although one can produce both conservative and non-conservative approxi-
mations.

Other body forces, like the non-conservative ones arising when covariant
or contravariant velocities are used in non-Cartesian coordinate systems are
easy to treat in finite difference schemes: they are usually simple functions
of one or more variables and can be evaluated using techniques described in
Chap. 3. If these terms involve the unknowns, as for example, the component
of the viscous term in cylindrical coordinates:

Up
P
“r?’

they may be treated implicitly. This is usually done when the contribution of
this term to the central coefficient Ap in the discretized equation is positive,
in order to avoid destabilization of the iterative solution scheme by reducing
the diagonal dominance of the matrix. Otherwise, the extra term is treated
explicitly.

In FV methods, these terms are integrated over the CV volume. Usually,
the mean value approach is used, so that the value at CV center is multiplied
by cell volume. More elaborate schemes are possible but rarely used.
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In some cases the non-conservative terms, considered as body forces, dom-
inate the transport equation (e.g. when swirling flows are computed in polar
coordinates or when flows are treated in a rotating coordinate frame, for
example, in turbomachinery flows). The treatment of the non-linear source
terms and the variable coupling may then become very important.

7.1.3 Conservation Properties

The Navier-Stokes equations have the property that the momentum in any
control volume (microscopic or macroscopic) is changed only by flow through
the surface, forces acting on the surface, and volumetric body forces. This im-
portant property is inherited by the discretized equations if the FV approach
is used and the surface fluxes for adjacent control volumes are identical. If
this is done, then the integral over the entire domain, being the sum of the
integrals over the microscopic control volumes, reduces to a sum over the
surface of the domain. Overall mass conservation follows in the same way
from the continuity equation.

Energy conservation is a more complex issue. In incompressible isothermal
flows, the only energy of significance is kinetic energy. When heat transfer
is important, the kinetic energy is generally small compared to the thermal
energy so the equation introduced to account for energy transport is a conser-
vation equation for thermal energy. So long as the temperature dependence
of the fluid properties is not significant, the thermal energy equation can be
solved after solution of the momentum equations is complete. The coupling
is then entirely one-way and the energy equation becomes an equation for
the transport of a passive scalar, the case treated in Chaps. 3 to 6.

An equation for the kinetic energy can be derived by taking the scalar
product of the momentum equation with the velocity, a procedure which
mimics the derivation of the energy equation in classical mechanics. Note
that, in contrast to compressible flow, for which there is a separate conser-
vation equation for the total energy, in incompressible isothermal flows both
momentum and energy conservation are consequences of the same equation;
this poses the problems that are the subject of this section.

We shall be interested principally in the kinetic energy conservation equa-
tion for a macroscopic control volume, which may be either the entire con-
sidered domain or one of the small CVs used in a finite volume method. If
the local kinetic energy equation obtained in the manner just described is
integrated over a control volume, we obtain, after using Gauss’ Theorem:

] v? v?
—/p-—dQ:— p—=v-ndS—- [ pv-ndS+ [ (S-v) -ndS -
ot Jo" 2 s 2 s s

/ (S:gradv — pdive + pb-v)df2 . (7.8)
2
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Here S stands for the viscous part of the stress tensor whose components are

7;; defined in Eq. (1.13), i.e. S = T +pl. The first term in the volume integral

on the right hand side disappears if the flow is inviscid; the second is zero if

the flow is incompressible; the third is zero in the absence of body forces.
Several points relating to this equation are worth mentioning.

o The first three terms on its right side are integrals over the surface of the
control volume. This means that the kinetic energy in the control volume is
not changed by the action of convection and/or pressure within the control
volume. In the absence of viscosity, only flow of energy through the surface
or work done by the forces acting at the surface of the control volume can
affect the kinetic energy within it; kinetic energy is then globally conserved
in this sense. This is a property that we would like to preserve in a numerical
method.

e Guaranteeing global energy conservation in a numerical method is a worth-
while goal, but not an easily attained one. Because the kinetic energy
equation is a consequence of the momentum equation and not a distinct
conservation law, it cannot be enforced separately.

e If a numerical method is energy conservative and the net energy flux
through the surface is zero then the total kinetic energy in the domain
does not grow with time. If such a method is used, the velocity at every
point in the domain must remain bounded, providing an important kind
of numerical stability. Indeed, energy methods (which sometimes have no
connection to physics) are often used to prove stability of numerical meth-
ods. Energy conservation does not say anything about the convergence or
accuracy of a method. Accurate solutions may be obtained with methods
that are not conservative of kinetic energy. Kinetic energy conservation is
especially important in computing unsteady flows.

o Since the kinetic energy equation is a consequence of the momentum equa-
tions and not independently enforceable in a numerical method, global
kinetic energy conservation must be a consequence of the discretized mo-
mentum equations. It is thus a property of the discretization method, but
not an obvious one. To see how it might arise, we form the kinetic energy
equation corresponding to the discretized momentum equations by taking
the scalar product of the latter with the velocity and summing over all
control volumes. We shall consider the result term-by-term.

o The pressure gradient terms are especially important, so let us look into
them further. To get the pressure gradient term into the form displayed in
Eq. (7.8), we used the following equality:

v -gradp = div (pv) —pdive. (7.9)

For incompressible flows, pdiv v = 0 so only the first term on the right hand
side remains. As it is a divergence, its volume integral can be converted to a
surface integral. As already noted, this means that the pressure influences
the overall kinetic energy budget only by its action at the surface. We
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would like the discretization to retain this property. Let us see how this
might happen.

If Gip represents the numerical approximation to the ith component of
the pressure gradient, then, when the discretized u;-momentum equa-
tion is multiplied by w;, the pressure gradient term gives a contribution
S~ u; G;p Af2. Energy conservation requires that this contribution be equal
to (cf. Eq. (7.9)):

N
S uiGpAR = pin AS =Y pDiu; AR, (7.10)
3 N

1=1 Se

where the subscript N indicates that the sum is over all CVs (grid nodes),
Sy is the boundary of the solution domain, v, is the velocity component
normal to the boundary and D;u; is the discretized velocity divergence
used in the continuity equation. If this is so, Dyu; = 0 at each node, so
the second term in the above equation is zero. The equality of the left and
right hand sides can then be ensured only if G; and D; are compatible in
the following sense:

N
Z(”" Gip + p D;u;) Af2 = surface terms . (7.11)

=1

This states that the approximation of the pressure gradient and the diver-
gence of the velocity must be compatible if kinetic energy conservation is
to hold. Once either approximation is chosen, the freedom to choose the
other is lost.

To make this more concrete, assume that the pressure gradient is approxi-
mated with backward differences and the divergence operator with forward
differences (the usual choice on a staggered grid). The one-dimensional ver-
sion of Eq. (7.11) on a uniform grid then reads:

N

Z[(Pi - pi—l)ui + (UH—I - Ui)pi] = UN+1DPN — U1Do (7.12)
i=1

The only two terms that remain when the sum is taken are the “surface
terms” on the right hand side. The two operators are therefore compatible
in the above sense. Conversely, if forward differences were used for the
pressure gradient, the continuity equation would need to use backward
differences. If central differences are used for one, they are required for the
other.

The requirement that only boundary terms remain when the sum over all
CVs (grid nodes) is taken applies to the other two conservative terms, the
convective and viscous stress terms. Satisfaction of this requirement is not
easy in any case and is especially difficult for arbitrary and unstructured
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meshes. If a method is not energy conservative on uniform regular grids,
it will certainly not be so on more complicated ones. On the other hand,
a method which is conservative on uniform grids might be nearly so on
complex grids.

A Poisson equation is often used to compute the pressure. As we shall see, it
is derived by taking the divergence of the momentum equation. The Lapla-
cian operator in the Poisson equation is thus the product of the divergence
operator in the continuity equation and the gradient operator in the mo-
mentum equation. The approximation of the Poisson equation cannot be
selected independently; it must be consistent with the divergence and gra-
dient operators if mass conservation is to obtain. Energy conservation adds
the further requirement that the divergence and gradient approximations
be consistent in the sense defined above.

For an incompressible flow without body forces, the only remaining volume
integral is the viscous term. For a Newtonian fluid, this term becomes:

811,]'
—-/Q’T'i]gl;dﬂ.

Inspection reveals that the integrand is a sum of squares so this term is
always negative (or zero). It represents the irreversible (in the thermody-
namic sense) conversion of kinetic energy of the flow into internal energy
of the fluid and is called viscous dissipation. As incompressible flows are
usually low speed flows, the addition to the internal energy is rarely signif-
icant but the loss of kinetic energy is often quite important to the flow. In
compressible flows, the energy transfer is often important to both sides.
The time differencing method can destroy the energy conservation prop-
erty. In addition to the requirements on the spatial discretization mentioned
above, the approximation of the time derivatives should be properly chosen.
The Crank-Nicolson scheme is a particularly good choice. In it, the time
derivatives in the momentum equations are approximated by:

p AL

Y, (u’“l —ul).

1 (3

If we take the scalar product of this term with U;H—l/ 2, which in the Crank-
Nicolson scheme is approximated by (u*!-+u?)/2, the result is the change
in the kinetic energy:

'U2 n+1 'U2 n
2 2 ’
where v = w;u; (summation implied). With proper choices of the approx-

imations to the other terms, the Crank-Nicolson scheme is energy conser-
vative.

p AL
At

2
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The fact that momentum and energy conservation are both governed by
the same equation makes construction of numerical approximations that con-
serve both properties difficult. As already noted, kinetic energy conservation
cannot be enforced independently. If the momentum equations are written
in strong conservation form and a finite volume method is used then global
momentum conservation is usually assured. The construction of energy con-
servative methods is a hit or miss affair. One selects a method and determines
whether it is conservative or not; if not, adjustments are made until conser-
vation is achieved.

An alternative method of guaranteeing kinetic energy conservation is to
use a different form of the momentum equations. For example, one could use
the following equation for incompressible flows:

Pyl
Bui 0 (p + 2u]u]> (921.1,1'

+ €k UjWE = +v
ot hTitk Ox; (91‘]'(91‘]',

(7.13)

where €;;; is the Levi-Civita symbol (it is +1 if {ijk} = {123} or an even
permutation of it, it is —1 if {ijk} is an odd permutation of {123} such as
{321} and zero otherwise). w is the vorticity defined by Eq. (7.64). Energy
conservation follows from this form of the momentum equation by symmetry;
when the equation is multiplied by u;, the second term on the left hand side
is identically zero as a consequence of the antisymmetry property of €.
However, because this is not a conservative form of the momentum equation,
construction of a momentum conserving method requires care.

Kinetic energy conservation is of particular importance in computing com-
plex unsteady flows. Examples include the simulation of global weather pat-
terns and simulations of turbulent flows. Lack of guaranteed energy conser-
vation in these simulations often leads to growth of the kinetic energy and
instability. For steady flows, energy conservation is less important but it does
prevent certain types of misbehavior by the iterative solution method.

Kinetic energy is not the only quantity whose conservation is desirable
but cannot be independently enforced: angular momentum is another such
quantity. Flows in rotating machinery, internal combustion engines and many
other devices exhibit pronounced rotation or swirl. If the numerical scheme
does not conserve global angular momentum, the calculation is likely to get
into trouble. Central difference schemes are generally much better than up-
wind schemes with respect to angular momentum conservation.

7.2 Choice of Variable Arrangement on the Grid
Now let us turn to the discretizations. The first issue is to select the points

in the domain at which the values of the unknown dependent variables are
to be computed. There is more to this than one might think. Basic features
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of numerical grids were outlined in Chap. 2. There are, however, many vari-
ants of the distribution of computational points within the solution domain.
The basic arrangements associated with the FD and FV discretization meth-
ods were shown in Figs. 3.1 and 4.1. These arrangements may become more
complicated when coupled equations for vector fields (like the Navier-Stokes
equations) are being solved. These issues are discussed below.

7.2.1 Colocated Arrangement

The obvious choice is to store all the variables at the same set of grid points
and to use the same control volumes for all variables; such a grid is called
colocated, see Fig. 7.1. Since many of the terms in each of the equations
are essentially identical, the number of coeflicients that must be computed
and stored is minimized and the programming is simplified by this choice.
Furthermore, when multigrid procedures are used, the same restriction and
prolongation operators for transfer of information between the various grids
can be used for all variables.

The colocated arrangement also has significant advantages in complicated
solution domains, especially when the boundaries have slope discontinuities
or the boundary conditions are discontinuous. A set of control volumes can be
designed to fit the boundary including the discontinuity. Other arrangements
of the variables lead to some of the variables being located at singularities of
the grid, which may lead to singularities in the discretized equations.
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Fig. 7.1. Colocated arrangement of velocity components and pressure on a FD
(left) and FV (right) grid
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The colocated arrangement was out of favor for a long time for incom-
pressible flow computation due to the difficulties with pressure-velocity cou-
pling and the occurrence of oscillations in the pressure. From the time the
staggered grid was introduced in the mid-1960s until the early 1980s, the
colocated arrangement was hardly used. Then, use of non-orthogonal grids
became more commonplace as problems in complex geometries began to be
tackled. The staggered approach can be used in generalized coordinates only
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when contravariant (or other grid-oriented) components of vectors and ten-
sors are the working variables. This complicates the equations by introducing
curvature terms that are difficult to treat numerically, and may create non-
conservative errors when the grid is not smooth as will be shown in Chap.
8. When improved pressure-velocity coupling algorithms were developed in
the 1980’s, the popularity of the colocated arrangement began to rise. The
advantages will be demonstrated below.

7.2.2 Staggered Arrangements

There is no need for all variables to share the same grid; a different ar-
rangement may turn out to be advantageous. In Cartesian coordinates, the
staggered arrangement introduced by Harlow and Welsh (1965) offers several
advantages over the colocated arrangement. This arrangement is shown in
Fig. 7.2. Several terms that require interpolation with the colocated arrange-
ment, can be calculated (to a second-order approximation) without interpo-
lation. This can be seen from the z-momentum CV shown in Fig. 7.4. Both
the pressure and diffusion terms are very naturally approximated by central
difference approximations without interpolation, since the pressure nodes lie
at CV face centers and the velocity derivatives needed for the diffusive terms
are readily computed at the CV faces. Also, evaluation of mass fluxes in the
continuity equation on the faces of a pressure CV is straightforward. Details
are presented below.
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Fig. 7.2. Fully staggered arrangement of velocity components and pressure (right)
and a partially staggered arrangement (left) on a FV grid

Perhaps the biggest advantage of the staggered arrangement is the strong
coupling between the velocities and the pressure. This helps to avoid some
types of convergence problems and oscillations in pressure and velocity fields,
an issue that will be further discussed later.

The numerical approximation on a staggered grid is also conservative of
kinetic energy which has advantages that were discussed earlier. The proof
of this statement is straight-forward but lengthy and will not be given here.
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Other staggering methods have been suggested, for example, the partially
staggered ALE (Arbitrary Lagrangian-Eulerian) method (Hirt et al., 1974),
in which both velocity components are stored at the corners of the pressure
CVs, see Fig. 7.2. This variant has some advantages when the grid is non-
orthogonal, an important one being that the pressure at the boundary need
not be specified. However, it also has drawbacks, notably the possibility of
producing oscillatory pressure or velocity fields.

Other arrangements have not gained wide popularity and will not be
further discussed here.

7.3 Calculation of the Pressure

Solution of the Navier-Stokes equations is complicated by the lack of an in-
dependent equation for the pressure, whose gradient contributes to each of
the three momentum equations. Furthermore, the continuity equation does
not have a dominant variable in incompressible flows. Mass conservation is
a kinematic constraint on the velocity field rather than a dynamic equation.
One way out of this difficulty is to construct the pressure field so as to guar-
antee satisfaction of the continuity equation. This may seem a bit strange
at first, but we shall show below that it is possible. Note that the absolute
pressure is of no significance in an incompressible flow; only the gradient of
the pressure (pressure difference) affects the flow.

In compressible flows the continuity equation can be used to determine
the density and the pressure is calculated from an equation of state. This
approach is not appropriate for incompressible or low Mach number flows.

Within this section we present the basic philosophy behind some of the
most popular methods of pressure-velocity coupling. Section 7.5 presents a
full set of discretized equations which form the basis for writing a computer
code.

7.3.1 The Pressure Equation and its Solution

The momentum equations clearly determine the respective velocity compo-
nents so their roles are clearly defined. This leaves the continuity equation,
which does not contain the pressure, to determine the pressure. How can this
be done? The most common method is based on combining the two equations.

The form of the continuity equation suggests that we take the divergence
of the momentum equation (1.15). The continuity equation can be used to
simplify the resulting equation, leaving a Poisson equation for the pressure:

0(pv)
ot

div (grad p) = —div | div (pvv — S) — pb + (7.14)

In Cartesian coordinates this equation reads:
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For the case of constant density and viscosity, this equation simplifies further;
the viscous and unsteady terms disappear by virtue of the continuity equation
leaving:

0 (op\ 0 [0(pusuy)
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The pressure equation can be solved by one of the numerical methods for
elliptic equations described in Chaps. 3 and 4. It is important to note that
the right hand side of the pressure equation is a sum of derivatives of terms in
the momentum equations; these must be approximated in a manner consistent
with their treatment in the equations they are derived from.

It is also important to note that the Laplacian operator in the pressure
equation is the product of the divergence operator originating from the con-
tinuity equation and the gradient operator that comes from the momentum
equations. In a numerical approximation, it is essential that the consistency of
these operators be maintained i.e. the approximation of the Poisson equations
must be defined as the product of the divergence and gradient approxima-
tions used in the basic equations. Violation of this constraint leads to lack
of satisfaction of the continuity equation. To emphasize the importance of
this issue, the two derivatives of the pressure in the above equations were
separated: the outer derivative stems from the continuity equation while the
inner derivative arises from the momentum equations. The outer and inner
derivatives may be discretized using different schemes — they have to be those
used in the momentum and continuity equations.

A pressure equation of this kind is used to calculate the pressure in both
explicit and implicit solution methods. To maintain consistency among the
approximations used, it is best to derive the equation for the pressure from the
discretized momentum and continuity equations rather than by approximat-
ing the Poisson equation. The pressure equation can also be used to calculate
the pressure from a velocity field obtained by solving vorticity/streamfunction
equations, see Sect. 7.4.2.

7.3.2 A Simple Explicit Time Advance Scheme

Before considering commonly used methods for solving the steady state
Navier-Stokes equations, let us look at a method for the unsteady equa-
tions that illustrates how the numerical Poisson equation for the pressure is
constructed and the role it plays in enforcing continuity. The choice of the
approximations to the spatial derivatives is not important here so the semi-
discretized (discrete in space but not time) momentum equations are written
symbolically as:
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(7.17)

where §/dx represents a discretized spatial derivative (which could represent
a different approximation in each term) and H; is shorthand notation for the
advective and viscous terms whose treatment is of no importance here.

For simplicity, assume that we wish to solve Eq. (7.17) with the explicit
Euler method for time advancement. We then have:

n+1 n n 6pn

(pug)™™" = (puy)™ = At | H] - : (7.18)
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To apply this method, the velocity at time step n is used to compute H}

and, if the pressure is available, ép™/éz; may also be computed. This gives

an estimate of pu; at the new time step n + 1. In general, this velocity field

does not satisfy the continuity equation:

8(pug)™t!

5o =0 (7.19)

We have stated an interest in incompressible lows, but these include flows
with variable density; this is emphasized by including the density. To see how
continuity may be enforced, let us take the numerical divergence (using the
numerical operators used to approximate the continuity equation) of Eq.
(7.18). The result is:

S(puy)™tt b(puy)™ ) . Op"
5z, 52; = At 5z, H; 5, . (7.20)

The first term is the divergence of the new velocity field, which we want to
be zero. The second term is zero if continuity was enforced at time step n;
we shall assume that this is the case but, if it is not, this term should be left
in the equation. Retaining this term is necessary when an iterative method is
used to solve the Poisson equation for the pressure and the iterative process is
not converged completely. Similarly, the divergence of the viscous component
of H; should be zero for constant p, but a non-zero value is easily accounted
for. Taking all this into account, the result is the discrete Poisson equation
for the pressure p™:

§ (é6p\ _ 6HP
3’;(%‘) =5 (7.21)

Note that the operator §/éz; outside the parentheses is the divergence op-
erator inherited from the continuity equation, while dp /dx; is the pressure
gradient from the momentum equations. If the pressure p" satisfies this dis-
crete Poisson equation, the velocity field at time step n+ 1 will be divergence
free (in terms of the discrete divergence operator). Note that the time step



170 7. Solution of the Navier-Stokes Equations

to which this pressure belongs is arbitrary. If the pressure gradient term had
been treated implicitly, we would have p"*! in place of p® but everything
else would remain unchanged.

This provides the following algorithm for time-advancing the Navier-
Stokes equations:

o Start with a velocity field u? at time ¢,, which is assumed divergence free.
(As noted, if it is not divergence free this can be corrected.)

Compute the combination, H, of the advective and viscous terms and its
divergence (both need to be retained for later use).

Solve the Poisson equation for the pressure p™.

Compute the velocity field at the new time step. It will be divergence free.
The stage is now set for the next time step.

Methods similar to this are commonly used to solve the Navier-Stokes
equations when an accurate time history of the flow is required. The principal
differences in practice are that time advancement methods more accurate
than the first order Euler method are usually used and that some of the
terms may be treated implicitly. Some of these methods will be described
later.

We have shown how solving the Poisson equation for the pressure can
assure that the velocity field satisfies the continuity equation i.e. that it is
divergence free. This idea runs through many of the methods used to solve
both the steady and unsteady Navier-Stokes equations. We shall now study
some of the more commonly used methods for solving the steady Navier-
Stokes equations.

7.3.3 A Simple Implicit Time Advance Method

To see what additional difficulties arise when an implicit method is used to
solve the Navier-Stokes equations, let us construct such a method. Since we
are interested in illuminating certain issues, let us use a scheme based on the
the simplest implicit method, the backward or implicit Euler method. If we
apply this method to Eq. (7.17), we have:

+
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We see immediately that there are difficulties that were not present in the
explicit method described in the preceding section. Let us consider these one
at a time.

First, there is a problem with the pressure. The divergence of the velocity
field at the new time step must be zero. This can be accomplished in much
the same way as in the explicit method. We take the divergence of Eq. (7.22),
assume that the velocity field at time step n is divergence free (this can be
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corrected for if necessary) and demand that the divergence at the new time
step n + 1 also be zero. This leads to the Poisson equation for the pressure:

§ [op™t'\ & [ —b(pusu;)™t!
o <——M ) == (—__—Mj ) . (7.23)

The problem is that the term on the right hand side cannot be computed
until the computation of the velocity field at time n + 1 is completed and
vice versa. As a result, the Poisson equation and the momentum equations
have to be solved simultaneously. That can only be done with some type of
iterative procedure.

Next, even if the pressure were known, Egs. (7.22) are a large system of
non-linear equations which must be solved for the velocity field. The structure
of this system of equations is essentially the same as the structure of the
matrix of the finite-differenced Laplace equation so solving them is far from
a trivial matter. If one wishes to solve them accurately, the best procedure
is to adopt the converged results from the preceding time step as the initial
guess for the new velocity field and then converge to the solution at the new
time step using the Newton—Raphson iteration method or a secant method
designed for systems.

An alternative way of dealing with the non-linearity is constructed by
linearizing the equations about the result at the preceding time step. If we
write:

uptt = uf + Auy, (7.24)
then the non-linear term in Egs. (7.22) can be expressed as:
u?“u}”’l = upuy + uf Auy + uf Au; + AuAuy (7.25)

We expect that, at least for small At, Au; ~ At Ou;/0t, so the last term
in this equation is second order in At and is smaller in magnitude than the
error made in the time discretization. It can therefore be neglected. If we use
a second order method in time, such as the Crank-Nicolson scheme, this term
would be of the same order as the spatial discretization error and we would
still be justified in neglecting it.

We can then write Eq. (7.22) as:

pAu; = At <_‘5(PUin)" S(puf Auy)  (pAusuf)
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This method takes advantage of the fact that the non-linearity is quadratic

and removes most of the difficulty arising from it. However, we still need to

solve a large system of linear equations with the structure discussed above.

Direct solution of such a system is too expensive to consider so the solution
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needs to be found iteratively. An interesting possibility is to use the alter-
nating direction implicit (ADI) method to split the equations into a series of
one dimensional problems, each of which is block tridiagonal. The solution at
the new time step can then be found with sufficient accuracy with just one
iteration (one set of block tridiagonal solutions in each direction).

So a reasonable strategy is to use the local linearization based on Eq.
(7.24) and update the equations by the ADI method using the old pressure
gradient. We can then correct the velocity field using the following scheme.

o Call the velocity field computed by updating the momentum equations with
the old pressure gradient u}. It does not satisfy the continuity equation.
e Solve a Poisson equation for the pressure correction:

d (dAp\ 1 6(puj)
e Update the velocity:
uptl =gy - SL00P (7.28)

p 0z
which does satisfy continuity.

With these tricks, the method suggested here is about twice as expensive as
the explicit method per time step.

The method described above is designed to produce an accurate solution
of an unsteady problem. In problems of that kind, the required accuracy in
time usually sets the time step, which will be rather small. Because they
allow large time steps to be used without instability, implicit methods are
often used to solve steady state problems. The idea is to compute in time
until a steady solution is obtained. In this type of calculation, the error made
in linearizing the problem is no longer negligible and the type of method
described here may not be the best choice. Methods designed for solving
steady state problems are given in the next section. They introduce other
means of getting around the problems we encountered here.

7.3.4 Implicit Pressure-Correction Methods

As noted in Chap. 6, many methods for steady problems can be regarded as
solving an unsteady problem until a steady state is reached. The principal
difference is that, when solving an unsteady problem, the time step is chosen
so that an accurate history is obtained while, when a steady solution is sought,
large time steps are used to try to reach the steady state quickly. Implicit
methods are preferred for steady and slow-transient flows, because they have
less stringent time step restrictions than explicit schemes (they may not have
any).
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Many solution methods for steady incompressible flows are of the latter
type; some of the most popular ones can be regarded as variations on the
method of the preceding section. They use a pressure (or pressure-correction)
equation to enforce mass conservation at each time step or, in the language
preferred for steady solvers, each outer iteration. We now look at some of
these methods.

If an implicit method is used to advance the momentum equations in
time, the discretized equations for the velocities at the new time step are
non-linear. If the pressure gradient term is not included in the source term,
these may be written:

5 n+1
Au‘ n+1 +2Au, ntl _ n+1 (I;T) . (729)
t P

As always, P is the index of an arbitrary velocity node, and index ! denotes
the neighbor points that appear in the discretized momentum equation. The
source term ¢ contains all of the terms that may be explicitly computed in
terms of u' as well as any body force or other linearized terms that may de-
pend on the u”+1 or other variables at the new time level (like temperature)
— hence the superscript n + 1. The pressure term is written in symbolic dif-
ference form to emphasize the independence of the solution method from the
discretization approximation for the spatial derivatives. The discretizations
of the spatial derivatives may be of any order or any type described in Chap.
3.

Due to the non-linearity and coupling of the underlying differential equa-
tions, Eqgs. (7.29) cannot be solved directly as the coefficients A and, possibly,
the source term, depend on the unknown solution u*"'. Iterative solution is
the only choice; some approaches were described in Chap. 5. If we are com-
puting an unsteady flow and time accuracy is required, iteration must be
continued within each time step until the entire system of non-linear equa-
tions is satisfied to within a narrow tolerance. For steady flows, the tolerance
can be much more generous; one can then either take an infinite time step
and iterate until the steady non-linear equations are satisfied, or march in
time without requiring full satisfaction of the non-linear equations at each
time step.

The iterations within one time step, in which the coefficient and source
matrices are updated, are called outer iterations to distinguish them from
the inner iterations performed on linear systems with fixed coefficients. On
each outer iteration, the equations solved are:

m—1
Al +2Au, ” = Q" 1 (517 ) ) (7.30)
(5.’1?7; P

We dropped the time step index n + 1 and introduced an outer iteration
counter m; u}® thus represents the current estimate of the solution u*'. At
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the beginning of each outer iteration, the terms on the right hand side of Eq.
(7.30) are evaluated using the variables at the preceding outer iteration.

The momentum equations are usually solved sequentially i.e. the set of
algebraic equations for each component of the momentum is solved in turn,
treating the grid point values of its dominant velocity component as the sole
set of unknowns. Since the pressure used in these iterations was obtained from
the previous outer iteration or time step, the velocities computed from Egs.
(7.30) do not normally satisfy the discretized continuity equation. To enforce
the continuity condition, the velocities need to be corrected; this requires
modification of the pressure field; the manner of doing this is described next.

The velocity at node P, obtained by solving the linearized momentum
equations (7.30), can be formally expressed as:

m—1 __ s, m* —1

umt _ Ui Zl Al ui,l 1 <5pm )

WP = U; T A ; .
A AY \ oz ),

(7.31)

As already stated, these velocities do not satisfy the continuity equation,
so ulp' is not the final value of the velocity for iteration m; it is a predicted
value, which is why it carries an asterisk (*). The corrected final values should
satisfy the continuity equation. For convenience, the first term on the right
hand side of the above equations is called 4]%:

me _oma_ 1 (0p™7
ujp = 4jp — a7 < 520 )p . (7.32)
The velocity field 4** can be thought of as one from which the contribution of
the pressure gradient has been removed. Because the method is implicit, this
is not the velocity that would be obtained by dropping the pressure gradient
entirely from Eq. (7.30).

The next task is to correct the velocities so that they satisfy the continuity
equation:

(pul™)
5zi

=0, (7.33)

which can be achieved by correcting the pressure field. The corrected veloci-
ties and pressure are linked by (see Eq. (7.32)):

1 [ép™
mo_ ame . 7.34
ul,P u‘L,P A’l];. (51,2 >P ( )

Continuity is now enforced by inserting this expression for «[* into the con-
tinuity equation (7.33), to yield a discrete Poisson equation for the pressure:

L), -1,
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As noted earlier, the derivatives of the pressure inside the brackets must be
discretized in the same way they are discretized in the momentum equations;
the outer derivatives, which come from the continuity equation, must be
approximated in the way they are discretized in the continuity equation.

After solving the Poisson equation for the pressure, (7.35), the final ve-
locity field at the new iteration, u[?, is calculated from Eq. (7.34). At this
point, we have a velocity field which satisfies the continuity condition, but the
velocity and pressure fields do not satisfy the momentum equations (7.30).
We begin another outer iteration and the process is continued until a ve-
locity field which satisfies both the momentum and continuity equations is
obtained.

This method is essentially a variation on the one presented in the pre-
ceding section. Methods of this kind, which first construct velocity field that
does not satisfy the continuity equation and then correct it by subtracting
something (usually a pressure gradient) are known as projection methods.
The name is derived from the concept that the divergence-producing part of
the field is projected out.

In one of the most common methods of this type, a pressure-correction
is used instead of the actual pressure. The velocities computed from the lin-
earized momentum equations and the pressure p™ ! are taken as provisional
values to which a small correction must be added:

uP =u™ +4 and pm=pm !4y (7.36)

If these are substituted into the momentum equations (7.30), we obtain the
relation between the velocity and pressure corrections:

R 1 (ép'
_ o (o 7.37
u’L,P u’L,P Ag, 62:1: P ¥ ( 3 )
where @ is defined by (see Eq. (7.31)):
» Yo Al
Ui’p = —'—'I“Afh"l' . (738)
P

Application of the discretized continuity equation (7.33) to corrected ve-
locities and use of expression (7.37) produces the following pressure-correction
equation:

L), 1, e

The velocity corrections @} are unknown at this point, so it is common prac-
tice to neglect them. This is hard to justify and is probably the major reason
why the resulting method does not converge very rapidly.

Alternative methods that are less brutal to the velocity correction will
be described below. In the present method, once the pressure correction has
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been solved for, the velocities are updated using Eqs. (7.36) and (7.37). This
is known as the SIMPLE algorithm (Caretto et al., 1972), an acronym whose
origin will not be detailed. We shall discuss its properties below.

A more gentle way of treating the last term in the pressure-correction
equation (7.39) is to approximate it rather than neglecting it. One could
approximate the velocity correction u} at any node by a weighted mean of
the neighbor values, for example,

A Uy,
U’i,P I~ ——u,y . (740)
20 A

This allows us to approximate 4; p from Eq. (7.38) as

. Al
@ip —ugwpzfll—uj , (7.41)
P

which, when inserted in Eq. (7.37), leads to the following approximate relation
between u} and p':

1 ép
!
A — . A4
WP T T E S A (Mi)P (7.42)

With this approximation the coefficient Ap' in Eq. (7.39) is replaced by
A¥ 4+ %, A" and the last term disappears. This is known as the SIMPLEC
algorithm (van Doormal and Raithby, 1984).

Still another method of this general type is derived by neglecting @} in
the first correction step as in the SIMPLE method but following the correc-
tion with another corrector step. The second correction to the velocity u” is
defined by (see Eq. (7.37)):

_ 1 Jpll
b=ty — — [ =— 1} A
Ujp = U;p Agi <57«'i b ) (7 3)

where 4} is calculated from Eq. (7.38) after u} has been calculated from Eq.
(7.37) with 4@} neglected. Application of the discretized continuity equation
(7.33) to corrected velocities leads to the second pressure-correction equation:

Jii [AZ‘; (%)L - {%]p : (7.44)

Note that the coefficients on the left hand side are the same as in Eq. (7.39),
which can be exploited (a factorization of the matrix may be stored and
reused). Still further corrector steps can be constructed in the same way,
but this is seldom done. This procedure is essentially an iterative method for
solving Eq. (7.39) with the last term treated explicitly; it is known as the
PISO algorithm (Issa, 1986).
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Another similar method of this kind was proposed by Patankar (1980) and
is called SIMPLER. In it, the pressure-correction equation (7.39) is solved
first with the last term neglected as in SIMPLE. The pressure correction so
obtained is used only to correct the velocity field so that it satisfies continuity
i.e. to obtain . The new pressure field is calculated from the pressure
equation (7.35) using 4]* instead of 4**. This is possible because u?™ is now
available.

As already noted, due to the neglect of @} in Eq. (7.39) (which is equivalent
to neglecting it in Eq. (7.37)), the SIMPLE algorithm does not converge
rapidly. Its performance depends greatly on the size of time step, or — for
steady flows — on the value of the under-relaxation parameter used in the
momentum equations. It has been found by trial and error that convergence
can be improved if one adds only a portion of p’ to p™~!, i.e. if one takes

P =p" " + oy (7.45)

after the pressure-correction equation is solved, where 0 < ay, < 1. SIMPLEC,
SIMPLER and PISO do not need under-relaxation of the pressure correction.

One can derive an optimum relation between the under-relaxation factors
for velocities and pressure by the following argument®.
The velocities in the SIMPLE method are corrected by

1 5p’>
W=t <_ , (7.46)
P AR \dxi ) p

Le., i4; p is neglected. To make up for this crudeness, we may now go back
to the momentum equations (7.31) and look for pressure which will satisfy
these equations when u}** is replaced by corrected velocities ul*, which now
satisfy the continuity equation (this is the path that leads to the pressure
equation in SIMPLER). By assuming that the final pressure correction is
app’, we arrive at the following equation:

1 [/ép
Uip=1lip —a —(—) . 7.47
i, P i,P PAg. &Ei P ( )
By making use of Eq. (7.46), we arrive at the following expression for a:

~1!

u; p
.

U p

(7.48)

ap, =1~

We can calculate i} p using Eq. (7.38) but, in multi-dimensional problems,
we would have more than one equation from which a, can be calculated.
However, if instead of calculating @ p, we use the approximation (7.41) used
in SIMPLEC, then the above equation reduces to:

! Raithby and Schneider (1979) found this relation following a different route.
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LT

(6]
P u;
AP

(7.49)

We may now recall that all conservative schemes, in the absence of any con-
tribution to Ap from source terms, lead to Ap = — 5", A, + AL, where AL
is the contribution from the unsteady term. If a steady solution is sought
through iterating for an infinite time step, AL = 0, but we have to use
under-relaxation, as explained in Sect. 5.4.2. In that case, Ap = — ), A;/,
where o, is the under-relaxation factor for velocities (usually the same for
all components, but it need not be so). We then obtain:

ap=1-a,, (7.50)

which has been found to be nearly optimum and yields almost the same
convergence rate for outer iterations as the SIMPLEC method.

The solution algorithm for this class of methods can be summarized as
follows:

1. Start calculation of the fields at the new time ¢, using the latest solu-
tion u? and p" as starting estimates for u?*! and p"*!.

2. Assemble and solve the linearized algebraic equation systems for the ve-

locity components (momentum equations) to obtain uf**.

Assemble and solve the pressure-correction equation to obtain p'.

4. Correct the velocities and pressure to obtain the velocity field «[*, which
satisfies the continuity equation, and the new pressure p™.
For the PISO algorithm, solve the second pressure-correction equation
and correct both velocities and pressure again.
For SIMPLER, solve the pressure equation for p™ after u* is obtained
above.

5. Return to step 2 and repeat, using «* and p™ as improved estimates for
u™*! and p™*!, until all corrections are negligibly small.

T
6. Advance to the next time step.

w

Methods of this kind are fairly efficient for solving steady state prob-
lems; their convergence can be improved by the multigrid strategy, as will be
demonstrated in Chap. 11. There are many derivatives of the above methods
which are named differently, but they all have roots in the ideas described
above and will not be listed here. We shall show below that the artificial
compressibility method can also be interpreted in a similar way.

7.4 Other Methods

7.4.1 Fractional Step Methods

In the methods of the preceding section, the pressure is used to enforce con-
tinuity. It is also used in computing the velocity field in the first step of the
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method; in this step, the pressure is treated explicitly. Why use it at all? The
fractional step method of Kim and Moin (1985) provides an approach that
does not use pressure in the predictor step. It is also important to recall that
the role of the pressure in an incompressible flow is to enforce continuity; in
some sense, it is more a mathematical variable than a physical one.

The fractional step concept is more a generic approach than a particular
method. It is based on ideas similar to those that led to the alternating direc-
tion implicit method in Chap. 5. It is essentially an approximate factorization
of a method; the underlying method need not be implicit. To see how this
might work, we take the simplest case, the Euler explicit advancement of the
Navier-Stokes equations in symbolic form:

utt =uf + (Ci + D; + Pi) At (7.51)

where C;, D;, and F; represent the convective, diffusive and pressure terms,
respectively. This equation is readily split into a three step method:

ui = ul + (Cy)At (7.52)
u;t =uj + (D) At (7.53)
uptt = ut + (P) At (7.54)

In the third step, F; is the gradient of a quantity that obeys a Poisson equa-
tion; naturally, this quantity must be chosen so that the continuity equation
is satisfied. Depending on the particulars of the method, the source term in
this Poisson equation may differ slightly from the source term in the standard
Poisson equation for the pressure (7.21); for this reason, the variable is called
the pseudo-pressure or a pressure-like variable. Also, note that it is possible
to split the convective and diffusive terms further; for example, they may
be split into their components in the various coordinate directions. Clearly,
many basic methods can be used and many kinds of splitting can be applied
to each.

We now present a particular fractional step method; again, many varia-
tions are possible.

For unsteady flows, a time accurate method such as a third or fourth order
Runge-Kutta method (if an explicit method suffices) or the Crank-Nicolson
or second order backward method (if more stability is required) is used. For
steady flows, in order to take a large time step, an implicit method should be
used; linearization and an ADI method may be used to solve the equations.
Spatial discretization can be of any type described above. We shall use the
semi-discrete form of equations and the Crank-Nicolson scheme; a similar
method based on central difference approximations in space was used by
Choi and Moin (1994) for direct simulations of turbulence.

In the first step, the velocity is advanced using pressure from the previous
time step; convective terms, viscous terms, and body forces (if present) are
represented by an equal blend of old and new values (Crank-Nicolson method
in this particular case):
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7T

(o) — 0w _ iy sy - 2

At bz (7.55)

where H (u;) is an operator representing the discretized convective, diffusive,
and source terms. This system of equations must be solved for v} ; any method
can be used. Unless the time step is very small, one should iterate to account
for the non-linearity of the equations; Choi et al. (1994) used a Newton
iterative method.

In the second step, half of the old pressure gradient is removed from u},
leading to u}*:

(pui)** — (pus)* _ 1dp"
At 2 51‘1; )

(7.56)

The final velocity at the new time level requires the gradient of the (as yet
unknown) new pressure:

(pud)™t = (pug)** _ 1ép™H!

yn =53 (7.57)

The requirement that the new velocity satisfy the continuity equation leads
to a Poisson equation for the new pressure:

S (6 2 (o
dz; \ oxz; ) At Sz

(7.58)

Upon solution of the pressure equation, the new velocity field is obtained from
Eq. (7.57). It satisfies the continuity equation and the momentum equation
in the form:

(ous)™ = (pu) _ 1. oy L (opm  oprH

For this equation to represent the Crank-Nicolson method correctly, H(u})
should be replaced by H(u]'*'). However, from Egs. (7.56) and (7.57) one
can easily show that the error is of second order in time and thus consistent
with other errors:

PP A e RN )

LT 2 dz; Y T2 b6z \ 6t

(7.60)

Note that, by subtracting Eq. (7.55) from Eq. (7.59), one obtains an equation
for the pressure correction p' = p™+! — p»

P
(pui)™ ' — (pus)* _ _16p/

L 61

The Poisson equation for p’ has the same form as Eq. (7.58), except that u}*
is replaced by u}.
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Fractional step methods have become rather popular. There is a wide
variety of them, due to a vast choice of approaches to time and space dis-
cretization; however, they are all based on the principles described above.

The major difference between the fractional-step method and pressure-
correction methods of the SIMPLE-type is that in the former, the pressure
(or pressure-correction) equation is solved once per time step, while in the lat-
ter, both the momentum and pressure-correction equations are solved several
times within each time step (outer iterations). This is largely because frac-
tional step methods are used mainly in unsteady flow simulations while the
latter are used predominantly to compute steady flows. Since, in SIMPLE-
type methods, mass conservation is enforced only at the end of a time step,
the pressure-correction equation need not be solved accurately on each outer
iteration (reduction of the residual by one order of magnitude usually suf-
fices). Indeed, for steady flows, accurate satisfaction of the continuity con-
dition is required only at convergence. In simulations of unsteady flows, the
pressure (or pressure-correction) equation must be solved to a tight tolerance
to ensure mass conservation at each time step. Multigrid or spectral methods
are usually used to solve the Poisson equation for the pressure in unsteady
flow simulations in simple geometries while, for steady flows or complex ge-
ometries, the linear equations are usually solved using conjugate-gradient
methods.

If the time step is large, the fractional step method produces an error due
to the operator splitting, as shown in Eq. (7.60). This error can be elimi-
nated either by reducing the time step or by using iteration of the kind used
in SIMPLE-type methods. However, if the splitting error is significant, the
temporal discretization error is also large. Therefore, reducing the time step
is the most appropriate means of improving accuracy. Note that the PISO-
method introduced in the preceding section is very similar to the fractional-
step method and has a splitting error proportional to (At)?2.

7.4.2 Streamfunction-Vorticity Methods

For incompressible two-dimensional flows with constant fluid properties, the
Navier-Stokes equations can be simplified by introducing the streamfunction
1) and vorticity w as dependent variables. These two quantities are defined in
terms of Cartesian velocity components by:

) )

—6% =g, 5% = —uy, (7.62)
and

w= %”z—y - %’;“ . (7.63)

Lines of constant ¢ are streamlines (lines which are everywhere parallel to the
flow), giving this variable its name. The vorticity is associated with rotational
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motion; Eq. (7.63) is a special case of the more general definition that applies
in 3D as well:

w=Vxuv. (7.64)

In two dimensional flows, the vorticity vector is orthogonal to the plane of
flow and Eq. (7.64) reduces to Eq. (7.63). The principal reason for introduc-
ing the streamfunction is that, for flows in which p, 4 and g are constant, the
continuity equation is identically satisfied and need not be dealt with explic-
itly. Substitution of Eqgs. (7.62) into the definition of the vorticity (7.63) leads
to a kinematic equation connecting the streamfunction and the vorticity:
2 2

8—%} o =—w. (7.65)

Or oy?
Finally, by differentiating the z and y momentum equations with respect to
y and z, respectively, and subtracting the results from each other we obtain
the dynamic equation for the vorticity:

Pot TP TPy TH\ B2z T B2 ) (7.66)

The pressure does not appear in either of these equations i.e. it has been
eliminated as a dependent variable. Thus the Navier-Stokes equations have
been replaced by a set of just two partial differential equations, in place of
the three for the velocity components and pressure. This reduction in the
number of dependent variables and equations is what makes this approach
attractive.

The two equations are coupled through the appearance of u, and u,
(which are derivatives of ) in the vorticity equation and by the vorticity
w acting as the source term in the Poisson equation for 3. The velocity
components are obtained by differentiating the streamfunction. If it is needed,
the pressure can be obtained by solving the Poisson equation as described in
Sect. 7.3.1.

A solution method for these equations is the following. Given an initial
velocity field, the vorticity is computed by differentiation. The dynamic vor-
ticity equation is then used to compute the vorticity at the new time step;
any standard time advance method may be used for this purpose. Having the
vorticity, it is possible to compute the streamfunction at the new time step
by solving the Poisson equation; any iterative scheme for elliptic equations
may be used. Finally, having the streamfunction, the velocity components are
easily obtained by differentiation and we are ready to begin the calculation
for the next time step.

A problem with this approach lies in the boundary conditions, especially
in complex geometries. Since the flow is parallel to them, solid boundaries
and symmetry planes are surfaces of constant streamfunction. However, the
values of the streamfunction at these boundaries can be calculated only if
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velocities are known. A more difficult problem is that neither vorticity nor
its derivatives at the boundary are usually known in advance. For example,
vorticity at a wall is equal to wwanl = —Twan /1, where 7way is the wall shear
stress, which is usually the quantity we seek to determine. Boundary values
of the vorticity may be calculated from the streamfunction by differentiation
using one-sided finite differences in the direction normal to the boundary,
see Eq. (7.65). This approach usually slows down the convergence rate. The
vorticity is singular at sharp corners of the boundary and special care is
required in treating them. For example, at the corners labeled A and B in Fig.
7.3 the derivatives of du,/0r and Hu. /8y are not continuous, which means
that the vorticity w is also not continuous there and cannot be computed
using the approach described above. Some authors extrapolate the vorticity
from the interior to the boundary but this does not provide a unique result
at A and B either. It is possible to derive analytical behavior of the vorticity
near a corner and use it to correct the solution but this is difficult as each
special case must be treated separately. A simpler but efficient way of avoiding
large errors (which may be convected downstream) is to locally refine the grid
around singularities.

A B

C D

Fig. 7.3. Finite difference grid for the calculation of flow over a rib, showing
protruding corners A and B where special treatment is necessary to determine
boundary values of vorticity

The vorticity-streamfunction approach has seen considerable use for two-
dimensional incompressible flows. It has become less popular in recent years
because its extension to three-dimensional flows is difficult. Both the vorticity
and streamfunction become three-component vectors in three dimensions so
one has a system of six partial differential equations in place of the four that
are necessary in a velocity-pressure formulation. It also inherits the difficul-
ties in dealing with variable fluid properties, compressibility, and boundary
conditions that were described above for two dimensional flows.

7.4.3 Artificial Compressibility Methods

Compressible flow is an area of fluid mechanics of great importance. Its ap-
plications, especially in aerodynamics and turbine engine design, have caused
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a great deal of attention to be focused on development of methods for the
numerical solution of the compressible flow equations. Many such methods
have been developed. An obvious question is whether they can be adapted
to the solution of the incompressible flows. Clearly, we cannot cover the full
range of methods for compressible flow in this work; instead we shall focus on
how these methods may be adapted to incompressible flow and a description
of a few of the key properties of artificial compressibility methods.

The major difference between the equations of compressible flow and those
of incompressible flow is their mathematical character. The compressible flow
equations are hyperbolic which means that they have real characteristics
on which signals travel at finite propagation speeds; this reflects the ability
of compressible fluids to support sound waves. By contrast, we have seen
that the incompressible equations have a mixed parabolic-elliptic character.
If methods for compressible flow are to be used to compute incompressible
flow, the character of the equations will need to be modified.

The difference in character can be traced to the lack of a time derivative
term in the incompressible continuity equation. The compressible version con-
tains the time derivative of the density. So, the most straight-forward means
of giving the incompressible equations hyperbolic character is to append a
time derivative to the continuity equation. Since density is constant, adding
Op/0t, i.e. using the compressible equation, is not possible. Time derivatives
of velocity components appear in the momentum equations so they are not
logical choices. That leaves the time derivative of the pressure as the clear
choice.

Addition of a time derivative of the pressure to the continuity equation
means that we are no longer solving the true incompressible equations. As
a result, the time history generated cannot be accurate and the applicabil-
ity of artificial compressibility methods to unsteady incompressible flows is a
questionable enterprise although it has been attempted. On the other hand,
at convergence, the time derivative is zero and the solution satisfies the in-
compressible equations. This approach was first proposed by Chorin (1967)
and a number of versions differing mainly in the underlying compressible
flow method used, have been presented in the literature. As noted above,
the essential idea is to add a time derivative of pressure to the continuity
equation:

10p  9lpu)
B ot Ox;

=0, (7.67)

where # is an artificial compressibility parameter whose value is key to the
performance of this method. Clearly, the larger the value of 8, the more
“incompressible” the equations; however, large § makes the equations very
stiff numerically. We shall consider only the case of constant density, but the
method can be applied to variable density flows.
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To connect this method with the ones described above, we note that the
intermediate velocity field (u})™*!, obtained from the momentum equations
using old pressure, does not satisfy the incompressible continuity equation,
ie.,

[6(pu;>"+1

5. JP = Arp | (7.68)

at the time step n+1. The derivatives on the left hand side of this equation are
evaluated by some finite difference approximation; the choice is not important
here, which is why symbolic difference notation is used.

For solving these equations, many methods are available. In fact, because
each equation now contains a time derivative, methods employed to solve
them can be modeled after ones used to solve ordinary differential equations
presented in Chap. 6. Because the artificial compressibility method is princi-
pally intended for steady flows, implicit methods should be favored. Another
important point is that the principal difficulty faced in compressible flow,
namely the possibility of transition from subsonic to supersonic flow and, es-
pecially, the possible existence of shock waves can be avoided. The best choice
for a solution method for two or three dimensional problems is an implicit
method that does not require the solution of a full two or three dimensional
problem at each time step, which means that an alternating direction im-
plicit or approximate factorization method is the best choice. An example of
a scheme for deriving a pressure equation using artificial compressibility is
presented below.

The simplest scheme uses a first order explicit discretization in time; it
enables pointwise calculation of pressure, but places a severe restriction on the
size of time step. Since the time development of pressure is not important
and we are interested in obtaining the steady state solution as quickly as
possible, the fully implicit Euler scheme is a better choice:

n+1

Pt —pB  [6(pu)) 1™t
P +[5z,- ) =0. (7.69)

The problem is that the velocity field at the new time level is not known.
However, one can linearize about the known old state and transform the
above equation into a Poisson equation for pressure or pressure correction!
Let us see how this can be done.

The unknown quantity (pu;)™*! may be approximated as:

*«\y 1 n+1
(g = iyt + | 20 et (7.70)

By inserting this expression into the continuity equation (7.69) we obtain an
equation for the new pressure p™*!.
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Let us now see how the artificial compressibility approach may be used to
derive a pressure-correction equation similar to those described in preceding
sections.

We may recall from the previous section that from the implicitly dis-
cretized momentum equations, one can demonstrate the following relation-
ship between pu; and the pressure gradient (see Eq. (7.32)):

«\n+1 __ ~x\n+1 L (spl
g™ = i - £ () - (r.1)

Instead of Eq. (7.70) we postulate the following expression for (pu;)"+!:

n+1
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From Eq. (7.71) we find that:
n+1
i _ | 9(pui) _ P
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If we further introduce the pressure correction
! — pn+1 _ pn , (7.74)
we may finally rewrite the Eq. (7.72) as:
n+1 *\n+1 i 61),
(pus)™ ™" = (pui)™" + dpg . (7.75)

Obviously, if the densities in (pu;)"*! and (pu})™*! are the same, this implies
a velocity correction of the same form as in the SIMPLE method, see Eq.
(7.37), i.e.:

1 6p
= 7.76
Ui Ag‘ (51‘1' ( )

By substituting expression (7.75) into Eq. (7.69), we obtain:

o [8un)™t' & (L &\] _
ﬂAt+[ bl ol b P_0, (7.77)

which can, with the help of Eq. (7.68), be further rearranged to give:
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Pp __5_ iél_’: — _ A
BAL + 57; (d (51‘i>P = —Armp . (7.78)

This equation is very similar to the pressure-correction equation of the SIM-
PLE method, Eq. (7.39). It thus appears that all the pressure calculation
methods presented so far, although arrived at via different routes, reduce
to the same basic method. Again, it is important that the pressure deriva-
tives inside brackets are approximated in the same way as in the momentum
equations, while the outer derivative is the one from the continuity equation.

The crucial factor for convergence of a method based on artificial com-
pressibility is the choice of parameter 8. The optimum value is problem de-
pendent, although some authors have suggested an automatic procedure for
choosing it. A very large value would require the corrected velocity field to
satisfy the incompressible continuity equation. In the above version of the
method, this corresponds to the SIMPLE scheme without under-relaxation
of pressure correction; the procedure would then converge only for small At.
However, if only a portion of p’ is added to the pressure as in SIMPLE,
infinitely large 8 could be used.

On the other hand, the lowest value of § allowed can be determined by
looking at the propagation speed of pressure waves. The pseudo-sound speed

is:
c=vv2+8.

By requiring pressure waves to propagate much faster than the vorticity
spreads, the following criterion can be derived for a simple channel flow (see
Kwak et al., 1986):

4 ? ’

Tref Ty
B> {H'Re (1175 ) (:L'ref>:' 1,
where xj, is the distance between inlet and outlet, x5 is half the distance
between two walls and ¢ is the reference length. Typical values of § used in
various methods based on artificial compressibility were in the range between
0.1 and 10.

Obviously, 1/(8At) should be small compared to the coefficients arising
from the second term in Eq. (7.78) if the corrected velocity field is to closely
satisfy the continuity equation. This is a necessity if rapid convergence is to
be obtained. For some iterative solution methods (e.g. using domain decom-
position technique in parallel processing or block-structured grids in com-
plex geometries) it has been found useful to divide the Ap coefficient of
the pressure-correction equation in SIMPLE by a factor smaller than unity
(0.95 to 0.99). This is equivalent to the artificial compressibility method with
1/(BAt) ~ (0.01 to 0.05) Ap.
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7.5 Solution Methods for the Navier-Stokes Equations

We have described discretization methods for the various terms in the trans-
port equations. The linkage of the pressure and the velocity components in
incompressible flows was demonstrated and a few solution methods have been
given. Many other methods of solving the Navier-Stokes equations can be de-
vised. It is impossible to describe all of them here. However, many of them
have elements in common with the methods already described. Familiarity
with these methods should allow the reader to understand the others.

We describe below in some detail two methods that are representative
of a larger group of methods. First an implicit method using the pressure-
correction equation and staggered grids is described in enough detail to allow
straightforward translation into a computer code. The corresponding code is
available via Internet; see Appendix for details.

7.5.1 Implicit Scheme Using Pressure-Correction and a Staggered
Grid

In this section we present an implicit finite volume scheme that uses the
pressure-correction method on a staggered two-dimensional Cartesian grid.
Solution in complicated geometries is described in the next chapter.

The Navier-Stokes equations in integral form read:

/pv-ndS=0, (7.79)
5

2/puid(2+/puiv-ndS:/Tijij-ndS—/pii~ndS+
ot Jo s s s
/Q(P—Po)gidﬂ. (7.80)

For convenience, it is assumed that the only body force is buoyancy. The
macroscopic momentum flux vector t;, see Eq. 1.18, is split into a viscous
contribution 7;;4; and a pressure contribution pi;. We assume the density
constant except in the buoyancy term, i.e. we use the Boussinesq approxima-
tion. The mean gravitational force is incorporated into the pressure term, as
shown in Sect. 1.4.

Typical staggered control volumes are shown in Fig. 7.4. The control
volumes for u, and u, are displaced with respect to the control volume for
the continuity equation. For non-uniform grids, the velocity nodes are not at
the centers of their control volumes. Cell faces ‘¢’ and ‘w’ for u, and ‘n’ and
‘s’ for u, lie midway between the nodes. For convenience, we shall sometimes
use u instead of u; and v instead of u,.
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Xz x; x;

i

Fig. 7.4. Control volumes for a staggered grid: for mass conservation and scalar
quantities (left), for z-momentum (center) and for y-momentum (right)

We will use the second order implicit three time level scheme described in
Sect. 6.2.4 for integration in time. This leads to the following approximation
of the unsteady term:

7] ) ~ pAQ n+1 n n—1\ _
[Bt/gpuldQL,N 5 i (3u] qu +ul™) =

(2

Atpu?;l— . (7.81)
where

Ab = %%Q and Q. = %379 (4ul ~u?71) . (7.82)

We shall drop the superscript n + 1; all terms are evaluated at ¢, 1 unless
stated otherwise. Because the scheme is implicit, the equations require itera-
tive solution. If the time steps are as small as those used in explicit schemes,
one or two iterations per time step will suffice. For flows with slow transients,
we may use larger time steps and more iterations will be necessary. As noted
earlier, these iterations are called outer iterations to distinguish them from
the inner iterations used to solve linear equations such as the pressure cor-
rection equation. We assume that one of the solvers described in Chap. 5 is
used for the latter and shall concentrate on the outer iterations.

We now consider the approximation of the convective and diffusive fluxes
and the source terms. The surface integrals may be split into four CV face
integrals. Let us concentrate attention on CV face ‘e’; the other faces are
treated in the same way, and the results can be obtained by index substi-
tution. We shall adopt the second order central difference approximations
presented in Chap. 4. Fluxes are approximated by assuming that the value of
a quantity at a CV face center represents the mean value over the face (mid-
point rule approximation). On the mth outer iteration, all nonlinear terms
are approximated by a product of an ‘old’ (from the preceding outer itera-
tion) and a ‘new’ value. Thus, in discretizing the momentum equations, the
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mass flux through each CV face is evaluated using the existing velocity field
and is assumed known:

'{'nén’ = / pu - ndS ~ (pu);n-lse . (783)
Se

This kind of linearization is essentially the first step of Picard iteration; other
linearizations for implicit schemes were described in Chap. 5. Unless specifi-
cally stated otherwise, all variables in the remainder of this section belong to
the mith outer iteration. The mass fluxes (7.83) satisfy the continuity equation
on the ‘scalar’ CV, see Fig. 7.4. Mass fluxes at the faces of the momentum
CVs must be obtained by interpolation; ideally, these fluxes would provide
mass conservation for the momentum CV but this can be guaranteed only
to the accuracy of the interpolation. Another possibility is to use the mass
fluxes from the scalar CV faces. Since the east and west faces of a u-CV are
halfway between scalar CV faces, the mass fluxes can be calculated as:

SR C\u N U . vu

my = §(mp +mg)*; mi = §(mw +mp)". (7.84)
The mass fluxes through the north and south faces of the u-CV can be ap-
proximated as half the sum of the two scalar CV face mass fluxes:

= 2 e + )" 5 il = %(m + rivga)" | (7.85)
The superscript u denotes that the indices refer to the u-CV, see Fig. 7.4.
The sum of the four mass fluxes for the u-CV is thus half the sum of mass
fluxes into the two adjacent scalar CVs. They therefore satisfy the continuity
equation for the double scalar CV so the mass fluxes through the u-CV
faces also conserve mass. This result also holds for v-momentum CVs. It is
necessary to ensure that the mass fluxes through the momentum CVs satisfy
the continuity equation; otherwise, momentum will not be conserved.
The convective flux of u;-momentum through the ‘e’-face of a u-CV is
then (see Sect. 4.2 and Eq. (7.83)):

Fi, = /pui'u -ndS & meu;e - (7.86)
S

The CV face value of u; used in this expression need not be the one used to
calculate the mass flux, although an approximation of the same accuracy is
desirable. Linear interpolation is the simplest second order approximation.
We call this a central difference scheme (CDS), although no differencing is
involved. This is because, on uniform grids, it results in the same algebraic
equations as the CDS finite difference method.

Some iterative solvers fail to converge when applied to the algebraic equa-
tion systems derived from central difference approximations of convective
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fluxes. This is because the matrices may not be diagonally dominant; these
equations are best solved using deferred correction approach described in
Sect. 5.6. In this method, the flux is expressed as:

UDS uCDS _  UDSym—1 (7.87)

Fi(je = meui,e + The( i,e
where superscripts CDS and UDS denote approximation by central and up-
wind differences, respectively (see Sect. 4.4). The term in brackets is evaluated
using values from the previous iteration while the matrix is computed using
the UDS-approximation. At convergence, the UDS contributions cancel out,
leaving a CDS solution. This procedure usually converges at approximately
the rate obtained for a pure upwind approximation.

The two schemes may also be blended; this is achieved by multiplying
the explicit part (the term in brackets in Eq. (7.87)) by a factor 0 < 8 < 1.
This practice can remove the oscillations obtained with central differences on
coarse grids. However, it improves the esthetics of the results at the cost of de-
creasing the accuracy. Blending may be used locally, e.g. to allow calculation
of flows with shocks with CDS; this is preferable to applying it everywhere.

Calculation of the diffusive fluxes requires evaluation of the stresses 7,;
and Ty, at the CV face ‘e’. Since the outward unit normal vector at this CV
face is %, we have:

F, = / Tie dS & (Tig)eSe (7.88)
Se

where Se = y; —yj—1 = Ay for the u-CV and S, = 3 (yj41 — y;-1) for the v-
CV. The stresses at CV face require approximation of the derivatives; central
difference approximations lead to:

ou UE — up
Tz e:2 - ~ 22— s .
(o) =2 ax)e p e (7.59)
ov ou UE — Up Une — Use
Tyz)e = _— 4 — I~ =+ . 790
( y ) ,U'(ax 6y>e Iy — Tp ‘uyne“‘yse ( )

Note that 7, is evaluated at the ‘e’ face of the u-CV, and 7, at the ‘e’ face
of the v-CV, so the indices refer to locations on the appropriate CVs, see Fig.
7.4. Thus, une and use on the v-CV are actually nodal values of the u-velocity
and no interpolation is necessary.

At the other CV faces we obtain similar expressions. For u-CVs, we need
to approximate 7., at the faces ‘e’ and ‘w’, and Tzy at the faces ‘n’ and ‘s’.
For v-CVs, 7, is needed at the faces ‘e’ and ‘w’ and 7, at the faces ‘n’ and
‘s’.

The pressure terms are approximated by:

QP = —/pi ndS & —(peSe — PuSu)™ " (7.91)
S
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for the u-equation and

Q= [5 pj-ndS ~ —(puSa — pySs)™" (7.92)

for the v-equation. There are no pressure force contributions from the ‘n’ and
‘s’ CV faces to the u-equation or from the ‘e’ and ‘w’ faces to the v-equation
on a Cartesian grid.

If buoyancy forces are present, they are approximated by:

b= /Q(P ~ p0)gi A2 & (pF~" — po)g; AR, (7.93)

where A2 = (2 — Tw)(Yn — ¥s) = (g1 — i-1)(y; — yj-1) for the u-CV
and A2 = 1(z; — zi_1)(yj+1 — yj—1) for the v-CV. Any other body force can
be approximated in the same way.

The approximation to the complete u;-momentum equation is:

Apuip + FY = F + QF + Q7 + Q} (7.94)
where
FC=F 4+ FS 4+ FS+F and FO=FS+FS+ R4 Fd.  (7.95)

If p and p are constant, part of the diffusive flux term cancels out by virtue
of the continuity equation, see Sect. 7.1. (It may not exactly cancel out in
the numerical approximation but the equations may be simplified by deleting
those terms prior to discretization). For example, in the u-equation, the 744
term on the ‘e’ and ‘w’ faces will be reduced by half, and in the 7, term at
the ‘n’ and ‘s’ faces, the dv/0z contribution is removed. Even when p and u
are not constant, the sum of these terms contributes in only a minor way to
F4. This is why an explicit ‘diffusive source term’, e.g. for u:

d ug — up up — uw
Qu = “es — /stw—“+
—2Zp Irp — Tw
v v Vse — Usw 1™ "
ne — Unw se — Usw
pin S ————— — psSs (7.96)
Tne — Tnw Tse — Tsw

is usually calculated from the previous outer iteration m — 1 and treated
explicitly. Only F9 — Q4 is treated implicitly. A consequence of this approx-
imation is that, on a colocated grid, the matrix implied by Eq. (7.94) is
identical for all three velocity components.

When the approximations for all the fluxes and source terms are substi-
tuted into Eq. (7.94), we obtain an algebraic equation of the form:

Bup+»_ Afw =Qp, |=EW,N,S. (7.97)
l
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The equation for v has the same form. The coefficients depend on the approx-
imations used; for the CDS approximations applied above, the coefficients of
the u equation are:

Ag] = mln(m;‘,O) - 'ue*se }
Iy — ITp
A = min(iy,0) — L5
YN —YP
. . WSW
AY, = min(m®,0) — ¥ (7.98)
Irp — Tw
A¥ = min(ig, 0) - 8%
Yp — Ys

Ap = AL =) AF, I=E,W,N,S.
4

Note that i for the CV centered around node P equals —, for the CV
centered around node W. The source term Q¢ contains not only the pressure
and buoyancy terms but also the portion of convective and diffusive fluxes
resulting from deferred correction and the contribution of the unsteady term,
ie.:

Qr=Q°+Qy+Q% + Q4 +Q, (7.99)
where
QS = [(F)UPS — (FO)CPS)™ 1, (7.100)

This ‘convective source’ is calculated using the velocities from the previous
outer iteration m — 1.

The coeflicients in the v equation are obtained in the same way and have
the same form; however, the grid locations ‘e’, ‘n’ etc. have different coordi-
nates, see Fig. 7.4.

The linearized momentum equations are solved with the sequential solu-
tion method (see Sect. 5.4), using the ‘old’ mass fluxes and the pressure from
the previous outer iteration. This produces new velocities v* and v* which
do not necessarily satisfy the continuity equation so:

my + 1y, + 1y, +m; = Amp , (7.101)
where the mass fluxes are calculated according to Eq. (7.83) using u* and v*.
Since the arrangement of variables is staggered, the cell face velocities on a
mass CV are the nodal values. The indices below refer to this CV, see Fig.
7.4, unless otherwise stated.

The velocity components 4* and v* calculated from the momentum equa-
tions can be expressed as follows (by dividing Eq. (7.97) by Ap; note that
index ‘e’ on a mass CV represents index P on a u-CV):
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e O
Ug = U, A—Z(pE —pp)™ Y, (7.102)
P
where @} is shorthand notation for
u _ P _ Abq*
,a* = QP Qu Zl lul A (7.103)
Ap
Analogously, v} can be expressed as:
* % Sn m-—1
vp =05 — —(pn —pp)" . (7.104)

A1P}) AN
The velocities u* and v* need to be corrected to enforce mass conservation.
This is done, as outlined in Sect. 7.3.4, by correcting the pressure. The cor-
rected velocities — the final values for the mth outer iteration — u™ = u* + v’
and v™ = v* + v’ are required to satisfy the linearized momentum equations,
which is possible only if the pressure is corrected. So we write:

. S,
ult = a7 — (e —pe)™ (7.105)

P

and
m _ ~m _ Eﬂ_ m

U =0 T (pn —pp)™ (7.106)

P
where p™ = p™~! 4+ p' is the new pressure. The indices refer to the mass

CV. The relation between velocity and pressure corrections is obtained by
subtracting Eq. (7.102) from Eq. (7.105):

[ ~1 S 7 ]
Uq = Uy — A—;(pE ~Pp) (7.107)

where 4’ is defined as (see Eq. (7.103)):

u,,!
m ~% __ ZlAlul
e Ue = — .

i, = Uy’ — . (7.108)
Analogously, one obtains:
! ~1 Sn / /
Uy = T — A—%(pN - pp) - (7.109)

The corrected velocities are required to satisfy the continuity equation,
so we substitute ™ and v™ into the expressions for mass fluxes, Eq. (7.83),
and use Eq. (7.101):

(pSu')e — (pSu')w + (pSV')n — (pSV')s + Ay =0 . (7.110)
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Finally, substitution of the above expressions (7.107) and (7.109) for «'
and v’ into the continuity equation leads to the pressure-correction equation:

Abpp + Y Alp, = —Amp — A (7.111)
{

where the coefficients are:
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A§=_<’;1—v) ,A’g:-(”i) , (7.112)
AL =-> AP, I=E,W,N,S.
!

The term Arip is analogous to Arj, with @' and ¥’ replacing v* and v*,
see Eqs. (7.101) and (7.110). Since the velocity corrections are not known
prior to the solution of the pressure-correction equation, this term is usually
neglected, as mentioned in the previous section. We then have the SIMPLE
algorithm.

After the pressure-correction equation has been solved, the velocities and
pressure are corrected. As noted in Sect. 7.3.4, if one tries to calculate steady
flows using very large time steps, the momentum equations must be under-
relaxed as described in Sect. 5.4.2, so only part of the pressure correction
p' is added to p™~!. Under-relaxation may also be required in unsteady
calculations with large time steps.

The corrected velocities satisfy the continuity equation to the accuracy
with which the pressure-correction equation is solved. However, they do not
satisfy the non-linear momentum equation, so we have to begin another outer
iteration. When both the continuity and momentum equations are satisfied
to the desired tolerance, we can proceed to the next time level. To begin
the iterations at the new time step, the solution at the previous time step
provides the initial guess. This may be improved by use of extrapolation. For
small time steps extrapolation is fairly accurate and saves a few iterations.

A computer code employing this algorithm is available via Internet; see
Appendix for details. Some examples of its application and performance are
presented below.

The above algorithm is easily modified to give the SIMPLEC method de-
scribed in Sect. 7.3.4. The pressure-correction equation has the form (7.111),
but Ap and Ap are replaced by Ap + >, Af and Ap + >, A}, respectively.
The extension to the PISO algorithm is also straightforward. The second
pressure-correction equation has the same coefficient matrix as the first one,
but the source term is now —Arnp. This term was neglected in the first
pressure-correction equation, but it can now be calculated using the first
velocity correction u;.
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Discretizations of higher order are easily incorporated into the above so-
lution strategy. The implementation of boundary conditions will be described
after discussing the solution methods using colocated arrangement of vari-
ables.

7.5.2 Treatment of Pressure for Colocated Variables

It was mentioned earlier that a colocated arrangement of variables on a nu-
merical grid creates problems which caused it to be out of favor until recently.
Here, we shall first show why the problems occur and then present a cure.

We start by looking at a finite-difference scheme and the simple time-
advance method presented in Sect. 7.3.2. There we derived the discrete Pois-
son equation for the pressure, which can be written:

§ (&p*\ SH!
g{(g) =S (7.113)

where H is the shorthand notation for the sum of the advective and viscous
terms:

S(puiug)™ o7}

H = —

1

(7.114)

(summation on j is implied). The discretization scheme used to approximate
the derivatives is not important in Eq. (7.113), that is why symbolic notation
is used. Also, the equation is not specific to any grid arrangement.

Let us now look at the colocated arrangement shown in Fig. 7.5 and
various difference schemes for the pressure gradient terms in the momentum
equations and for the divergence in the continuity equation. We start by
considering a forward difference scheme for pressure terms and a backward
difference scheme for the continuity equation. Section 7.1.3 shows that this
combination is energy conserving. For simplicity we assume that the grid is
uniform with spacings Az and Ay.

Fig. 7.5. Control volume in a colocated grid and
notation used
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By approximating the outer difference operator §/6z; in the pressure
equation with the backward difference scheme, we obtain:

(2)-(2). (5),-(5),

Hip—Hiw Hip~His
Az Ay

(7.115)

Denoting the right hand side as Qf and using the forward difference approx-
imations for the pressure derivatives, we arrive at:

PE—PB _PR-PYy PN_PB_PP_DS

Az Az _ Ay Ay
Az Ay

=Qf. (7.116)

The system of algebraic equations for the pressure then takes the form:

PpP+ZAlpL' - 11;’11 l:E,W,N,S, (7117)

where the coefficients are:

1 1
Ap = Ap = ——= Ap = Ap e
BT oW (Az)2’ TN TS (Ay)?’ (7.118)

Ap = -3 A7

One can verify that the FV approach would reproduce equation (7.116) if
the CV shown in Fig. 7.5 is used for both the momentum equations and the
continuity equation, and if the following approximations are used: ue = up,
De = PE; Un = Up, Pn = PN; Uw = UW, Pw = PP, Us = VS, Ps = Dp.

The pressure or pressure-correction equation has the same form as the
one obtained on a staggered grid with central difference approximations; this
is because approximation of a second derivative by a product of forward
and backward difference approximations for first derivatives gives the central
difference approximation. However, the momentum equations suffer from use
of a first order approximation to the major driving force term — the pressure
gradient. It is better to use higher order approximations.

Now consider what happens if we choose central difference approximations
for both the pressure gradient in the momentum equations and the divergence
in the continuity equation. Approximating the outer difference operator in
Eq. (7.113) by central differences, we obtain:

"\ _ (0" "y ("
0z )& (5:1:W+6yN 8y /g

2Az 2Ay




198 7. Solution of the Navier-Stokes Equations

o8~ Hiw N Hin—Hjs
24z 24y

(7.119)

We again denote the right hand side as Q{){ ; however, this quantity is not the
one obtained previously. Inserting the central difference approximations for
pressure derivatives, we find:

PR —PP PR —Pyw PN PP _ PP~ PSs
2Ax 2Ax 24y 2y _ HH
24z + 54y =Qf . (7.120)

The system of algebraic equations for the pressure has the form:

ABpR + Z APpr = —QH | 1 =EE,WW,NN,SS (7.121)

where the coefficients are:

1 1
Al = AR = AR = AP =

:3‘*3 ww ) (2Az)2 NN T USS (24y)2 "’ (7.122)
Ap = - Zl A

This equation has the same form as Eq. (7.117) but it involves nodes which
are 2Az apart! It is a discretized Poisson equation on a grid twice as coarse
as the basic one but the equations split into four unconnected systems, one
with ¢ and j both even, one with i even and j odd, one with 7 odd and j even,
and one with both odd. Each of these systems gives a different solution. For
a flow with a uniform pressure field, the checkerboard pressure distribution
shown in Fig. 7.6 satisfies these equations and could be produced. However,
the pressure gradient is not affected and the velocity field may be smooth.
There is also the possibility that one may not be able to obtain a converged
steady-state solution.

A similar result is obtained with the finite volume approach if the CV face
values of the fluxes are calculated by linear interpolation of the two neighbor
nodes.

2 0 2 0 2 Fig. 7.6. Checkerboard pressure field,
made of four superimposed uniform fields
on 2A-spacing, which is interpreted by
CDS as a uniform field
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The source of the above problem may be traced to using 2Az approxima-
tions to the first derivatives. Various cures have been proposed. In incompress-
ible flows, the absolute pressure level is unimportant — only the differences
matter. Unless the absolute value of the pressure is specified somewhere, the
pressure equation is singular and has an infinite number of solutions, all dif-
fering by a constant. This makes a simple cure possible: filtering out the
oscillations, as was done by van der Wijngaart (1990).

We shall present one approach to dealing with the pressure-velocity cou-
pling on colocated grids that has found widespread use in complicated ge-
ometries and is simple and effective.

On staggered grids, central difference approximations are based on Az
differences. Can we do the same with the colocated arrangement? A Az
approximation of the outer first derivative in the pressure equation (7.113)
has the form:

oy (‘Sﬂ <§£ _ (5_1’1
éz /. éx /., + oy /. oy g
Az Ay B

Hg,e - H;I,w + H;,n - H{},s
Az Ay

(7.123)

The problem is that the values of pressure derivatives and quantities H are
not available at cell face locations, so we have to use interpolation. Let us
choose linear interpolation, which has the same accuracy as the CDS approx-
imation of the derivatives. Also let the inner derivatives of the pressure in
Eq. (7.113) be approximated by central differences. Linear interpolation of
cell center derivatives leads to:

op" 1 (pg —pw | PEE — PP
=} &= . 7.124
( dx )e 2 ( 2 Az * 2 Ax ( )
With this interpolation the pressure equation (7.120) is recovered.

We could evaluate the pressure derivatives at cell faces using central dif-
ferences and Az spacing as follows:

(‘Spn> ~PE PR (7.125)

Sz Az

If this approximation is applied at all cell faces, we arrive at the following
pressure equation (which is also valid on non-uniform grids):

PE—Pp Pp-pPy PN—PE _Pp— P

Azx Az + Ay Ay
Az Ay

=QY, (7.126)

which is the same as Eq. (7.116), except that the right hand side is now
obtained by interpolation:
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s (7.127)

Use of this approximation eliminates the oscillation in the pressure field but,
in order to accomplish this, we have introduced an inconsistency in the treat-
ment of the pressure gradient in the momentum and pressure equations. Let
us compare the two approximations. It is easy to show that the left hand
sides of Eqs. (7.126) and (7.120) differ by:

RP — 4pg + 4pw — 6pp — PEE — PWW +
4(Ax)?
4pn + 4ps — 6pp — PNN — Pss
4(Ay)? ’

(7.128)

which represents a central difference approximation to the fourth order pres-
sure derivatives:

Expression (7.128) is easily obtained by applying the standard CDS approx-
imation of the second derivative twice, see Sect. 3.4.

This difference tends to zero as the grid is refined and the error intro-
duced is of the same magnitude as the error in the basic discretization and
so does not add significantly to the latter. However, the energy conserving
property of the scheme is destroyed in this process, introducing the possibility
of instability.

The above result was derived for second order CDS discretization and lin-
ear interpolation. A similar derivation can be constructed for any discretiza-
tion scheme and interpolation. Let us see how the above idea translates into
an implicit pressure-correction method using FV discretization.

7.5.3 SIMPLE Algorithm for a Colocated Variable Arrangement

Implicit solution of the momentum equations discretized with a colocated
FV method follows the line of the previous section for the staggered arrange-
ment. One has only to bear in mind that the CVs for all variables are the
same. The pressures at the cell face centers, which are not nodal locations,
have to be obtained by interpolation; linear interpolation is a suitable second
order approximation, but higher order methods can be used. The gradients
at the CV center, which are needed for the calculation of cell face velocities,
can be obtained using Gauss’ theorem. The pressure forces in the z and y
direction are summed over all faces and divided by the cell volume to yield
the corresponding mean pressure derivative, e.g.:
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op\ _ QF
(EL =30 (7.130)

where @QF stands for the sum of pressure forces in the z-direction over all CV
faces, see Eq. (7.91). On Cartesian grids this reduces to the standard CDS
approximation.

Solution of the linearized momentum equations produces u* and v*. For
the discretized continuity equation, we need the cell face velocities which have
to be calculated by interpolation; linear interpolation is the obvious choice.
The pressure-correction equation of the SIMPLE algorithm can be derived
following the lines of Sects. 7.3.4 and 7.5.1. The interpolated cell face veloci-
ties needed in the continuity equation involve interpolated pressure gradients,
so their correction is proportional to the interpolated pressure correction gra-
dient (see Eq. (7.46)):

. AL op'
. = — ( a5 ?a?) . (7.131)

On uniform grids, the pressure-correction equation derived using this ex-
pression for the cell face velocity corrections corresponds to Eq. (7.120).
On non-uniform grids, the computational molecule of the pressure-correction
equation involves the nodes P, E, W, N, S, EE, WW, NN and SS. As shown
in the preceding section, this equation may have oscillatory solutions. Al-
though the oscillations can be filtered out (see van der Wijngaart, 1990),
the pressure-correction equation becomes complex on arbitrary grids and the
convergence of the solution algorithm may be slow. A compact pressure-
correction equation similar to the staggered grid equation can be obtained
using the approach discussed in the preceding section. It is described below.

It was shown in the preceding section that the interpolated pressure gra-
dients can be replaced by compact central-difference approximations at the
cell faces. The interpolated cell face velocity is thus modified by the difference
between the interpolated pressure gradient and the gradient calculated at the
cell face:

An overbar denotes interpolation, and the volume centered around a cell face
is defined by:

AQe = (xE - xp) Ay .

for Cartesian grids.

This procedure adds a correction to the interpolated velocity that is pro-
portional to the third derivative of the pressure multiplied by (Az)?/4; the
fourth derivative for cell center results from applying the divergence operator.
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In a second order scheme, the pressure derivative at the cell face is calculated
using CDS, see Eq. (7.125). If the CDS approximation (7.125) is used on non-
uniform grids, the cell-center pressure gradients should be interpolated with
weights 1/2, since this approximation does not ‘see’ the grid non-uniformity.

The correction will be large if the pressure oscillates rapidly; the third
derivative is then large and will activate the pressure-correction and smooth
out the pressure.

The correction to the cell face velocity in the SIMPLE method is now:

. 1 op' _ 1 , ,
up = AQe(Ag>e(5z>e_ Se<A$>e(pE—pp)’ (7.133)

with corresponding expressions at other cell faces. When these are inserted
into the discretized continuity equation, the result is again the pressure-
correction equation (7.111). The only difference is that the coefficients 1/A%
and 1/AY at the cell faces are not the nodal values, as in the staggered ar-
rangement, but are interpolated cell center values.

Since the correction term in Eq. (7.132) is multiplied by Ag, the value of
the under-relaxation parameter contained in them may affect the converged
cell face velocity. However, there is little reason for concern, since the differ-
ence in the two solutions obtained using different under-relaxation parameters
is much smaller than the discretization error, as will be shown in the exam-
ples below. We also show that the implicit algorithm using colocated grids
has the same convergence rate, dependence on under-relaxation factor, and
computing cost as the staggered grid algorithm. Furthermore, the difference
between solutions obtained with different variable arrangements is also much
smaller than the discretization error.

We have derived the pressure-correction equation on colocated grids for
second order approximations. The method can be adapted to approximations
of higher order; it is important that the differentiation and interpolation be
of the same order. For a description of a fourth order method, see Lilek and
Perié¢ (1995).

Why solve the momentum equations at colocated nodes, and then calcu-
late the velocities at staggered locations rather than using the staggered ar-
rangement in the first place? In fact, for Cartesian grids and explicit schemes
there is not much incentive to use the colocated arrangement. However, for
non-orthogonal or unstructured grids, complex geometries, and for multigrid
solution methods the colocated arrangement becomes attractive. This issue
is discussed in the next chapter.

7.6 Note on Pressure and Incompressibility

Suppose that we have a velocity field v*, which does not satisfy the continuity
condition; for example, v* may have been obtained by time-advancing the
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Navier-Stokes equations without invoking continuity. We wish to create a new
velocity field v which:

e satisfies continuity,
e is as close as possible to the original field v*.

Mathematically we can pose this problem as one of minimizing:

-1
R= / (r) —v*(r)P d12 (7.134)
2
where r is the position vector and {2 is the domain over which the velocity
field is defined, subject to the continuity constraint

V-v(r)=0 (7.135)
being satisfied everywhere in the field. The question of boundary conditions
will be dealt with below.

This is a standard type of problem of the calculus of variations. A useful

way of dealing with it is to introduce a Lagrange multiplier. The original
problem (7.134) is replaced by the problem of minimizing:

1 *
R = 3 /Q[v(r) —v*(r))?dn - /ﬂ A(r)V-v(r)d2, (7.136)

where A is the Lagrange multiplier. The inclusion of the Lagrange multiplier
term does not affect the minimum value since the constraint (7.135) requires
it to be zero.

Suppose that the function that minimizes the functional R is v*; of course,
vt also satisfies (7.135). Thus:

R = % /Q [vF(r) — v* () d0 . (7.137)

If Rmin is a true minimum, then any deviation from v* must produce a
second-order change in R. Thus suppose that:

v=v"+5v, (7.138)
where dv is small but arbitrary. When v is substituted into the expression
(7.136), the result is Rmin + d R where:

SR = / sv(r) - vt (r) — v*(r)]dR —/ Ar)V -dv(r)d2.  (7.139)

Q n

We have dropped the term proportional to (dv)? as it is of second order.
Now, integrating the last term by parts and applying Gauss’s theorem, we
obtain:



204 7. Solution of the Navier-Stokes Equations

0R :/ 5v(r)-[v+(r)—v*(r)+V/\(r)]d[2+/ A(r) dv(r)ndS .(7.140)
o} s

On the parts of the domain surface on which a boundary condition on v
is given (walls, inflow), it is presumed that both v and v™ satisfy the given
condition so dv is zero there. These portions of the boundaries make no contri-
bution to the surface integral in Eq. (7.140) so no condition on X is required
on them; however, a condition will be developed below. On those parts of
the boundary where other types of boundary conditions are given (symme-
try planes, outflows) dv is not necessarily zero; to make the surface integral
vanish, we need to require that A = 0 on these portions of the boundary.

If R is to vanish for arbitrary dv, we must require that the volume
integral in Eq. (7.140) also vanishes, i.e.:

v (r) —v*(r)+ VA(r) =0. (7.141)

Finally, we recall that v (r) must satisfy the continuity equation (7.135).
Taking the divergence of Eq . (7.141) and applying this condition, we find:

VAA(r) =V -v*(r), (7.142)

which is a Poisson equation for A(r). On those portions of the boundary on
which boundary conditions are given on v, v+ = v*. Equation (7.141) shows
that in this case VA(r) = 0 and we have a boundary condition on A.

If Eq. (7.142) and the boundary conditions are satisfied, the velocity field
will be divergence free. It is also useful to note that this entire exercise can
be repeated with the continuous operators replaced by discrete ones.

Once the Poisson equation in solved, the corrected velocity field is ob-
tained from Eq. (7.141) written in the form:

vt(r) =v*(r) = VA(r). (7.143)

This shows that the Lagrange multiplier A(r) essentially plays the role of the
pressure and again shows that, in incompressible flows, the function of the
pressure is to allow continuity to be satisfied.

7.7 Boundary Conditions for the Navier-Stokes
Equations

Everything that has been said about boundary conditions in Chaps. 3 and
4 for the generic conservation equation applies to the momentum equations.
Some special features will be addressed in this section.

At a wall the no-slip boundary condition applies, i.e. the velocity of the
fluid is equal to the wall velocity, a Dirichlet boundary condition. However,
there is another condition that can be directly imposed in a FV method;
the normal viscous stress is zero at a wall. This follows from the continuity
equation, e.g. for a wall at y = 0 (see Fig. 7.7):
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Ou ov ov
MUY o= () o= o, =2(8) —0.(7.144
<3z>wall (3y)wau v # <3y>wall ( )

Therefore, the diffusive flux in the v equation at the south boundary is:
Fd :/ TyydS =0 . (7.145)
Ss

This should be implemented directly, rather than using only the condition
that v = 0 at the wall. Since vp # 0, we would obtain a non-zero derivative
in the discretized flux expression if this were not done; v = 0 is used as
a boundary condition in the continuity equation. The shear stress can be
calculated by using a one-sided approximation of the derivative du/dy; one
possible approximation is (for the u equation and the situation from Fig.
7.7):

du -
Fd :/ Tay dS = / 128 48 e S, BT YS (7.146)
Se s. 0y Yp — Ys
y
v u
Wall N Near-boundary CV Symmetry plane

Fig. 7.7. On the boundary conditions at a wall and a symmetry plane

At a symmetry plane we have the opposite situation: the shear stress is
zero, but the normal stress is not, since (for the situation from Fig. 7.7):

ou Ov
et =0; (& 0. 7.147
<3y>sym <3y>sym ;é ( )

The diffusive flux in the u equation is zero, and the diffusive flux in the v
equation can be approximated as:

vp — Vs

(7.148)
¥yp —Ys

Ov
Fsd:/T dS:/Z—dSz < s
s, s, oy K

where vg = 0 applies.

In a FV method using a staggered grid, the pressure is not required at
boundaries (except if the pressure at a boundary is specified; this is handled
in Chap. 10). This is due to the fact that the nearest CV for the velocity
component normal to the boundary extends only up to the center of the scalar
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CV, where the pressure is calculated. When colocated arrangement is used, all
CVs extend to the boundary and we need the boundary pressure to calculate
the pressure forces in the momentum equations. We have to use extrapolation
to obtain pressure at the boundaries. In most cases, linear extrapolation is
sufficiently accurate for a second order method. However, there are cases in
which a large pressure gradient near a wall is needed in the equation for the
normal velocity component to balance a body force (buoyancy, centrifugal
force etc.). If the pressure extrapolation is not accurate, this condition may
not be satisfied and large normal velocities near the boundary may result.
This can be avoided by calculating the normal velocity component for the first
CV from the continuity equation, by adjusting the pressure extrapolation, or
by local grid refinement.

The boundary conditions for the pressure-correction equation also deserve
some attention. When the mass flux through a boundary is prescribed, the
mass flux correction in the pressure correction equation is also zero there.
This condition should be directly implemented in the continuity equation
when deriving the pressure-correction equation. It is equivalent to specifying
a Neumann boundary condition (zero gradient) for the pressure correction.

At the outlet, if the inlet mass fluxes are given, extrapolation of the ve-
locity to the boundary (zero gradient, e.g. ug = up) can usually be used for
steady flows when the outflow boundary is far from the region of interest and
the Reynolds number is large. The extrapolated velocity is then corrected to
give exactly the same total mass flux as at inlet (this cannot be guaranteed
by any extrapolation). The corrected velocities are then considered as pre-
scribed for the following outer iteration and the mass flux correction at the
outflow boundary is set to zero in the continuity equation. This leads to the
pressure-correction equation having Neumann conditions on all boundaries
and makes it singular. To make the solution unique, one usually takes the
pressure at one point to be fixed, so the pressure correction calculated at that
point is subtracted from all the corrected pressures. Another choice is to set
the mean pressure to some value, say zero.

Another case is obtained when the pressure difference between the inlet
and outlet boundaries is specified. Then the velocities at these boundaries
cannot be specified — they have to be computed so that the pressure loss is
the specified value. This can be implemented in several ways. In any case the
boundary velocity has to be extrapolated from the inner nodes (in a manner
similar to the interpolation for cell faces in a colocated arrangement) and
then corrected. An example of how specified static pressure can be handled
is given in Chap. 10.

7.8 Examples

In this section we shall demonstrate the accuracy and efficiency of the implicit
SIMPLE method for steady incompressible flows on staggered and colocated
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grids. As test cases we choose two flows in square enclosures; one flow is driven
by a moving lid and the other by buoyancy. The geometry and boundary
conditions are shown schematically in Fig. 7.8. Both test cases have been
used by many authors and accurate solutions are available in the literature;
see Ghia et al. (1982) and Hortmann et al. (1990).

Moving lid ot
9 U, Adiabat

-

Fig. 7.8. Geometry and boundary conditions for 2D flow test cases: lid-driven (left)
and buoyancy-driven (right) cavity flows

Fig. 7.9. A non-uniform grid with 32 x 32 CV used to solve the cavity flow
problems (left) and the streamlines of the lid-driven cavity flow at Re = 1000
(right), calculated on a 128 x 128 CV non-uniform grid (the mass flow between
any two adjacent streamlines is constant)

We first consider the lid-driven cavity flow. The moving lid creates a
strong vortex and a sequence of weaker vortices in the lower two corners.
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A non-uniform grid and the streamlines for the Reynolds number, based on
cavity height H and lid velocity U, Re = Uy H/v = 1000 are shown in Fig.
7.9.

We first look at the estimation of iteration convergence errors. Several
methods were presented in Sect. 5.7.

First, an accurate solution was obtained by iterating until the residual
norm became negligibly small (of the order of the round-off error in double
precision). Then the calculation was repeated and the convergence error was
computed as the difference between the converged solution obtained earlier
and the intermediate solution.

Figure 7.10 shows the norm of the convergence error, the estimate ob-
tained from Egs. (5.86) or (5.93), the difference between two iterates, and
the residual on a 32 x 32 CV grid with under-relaxation factors 0.7 for ve-
locity and 0.3 for pressure. Since the algorithm needs many iterations to
converge, the eigenvalues required by the error estimator were averaged over
the latest 50 iterations. The fields were initiated by interpolating the solution
on the next coarser grid, which is why the initial error is relatively low.
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N Difference between two iterates and the
- —————- Residual [ residual for the solution of lid-
AE-07 driven cavity flow at Re = 10°

0 100 200 300 400 500  ona32 x 32 CV grid, with CDS
Iter. discretization

This figure shows that the error estimation technique gives good results
for the non-linear flow problem. The estimate is not good at the beginning of
the solution process, where the error is large. Using the absolute level of either
the difference between two iterates or the residuals is not a reliable measure
of the convergence error. These quantities do decrease at the same rate as the
error, but need to be normalized properly to represent the convergence error
quantitatively. Also, they fall very rapidly initially, while the error reduction
is much slower. However, after a while all curves become nearly paralle] and
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if one knows roughly the order of the initial error (it is the solution itself
if one starts with a zero initial field), then a reliable criterion for stopping
the iterations is the reduction of the norm of either the difference between
two iterates or the residual by a certain factor, say three or four orders of
magnitude. Results similar to those shown in Fig. 7.10 are obtained on other
grids and for other flow problems.

We turn next to the estimation of discretization errors. We performed
computation on six grids using CDS discretization; the coarsest had 8 x 8 CV
and the finest had 256 x 256 CV. Both uniform and non-uniform colocated
grids were used. The strength of the primary vortex, ¥min, which is the mass
flow rate between the vortex center and the boundary, and the strength of
the larger secondary vortex, 1max, were compared on all grids. Figure 7.11
shows the computed vortex strengths as the grid is refined. Results on the
four finest grids show monotone convergence of both quantities towards the
grid-independent solution. The results on the non-uniform grids are obviously
more accurate.
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Fig. 7.11. Left: convergence of the strength of the primary (¥min) and secondary
(¥max) vortex in a lid-driven cavity flow at Re = 1000 (calculation using CDS and
both uniform and non-uniform grids); Right: errors in ®¥min and ¥max as a function
of the mesh spacing (normalized by the spacing on the coarsest grid)

In order to enable quantitative error estimation, the grid-independent
solution was estimated using the results obtained on the two finest grids and
Richardson extrapolation (see Sect. 3.9). These values are: ¥min = —0.1189
and Ymax = 0.00173. By subtracting results on a given grid from the reference
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solution, an error estimate is obtained. The errors are plotted against grid size
in Fig. 7.11. For both quantities on both uniform and non-uniform grids, the
error reduction expected of a second order method is obtained. The errors are
lower on non-uniform grids, especially for 1max; since the secondary vortex is
confined to a corner, the non-uniform grid, which is much finer there, yields
higher accuracy.

Calculations on uniform colocated grids were also performed using three
other discretization schemes: first order UDS, and cubic (fourth order) inter-
polation of the convective fluxes and midpoint rule integration, and fourth
order Simpson’s rule integration and cubic polynomial interpolation. Com-
parison of the profiles of the horizontal velocity component in the vertical
symmetry plane, obtained with the four discretizations on grids ranging from
10 x 10 CV to 160 x 160 CV, are shown in Fig. 7.12. The first order scheme
is so inaccurate that the solution on the finest grid is still too far from the
grid-independent solution. The second order CDS shows monotone conver-
gence; the ratio of errors on consecutive grids is a factor of four. Interpolation
by a cubic polynomial increases the accuracy from the third grid onwards;
on the first two grids, there are oscillations in the solution. Midpoint rule
integration is used in both cases (i.e., the integrals are approximated by the
product of the variable value at the cell face center and the cell face area).
Finally, the use of Simpson’s rule integration and cubic interpolation (a true
fourth order method) gives the highest accuracy, except on the first two grids;
the velocity profiles can hardly be distinguished from each other for grids 40
% 40 and finer.

The quantitative analysis of the accuracy of different schemes is presented
in Fig. 7.13: it shows the convergence of the strength of the primary eddy to-
wards the grid-independent solution and the estimated discretization errors.
Second and fourth order schemes converge rapidly, while the first order UDS
has a large error even on the finest grid (14.4%). Second order CDS and the
mixed scheme produce the same estimate of the grid-independent value when
Richardson extrapolation is applied (to within the convergence accuracy of
the iterative solution method, which was between 0.01 and 0.1%). The plot
of discretization error versus mesh spacing in Fig. 7.13 shows that the mixed
scheme and the standard CDS closely follow the theoretical error reduction
path for second order schemes. The UDS approaches the theoretical con-
vergence rate as the grid is refined, but is more accurate than expected on
coarse grids. Finally, fourth order CDS shows the expected error reduction
from second to third grid; the discretization error then becomes comparable
to the iteration convergence error, so that on finer grids the error is reduced
less than expected. In order to obtain the theoretical error reduction rate on
all grids, the iterative convergence error should have been at least an order
of magnitude lower; on the finest grid this would mean iterating practically
to the round-off level, which was not done because it would increase the
computing time considerably.
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Fig. 7.12. Velocity profiles at the vertical centerline of the lid-driven cavity at
Re = 1000, calculated on various grids using: midpoint rule and UDS (upper left),
CDS (upper right) and cubic polynomial (lower left); Simpson’s rule and cubic
polynomials (lower right)

For all of the methods used, the grids had to be refined to 80 x 80
CV in order to judge the accuracy with confidence. If errors of the order
of 1% are acceptable, then using CDS is the most efficient method (it is the
simplest to implement and needs less computing time per iteration). Higher
order methods are effective if small discretization errors are required (below
0.1%). On Cartesian grids, the fourth order scheme increases the memory
requirement by about 30% and computing time per outer iteration by a
factor of two; on irregular grids the cost increase would be much higher. The
number of required iterations is roughly the same for all schemes (Lilek and
Perié, 1995).
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Fig. 7.13. Convergence of the strength of the primary vortex in a lid-driven cavity
flow at Re = 1000 (left) and errors in ©min as functions of the mesh spacing (right);
calculations on uniform grids from 10 x 10 CV to 160 x 160 CV using four different
discretization schemes (the mixed scheme uses fourth order interpolation and second
order integration)

We next investigate the difference between solutions obtained on uniform
colocated and staggered grids using CDS discretization. Since the velocity
nodes are at different locations on the two grids, staggered values were linearly
interpolated to the cell centers (a higher-order interpolation would have been
better but linear interpolation is good enough). The average difference is for
each variable (¢ = (u,v,p)) determined as:

N
Yisy 19578 — ¢
N s

where N is the number of CVs. For both « and v, € is 1.2% on a grid with
10 x 10 CVs and 0.05% on a grid with 80 x 80 CVs. The difference is much
smaller than the discretization errors on these grids (about 20% on 10 x 10
CV grid, about 1% on a grid with 80 x 80 CV, see Fig. 7.11). The differences
in pressure were somewhat smaller,

Convergence properties of the SIMPLE method using CDS and staggered
or colocated grids are investigated next. We first look at the effect of the
under-relaxation parameter for pressure, a,, see Eq. (7.45), on the conver-
gence using various under-relaxation parameters for the velocity. Figure 7.14
shows the numbers of outer iterations required to reduce the residual level in

€= (7.149)
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all equations three orders of magnitude using various combinations of under-
relaxation parameters and a 32 x 32 CV uniform grid.
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Fig. 7.14. Numbers of outer iterations required to reduce the residual level in all
equations three orders of magnitude using various combinations of under-relaxation
parameters and a 32 x 32 CV uniform grid with staggered (left) and colocated
(right) arrangement of variables (lid-driven cavity flow at Re = 1000)

This figure shows that the dependence on the under-relaxation parameter
o is almost the same for the two types of grids; the range of good values
is somewhat wider for the colocated grid, but overall the behavior of both
methods is similar. When the velocity is more strongly under-relaxed, we can
use any value of o, between 0.1 and 1.0, but the method converges slowly.
For larger values of o, the convergence is faster but the useful range of «,
is restricted.

Patankar (1980) suggested using o, = 0.5 and o, = 0.8 in the SIMPLE
method. We see from Fig. 7.14 that this is not optimum. The value of «,
suggested by Eq. 7.50 is nearly optimum; ap, = 1.1 — a,, gives the best re-
sults for this flow and yields an improvement by about a factor of five over
Patankar’s recommendation.

In Fig. 7.15 we show the effect of the under-relaxation factor for velocity,
o, on convergence rate for both staggered and colocated arrangements when
optimum value of ¢y, is used, for two grids. We see that the method behaves
in the same way for both grids. The dependence on «, is stronger on the
refined grid.

We next investigate the influence of the under-relaxation parameter for
velocity on the solution for colocated grids. We choose «,, = 0.9 for one case
and a, = 0.5 for the other. The difference in the solutions (after residual
levels were reduced five orders of magnitude, to exclude convergence errors)
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Fig. 7.15. Numbers of outer iterations
required to reduce the residual level in all
equations three orders of magnitude, as a
function of the under-relaxation factor o,
(lid-driven cavity flow at Re = 1000)

was evaluated using the expression (7.149). It is 0.5% on the 8 x 8 CV grid
and 0.002% on the 128 x 128 CV grid. These differences are two orders of
magnitude smaller than the discretization errors on corresponding grids (53%
and 0.4%, respectively) and can be neglected.

Fig. 7.16. Velocity vectors in
buoyancy-driven cavity flow at the
Rayleigh number Ra = 10° and
Prandtl number Pr = 0.1

We next consider 2D buoyancy-driven flow in a square cavity as shown in
Figs. 7.16 and 7.17. The cold and hot walls are isothermal. The heated fluid
is rising along the hot wall, while cooled fluid is falling along the cold wall.
The Prandtl number is 0.1, and the temperature difference and other fluid
properties are chosen such that the Rayleigh number is
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%

Fig. 7.17. Isotherms (left) and streamlines (right) in buoyancy-driven cavity flow
at the Rayleigh number Ra = 10° and Prandtl number Pr = 0.1 (temperature
difference between any two adjacent isotherms and mass flow rate between any two
streamlines are same)
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Velocity vectors, isotherms and streamlines are shown in Figs. 7.16 and 7.17.
The flow structure depends strongly on the Prandtl number. A large core
of almost stagnant, stably stratified fluid is formed in the central region of
cavity. It is to be expected that non-uniform grids will give more accurate
results than uniform grids. This is indeed so. Figure 7.18 shows total heat flux
through the isothermal walls as a function of grid fineness for both uniform
and non-uniform grids. Richardson extrapolation yields the same estimate of
the grid-independent value to the five significant digits when applied to the
results of two finest levels for both grid types. This estimate is @ = 0.039248,
which, when normalized by the heat flux for pure heat conduction, Q¢ong =
0.01, gives the Nusselt number Nu = 3.9248. By subtracting the solutions on
all grids from the estimated grid-independent solution, we obtain an estimate
of the discretization error. The errors are plotted for both heat flux and the
strength of the eddy against normalized mesh spacing in Fig. 7.18.

All errors tend asymptotically to the slope expected for second order
schemes. The error in the heat flux is much smaller on the non-uniform than
on uniform grid {(more than an order of magnitude), while the error in eddy
strength is smaller on a uniform grid. This rather unexpected finding can be
explained as follows: the fine grid near walls increases accuracy of the heat
transfer calculation, whereas coarse grid in the middle decreases accuracy
of the representation of velocity profiles, which define the mass flow rate.
However, mass flow rate error is rather small on both grids; e.g. for 64 x 64
CV, it is 0.03% on a uniform and 0.3% on a non-uniform grid.
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Fig. 7.18. Heat flux through isothermal walls, @, (left) and the errors in the
calculated heat flux and strength of the eddy (right) in a buoyancy-driven cavity
flow at the Rayleigh number Ra = 10° and Prandtl number Pr = 0.1, as a function
of grid fineness (calculation using CDS and both uniform and non-uniform grids)

We also checked the effect of the under-relaxation factor for the velocity
on the solution in this case. As expected, it is much smaller than in the case
of lid-driven cavity, since the pressure variation is much smoother here. On
the coarsest grid (8 x 8 CV), the difference between solutions using a,, = 0.9
and a, = 0.5 is about 0.23%, while on the grid with 128 x 128 CV it is below
0.0008%.

The efficiency of calculating steady incompressible flows using implicit
methods based on SIMPLE algorithm and colocated grids can be substan-
tially improved using multigrid method for outer iterations. This will be
demonstrated for the two test cases studied here in Chap. 11.




8. Complex Geometries

Most flows in engineering practice involve complex geometries which are not
readily fit with Cartesian grids. Although the principles of discretization and
solution methods for algebraic systems described earlier may be used, many
modifications are required. The properties of the solution algorithm depend
on the choices of the grid and of the vector and tensor components, and
the arrangement of variables on the grid. These issues are discussed in this
chapter.

8.1 The Choice of Grid

When the geometry is regular (e.g. rectangular or circular), choosing the
grid is simple: the grid lines usually follow the coordinate directions. In com-
plicated geometries, the choice is not at all trivial. The grid is subject to
constraints imposed by the discretization method. If the algorithm is de-
signed for curvilinear orthogonal grids, non-orthogonal grids cannot be used;
if the CVs are required to be quadrilaterals or hexahedra, grids consisting of
triangles and tetrahedra cannot be used, etc. When the geometry is complex
and the constraints cannot be fulfilled, compromises have to be made.

8.1.1 Stepwise Approximation Using Regular Grids

The simplest approach uses orthogonal grids (Cartesian or polar-cylindrical).
In order to apply such a grid to solution domains with inclined or curved
boundaries, the boundaries have to be approximated by staircase-like steps.
This approach has been used, but it raises two kinds of problems:

e The number of grid points (or CVs) per grid line is not constant, as it is
in a fully regular grid. This requires either indirect addressing, or special
arrays have to be created that limit the index range on each line. The
computer code may need to be changed for each new problem.

e The steps at the boundary introduce errors into the solution, especially
when the grid is coarse. The treatment of the boundary conditions at step-
wise walls also requires special attention.
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An example of such a grid is shown in Fig. 8.1. This approach is a last resort,
to be used when an existing solution method cannot be quickly adapted to
a grid that fits boundary better. It is not recommended, except when the
solution algorithm allows local grid refinement near the wall (see Chap. 11
for details of local grid refinement methods). An example is the large eddy
simulation of flow over a wall-mounted hemisphere by Manhart and Wengle
(1994).

Fig. 8.1. An example of a grid using stepwise approximation of an inclined bound-
ary

8.1.2 Overlapping Grids

Some authors suggest use of a set of regular grids to cover irregular solu-
tion domains. One can combine rectangular, cylindrical, spherical or non-
orthogonal grids near bodies with Cartesian grids in the rest of the solution
domain. An example is shown in Fig. 2.4. The disadvantage of this approach
is that the programming and coupling of the grids can be complicated. The
computation is usually sequential; the solution method is applied on one grid
after another, the interpolated solution from one grid providing the bound-
ary conditions for the next iteration on adjacent grids. It is also difficult to
maintain conservation at the interfaces, and the interpolation process may
introduce errors or convergence problems if the solution exhibits strong vari-
ation near the interface.

This method has also some attractive features. It allows — without ad-
ditional difficulty ~ calculation of flows around bodies which move relative
to the environment or each other. Each grid is attached to one reference
frame, including some which move with the bodies. In such a case, the over-
lap region changes with time and has to be determined (together with the
interpolation factors) after each time step. The grid has to be recalculated
after each time step in any problem containing a moving body no matter
what method is used, so this is not a drawback. The only additional effort
is the interpolation from one reference frame to the other at the interfaces.
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Grids of this kind are called Chimera grids in the literature (the Chimera
is a mythological creature with lion’s head, goat’s body, and snake’s tail).
Examples of the use of overlapping grids are found in papers by Hinatsu and
Ferziger (1991), Perng and Street (1991), Tu and Fuchs (1992), and Hubbard
and Chen (1994,1995), among others.

8.1.3 Boundary-Fitted Non-Orthogonal Grids

Boundary-fitted non-orthogonal grids are most often used to calculate flows
in complex geometries (most commercial codes use such grids). They can be
structured, block-structured, or unstructured. The advantage of such grids is
that they can be adapted to any geometry, and that optimum properties are
easier to achieve than with orthogonal curvilinear grids. Since the grid lines
follow the boundaries, the boundary conditions are more easily implemented
than with stepwise approximation of curved boundaries. The grid can also
be adapted to the flow, i.e. one set of grid lines can be chosen to follow
the streamlines (which enhances the accuracy) and the spacing can be made
smaller in regions of strong variable variation, especially if block-structured
or unstructured grids are used.

Non-orthogonal grids have also several disadvantages. The transformed
equations contain more terms thereby increasing both the difficulty of pro-
gramming and the cost of solving the equations, the grid non-orthogonality
may cause unphysical solutions and the arrangement of variables on the grid
affects the accuracy and efficiency of the algorithm. These issues are discussed
further below.

In the remainder of this book we shall assume that the grid is non-
orthogonal. The principles of discretization and solution methods which we
shall present are valid for orthogonal grids as well, since they can be viewed
as a special case of a non-orthogonal grid. We shall also discuss the treatment
of block-structured grids.

8.2 Grid Generation

The generation of grids for complex geometries is an issue which requires too
much space to be dealt with in great detail here. We shall present only some
basic ideas and the properties that a grid should have. More details about
various methods of grid generation can be found in books and conference
proceedings devoted to this topic, e.g. Thompson et al. (1985) and Arcilla et
al. (1991).

Even though necessity demands that the grid be non-orthogonal, it is im-
portant to make it as nearly orthogonal as possible. In FV methods orthog-
onality of grid lines at CV vertices is unimportant — it is the angle between
the cell face surface normal vector and the line connecting the CV centers on
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either side of it that matters. Thus, a 2D grid made of equilateral triangles
is equivalent to an orthogonal grid, since lines connecting cell centers are
orthogonal to cell faces. This will be discussed further in Sect. 8.6.2.

Cell topology is also important. If the midpoint rule integral approxima-
tion, linear interpolation, and central differences are used to discretize the
equations, then the accuracy will be higher if the CVs are quadrilaterals in
2D and hexahedra in 3D, than if we use triangles and tetrahedra, respec-
tively. The reason is that parts of the errors made at opposite cell faces when
discretizing diffusion terms cancel partially (if cell faces are parallel and of
equal area, they cancel completely) on quadrilateral and hexahedral CVs.
To obtain the same accuracy on triangles and tetrahedra, more sophisticated
interpolation and difference approximations must be used. Especially near
solid boundaries it is desirable to have quadrilaterals or hexahedra, since all
quantities vary substantially there and accuracy is especially important in
this region.

Accuracy is also improved if one set of grid lines closely follows the stream-
lines of the flow, especially for the convective terms. This cannot be achieved
if triangles and/or tetrahedra are used, but is possible with quadrilaterals
and hexahedra.

Non-uniform grids are the rule rather than exception when complex ge-
ometries are treated. The ratio of the sizes of adjacent cells should be kept
under control, as accuracy is adversely affected if it is large. Especially when
block-structured grids are used, one should take care that the cells are of
nearly equal size near block interfaces; a factor of two variation should be the
maximum. An experienced user may know where strong variation of velocity,
pressure, temperature, etc. can be expected; the grid should be fine in these
regions since the errors are most likely to be large there. However, even an
experienced user will encounter occasional surprises and more sophisticated
methods are useful in any event. Errors are convected and diffused across the
domain, as discussed in Sect. 3.9, making it essential to achieve as uniform
a distribution of truncation error as possible. It is possible, however, to start
with a coarse grid and later refine it locally according to an estimate of the
discretization error; methods for doing this are called solution adaptive grid
methods and will be described in Chap. 11.

Finally, there is the issue of grid generation. When the geometry is com-
plex, this task usually consumes the largest amount of user time by far; it is
not unusual for a designer to spend several weeks generating a single grid.
Since the accuracy of the solution depends as much (if not more) on the grid
quality as on the approximations used for discretization of the equations, grid
optimization is a worthwhile investment of time.

Many commercial codes for grid generation exist. Automation of the grid
generation process, aimed at reducing the user time and speeding up the pro-
cess is the major goal in this area. Overlapping grids are easier to generate,
but there are geometries in which application of this approach is difficult
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due to the existence of too many irregular pieces (e.g. coolant flow in an
engine block). Generation of triangular and tetrahedral meshes is easier to
automate, which is one of the reasons for their popularity. One usually spec-
ifies mesh points on the bounding surface and proceeds from there towards
the center of the domain. When a surface grid has been created, tetrahedra
that have one base on the surface are generated above it and the process
is continued towards the center of the volume along a marching front; the
entire process is something like solving an equation by a marching procedure
and, indeed, some methods are based on the solution of elliptic or hyperbolic
partial differential equations.

Tetrahedral cells are not desirable near walls if the boundary layer needs
to be resolved because the first grid point must be very close to the wall
while relatively large grid sizes can be used in the directions parallel to the
wall. These requirements lead to long thin tetrahedra, creating problems in
the approximation of diffusive fluxes. For this reason, some grid generation
methods generate first a layer of prisms or hexahedra near solid boundaries,
starting with a triangular or quadrilateral discretization of the surface; on top
of this layer, a tetrahedral mesh is generated automatically in the remaining
part of the domain. An example of such a grid is shown in Fig. 8.2.
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Fig. 8.2. An example of a grid made up of prisms near the walls and tetrahedra
in the remaining part of the solution domain (courtesy of ICEM CFD Engineering
GmbH; grid generated automatically using ICEM CFD Tetra/Prism grid generator)

R

This approach enhances grid quality near walls and leads to both more
accurate solutions and better convergence of numerical solution methods;
however, it can be only used if the solution method allows for mixed control
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volume types. In principle, any type of method (FD, FV, FE) can be adapted
to this kind of grid.

Another approach to automatic grid generation is to cover the solution
domain with a (coarse) Cartesian grid, and adjust the cells cut by domain
boundaries to fit the boundary. The problem with this approach is that the
cells near boundary are irregular and may require special treatment. However,
if this is done on a very coarse level and the grid is then refined several times,
the irregularity is limited to a few locations and will not affect the accuracy
much but the degree of boundary irregularity is limited.

In order to move the irregular cells further away from walls, one can first
create a layer of regular prisms or hexahedra near walls; the outer regular
grid is then cut by the surface of the near-wall cell layer. An example of such
a grid is shown in Fig. 8.3. This approach allows fast grid generation but
requires a solver that can deal with the polyhedral cells created by cutting
regular cells with an arbitrary surface. Again, all types of methods can be
adapted to this type of grid.

Fig. 8.3. An example of a grid created by combining regular grids near a wall and
in the bulk of the solution domain, with irregular cells along surface of the near-wall
layer (courtesy of adapco Ltd.; grid generated using samm grid generator)

If the solution method can be applied on an unstructured grid with cells of
varying topology, the grid generation program is subject to few constraints.
For example, local grid refinement by subdivision of cells into smaller ones
is possible. A non-refined neighbor cell, although it retains its original shape
(e.g. a hexahedron), becomes a logical polyhedron, since a face is replaced by
a set of sub-faces. The solution domain can first be divided into blocks which
can be subdivided into grids with good properties; one has the freedom to
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choose the best grid topology (structured H-, O-, or C-grid, or unstructured
tetrahedral or hexahedral grid) for each block. The cells on the block inter-
faces then have faces of irregular shape and have to be treated as polyhedra.
An example is shown in Fig. 8.4; the grid contains a block interface on which
the faces are irregular. Generation of grids with non-matching interfaces is
much simpler than creation of a single-block grid fitted to the whole domain.
We again note that the solution method has to allow treatment of polyhedral
CVs with an arbitrary numbers of faces; how this can be achieved will be
shown below and cell-wise local grid refinement is discussed in Chap. 11.
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Fig. 8.4. A grid created by combining two blocks with a non-matching interface
and cell-wise local refinement (courtesy of ICCM Institute of Computational Con-
tinuum Mechanics GmbH; grid generated using the Cometpp grid generator); note
the interface with irregular cell faces

If, on the other hand, the solution method requires all CVs to be of a
particular type, generation of grids for complex geometries may be difficult.
It is not unusual for the process of grid generation to take days or even
weeks in some industrial applications of CFD. An efficient grid generator is
an essential part of any CFD package.

8.3 The Choice of Velocity Components

In Chap. 1 we discussed issues associated with the choice of components of
the momentum. As indicated by Fig. 1.1, only the choice of components in
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a fixed basis leads to a fully conservative form of the momentum equations.
To ensure momentum conservation, it is desirable to use such a basis and the
simplest one is the Cartesian basis. When the flow is three-dimensional, there
are no advantages to using any other basis (e.g. grid-oriented, covariant, or
contravariant). Only when the choice of another vector basis leads to the
simplification of the problem is it worth abandoning the use of Cartesian
components. An example of such a case is the flow in a pipe or other axi-
symmetric geometries. In the absence of swirl, the velocity vector has only
two non-zero components in the polar-cylindrical basis, but three non-zero
Cartesian components. The problem therefore has three dependent variables
in terms of the Cartesian components, but only two if the polar-cylindrical
components are used, a substantial simplification. If the swirl is present, the
problem is three-dimensional in any case, so there is no advantage in using
polar-cylindrical components rather then Cartesian ones.

8.3.1 Grid-Oriented Velocity Components

If grid-oriented velocity components are used, non-conservative source terms
appear in the momentum equations. These account for the redistribution of
the momentum between the components. For example, if polar-cylindrical
components are used, the divergence of the convection tensor pvv leads to
two such source terms:

e In the momentum equation for the r-component, there is a term pug /7,
which represents the apparent centrifugal force. This is not the centrifugal
force found in rotating flows (e.g. pump or turbine passages) — it is solely
due to the transformation from Cartesian to polar-cylindrical coordinates.
This term describes the transfer of #-momentum into r-momentum due to
the change of direction of vg.

e In the momentum equation for the #-component, there is a term —pu,vg/r,
which represents the apparent Coriolis force. This term is source or sink
of #-momentum, depending on the signs of the velocity components.

In general curvilinear coordinates, there are more such source terms (see
books by Sedov, 1971; Truesdell, 1977, etc). They involve Christoffel symbols
(curvature terms, higher-order coordinate derivatives) and are often a source
of numerical errors. The grid is required to be smooth — the change of grid
direction from point to point must be small. Especially on unstructured grids,
in which grid lines are not associated with coordinate directions, this basis is
difficult to use.

8.3.2 Cartesian Velocity Components

In this book we shall use Cartesian vector and tensor components exclu-
sively. The discretization and solution techniques remain the same if other
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components are used but there are more terms to be approximated. The con-
servation equations in terms of Cartesian components were given in Chap.
1.

If the FD method is used, one has only to employ the appropriate forms
of the divergence and gradient operators for non-orthogonal coordinates (or
to transform all derivatives with respect to Cartesian coordinates to the non-
orthogonal coordinates). This leads to an increased number of terms, but
the conservation properties of the equations remain the same as in Cartesian
coordinates, as will be shown below.

In FV methods there is no need for coordinate transformations. When
the gradient normal to the CV surface is approximated, one can use a local
coordinate transformation, as will be shown below.

8.4 The Choice of Variable Arrangement

In Chap. 7 we mentioned that apart from colocated variable arrangement,
various staggered arrangements are possible. While there were no obvious
advantages for one or the other for Cartesian grids, the situation changes
substantially when non-orthogonal grids are used.

8.4.1 Staggered Arrangements

The staggered arrangement, presented in Chap. 7 for Cartesian grids, is appli-
cable to non-orthogonal grids only if the grid-oriented velocity components
are employed. In Fig. 8.5 portions of such a grid are shown, in which the
grid lines change direction by 90°. In one case, the contravariant, and in the
other case, the Cartesian, velocity components are shown at the staggered
locations. Recall that the staggered arrangement was introduced in order to
achieve strong coupling between the velocities and the pressure gradient. The
goal was to have the velocity component normal to cell face lie between the
pressure nodes on either side of that face, see Fig. 7.4. For contravariant or co-
variant grid-oriented components, this goal is also achieved on non-orthogonal
grids, see Fig. 8.5 (a). For Cartesian components, when the grid lines change
direction by 90° a situation like the one shown in Fig. 8.5 (b) arises: the
velocity component stored at the cell face makes no contribution to the mass
flux through that face, as it is parallel to the face. In order to calculate mass
fluxes through such CV faces, one has to use interpolated velocities from
surrounding cell faces. This makes the derivation of the pressure-correction
equation difficult, and does not ensure the proper coupling of velocities and
pressure — oscillations in either may result.

Since, in engineering flows, grid lines often change direction by 180° or
more, especially if unstructured grids are used, the staggered arrangement
is difficult to use. Some of these problems can be overcome if all Cartesian
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components are stored at each CV face. However, this becomes complicated
in 3D, especially if CVs of arbitrary shape are allowed. To see how this may
be done, interested readers may want to look at the paper by Maliska and
Raithby (1984).

5

a) b) c)

— Velocities
o Pressure

Fig. 8.5. Variable arrangements on a non-orthogonal grid: (a) - staggered ar-
rangement with contravariant velocity components, (b) - staggered arrangement
with Cartesian velocity components, (¢) — colocated arrangement with Cartesian
velocity components

8.4.2 Colocated Arrangement

It was shown in Chap. 7 that the colocated arrangement is the simplest one,
since all variables share the same CV, but it requires more interpolation.
It is no more complicated than other arrangements when the grid is non-
orthogonal, as can be seen from Fig. 8.5 (¢). The mass flux through any CV
face can be calculated by interpolating the velocities at two nodes on either
side of the face; the procedure is the same as on regular Cartesian grids. Most
commercial CFD codes use Cartesian velocity components and the colocated
arrangement of variables. We shall concentrate on this arrangement.

In what follows we shall describe the new features of the discretization on
non-orthogonal grids, building on what has been done in preceding chapters
for Cartesian grids.

8.5 Finite Difference Methods

8.5.1 Methods Based on Coordinate Transformation

The FD method is usually used only in conjunction with structured grids,
in which case each grid line is a line of constant coordinate &;. The coordi-
nates are defined by the transformation z; = #:(§;), j = 1,2,3, which is
characterized by the Jacobian J: ‘
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Since we use the Cartesian vector components, we only need to transform
the derivatives with respect to Cartesian coordinates into the generalized
coordinates:

¢ _ 0905 _ 09 B
Bzi - 66, 61:1' - 65, J ’

(8.2)

where % represents the cofactor of 9z; /0¢; in the Jacobian J. In 2D this
leads to:
dp _ 1 <8¢8y 8¢8y>

(8.3)
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The generic conservation equation, which in Cartesian coordinates reads:
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is proportional to the velocity component normal to the coordinate surface
&; =const. The coefficients B™J are defined as:

ij — 5kj[8km — ﬁljﬁlm + ﬂZjﬁZm + ﬁSjﬁSm . (87)

The transformed momentum equations contain several additional terms
that arise because the diffusive terms in the momentum equations contain
a derivative not found in the generic conservation equation, see Egs. (1.16),
(1.18) and (1.19). These terms have the same form as the ones shown above
and will not be listed here.

Equation (8.5) has the same form as Eq. (8.4), but each term in the
latter is replaced by a sum of three terms in the former. As shown above,
these terms contain the first derivatives of the coordinates as coefficients.
These are not difficult to evaluate numerically (unlike second derivatives).
The unusual feature of non-orthogonal grid is that mixed derivatives appear
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in the diffusive terms. In order to show this clearly, we rewrite the Eq. (8.5)
in the expanded form:
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All three derivatives of ¢, which stem from the gradient operator, appear
inside each of the outer derivatives, which stem from the divergence operator,
see Eq. (1.27). The mixed derivatives of ¢ are multiplied by coefficients B™/
with unequal indices, which become zero when the grid is orthogonal, whether
it is rectilinear or curvilinear. If the grid is non-orthogonal, their magnitudes
relative to the diagonal elements B depend on the angles between the grid
lines and on the grid aspect ratio. When the angle between grid lines is
small and the aspect ratio large, the coefficients multiplying mixed derivatives
may be larger than the diagonal coeflicients, which can lead to numerical
problems (poor convergence, oscillations in the solution etc.). If the non-
orthogonality and aspect ratio are moderate, these terms are much smaller
than the diagonal ones and cause no problems. The mixed derivative terms
are usually treated explicitly, as their inclusion in the implicit computational
molecule would make the latter large and solution more expensive. Explicit
treatment usually increases the number of outer iterations, but the savings
derived from simpler and less expensive inner iterations is far more significant.

Fig. 8.6. On the coordinate transforma-
tion on non-orthogonal grids

The derivatives in Eq. (8.5) can be approximated using one of the FD
approaches described in Chap. 3, see Fig. 8.6. The derivatives along curved
coordinates are approximated in the same way as those along straight lines.

Coordinate transformations are often presented as a means of converting
a complicated non-orthogonal grid into a simple, uniform Cartesian grid (the
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spacing in transformed space is arbitrary, but one usually takes A& = 1).
Some authors claim that discretization becomes simpler, as the grid in the
transformed space appears simpler. This simplification is, however, only ap-
parent: the flow does take place in a complex geometry and this fact cannot
be hidden by a clever coordinate transformation. Although the transformed
grid does look simpler than the non-transformed one, the information about
the complexity is contained in the metric coefficients. While the discretiza-
tion on the uniform transformed mesh is simple and accurate, calculation of
the Jacobian and other geometric information is not trivial and introduces
additional discretization errors; i.e. it is here that the real difficulty has been
hidden.

The mesh spacing Ag; need not be specified explicitly. The volume in
physical space, Af2, is defined as:

AN = JAE AL AS; . (8.9)

If we multiply the whole equation by A& A& As, and replace JAE A& Aés
everywhere by Af2, then the mesh spacings A¢; disappear in all terms. If
central differences are used to approximate the coefficients 8%, e.g. in 2D
(see Fig. 8.6):
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the final discretized terms will involve only the differences in Cartesian coor-
dinates between neighbor nodes and the volumes of imaginary cells around
each node. Therefore, all we need is to construct such non-overlapping cells
around each grid node and calculate their volume - the coordinates &; need
not be assigned any value and the coordinate transformation is hidden.

8.5.2 Method Based on Shape Functions

Although nobody seems to have tried it, the FD method can be applied to
arbitrary unstructured grids. One would have to prescribe a differentiable
shape function (probably a polynomial) which describes the variation of the
variable ¢ in the vicinity of a particular grid point. The coeflicients of the
polynomial would be obtained by fitting the shape function to the values of ¢
at a number of surrounding nodes. There would be no need to transform any
term in the equation, as the shape function could be differentiated analyti-
cally to provide expressions for the first and second derivatives with respect
to Cartesian coordinates at the central grid point in terms of the variable
values at surrounding nodes and geometrical parameters. The resulting co-
efficient matrix would be sparse but it would not have a diagonal structure
unless the grid is structured.
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One can also allow different shape functions to be used, depending on the
local grid topology. This would lead to a different number of neighbors in
computational molecules, but a solver that can deal with this complexity can
easily be devised (e.g. conjugate-gradient type solvers).

One can devise a finite difference method that does not need a grid at all;
a set, of discrete points adequately distributed over the solution domain is all
that is needed. One would then locate a certain number of near neighbors of
each point to which one could fit a suitable shape function; the shape function
could then be differentiated to obtain approximations of the derivatives at
that point. Such a method cannot be fully conservative, but this is not a
problem if the points are sufficiently densely spaced.

It appears easier to distribute points in space than to create suitable
control volumes or elements of good quality. For example, one could first place
points on the surface, then add points a short distance away in the direction
normal to the surface. A second set of points could be regularly distributed
in the solution domain, with higher density near boundaries. Then the two
sets of points can be checked for overlap, and, where points are too close to
each other, they can be deleted or moved. Local refinement is very easy, one
needs merely insert more points between the existing ones.

The only tricky thing would be the derivation of a suitable pressure or
pressure-correction equation; however, this could be achieved following the
methods presented in the following sections. We hope to see methods of this
kind in future editions of this work.

The principles described above apply to all equations. The special features
of deriving the pressure or pressure-correction equation or implementing the
boundary conditions in FD methods on non-orthogonal grids will not be dealt
with here in detail, as the extension of techniques given so far is straightfor-
ward.

8.6 Finite Volume Methods

The FV method starts from the conservation equation in integral form, e.g.
the generic conservation equation:

2/pq)d()—f—/pq)v-ndSz/Fgradzb-ndS—l—/q¢d(). (8.11)
ot o S s @

The principles of FV discretization were described in Chap. 4. These are
independent of the type of grid used; however, there are several new features
that non-orthogonal or arbitrary unstructured grids bring with them; these
will be considered in the following sections.
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8.6.1 Approximation of Convective Fluxes

We shall use the midpoint rule approximation of the surface and volume
integrals exclusively. We look first at the calculation of mass fluxes. Only the
east side of a 2D CV shown in Fig. 8.7 will be considered; the same approach
applies to other faces — only the indices need be changed. The CV may have
any number of faces; the analysis is not restricted to quadrilateral CVs like
the one shown in Fig. 8.7.

The midpoint rule approximation of the mass flux leads to:

r'nez/ pv-ndS=(pv-n)eSe . (8.12)
s

The unit normal vector at the face “e” is defined by:
NeSe = Sé i = (yne - yse)i - (fL'ne - xse)j ) (8'13)
and the surface area, S, is:

Se =1/(52)2 + (S¥)2. (8.14)

With these definitions the expression for the mass flux becomes:
e = pe (STugz + S%uy), . (8.15)

The difference between a Cartesian and a non-orthogonal grid is that, in the
latter case, the surface vector has components in more than one Cartesian
direction and all the velocity components contribute to the mass flux. Each
Cartesian velocity component is multiplied by the corresponding surface vec-
tor component (projection of the cell face onto a Cartesian coordinate plane),
see Eq. (8.15).

Fig. 8.7. A typical 2D control vol-
ume and the notation used

The convective flux of any transported quantity is usually calculated by
assuming that the mass flux is known which, with the midpoint rule approx-
imation, leads to:
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F¢ :/ pdv-ndS ~med, , (8.16)
S.

where ¢, is the value of ¢ at the center of the cell face. The simplest ap-
proximation of second order is obtained by linear interpolation between the
two nodes on either side of the face. Other approximations, some of which
were described in Chap. 4 for Cartesian grids, can be used. The interpolation
is usually performed by treating the piecewise linear lines as if they were
straight; if the line changes direction at the cell face, an additional error is
introduced. Another possibility is to fit the variation of ¢ in the vicinity of
the face to a polynomial.

On structured non-orthogonal grids one can use higher-order integration
and interpolation techniques to approximate convective fluxes, as described in
Chap. 4 for a 2D case. However, if the grid is unstructured and involves CVs
of arbitrary numbers of faces, use of linear interpolation and the midpoint rule
approximation seem to offer the best compromise among accuracy, generality,
and simplicity. Indeed, a computer code which uses these techniques is simple,
even for CVs of arbitrary shape. This technique also facilitates use of local
grid refinement, described in Chap. 11, which can be used to achieve high
accuracy at a lower cost than through use of higher-order techniques.

8.6.2 Approximation of Diffusive Fluxes

The midpoint rule applied to the integrated diffusive flux gives:

Fd = / Igrad¢ -ndS ~ (I'grad ¢ - 1 )eSe . (8.17)
Se

The gradient of ¢ at the cell face center can be expressed either in terms of the
derivatives with respect to global Cartesian coordinates or local orthogonal
coordinates (n,t), e.g. in 2D:

gradqb— 0, +g—(§3—g¢ +63—ft (8.18)
where n and ¢ represent the coordinate directions normal and tangential
to the surface, respectively (in 3D there is a third coordinate s, which is
orthogonal to both n and ¢, and tangential to the surface).

There are many ways to approximate the derivative normal to the cell face
or the gradient vector at the cell center; we shall describe only few of them.
If the variation of ¢ in the vicinity of the cell face is described by a shape
function, it is then possible to differentiate this function at the ‘e’ location to
find the derivatives with respect to the Cartesian coordinates. The diffusive
flux is then:

= reZ (%)esg . (8.19)
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This is easy to implement explicitly; an implicit version may be complicated,
depending on the order of the shape function and the number of nodes in-
volved.

Another way to calculate derivatives at the cell face is to obtain them
first at CV centers, and then interpolate them to the cell faces in the way
¢ was. A simple way of doing this is provided by the Gauss’ theorem; we
approximate the derivative at the CV center by the average value over the
cell:

9% 40
00N lela (8.20)
82: ) o Y '

Then we can consider the derivative 8¢/8z; as the divergence of the vector
¢1; and transform the volume integral in the above equation using Gauss’
theorem into a surface integral:

9¢

o 0z;

dQ:/ 2;-ndS ~ ¢CS,§, c=enw,s,... 8.21
K Z (8:21)

This shows that one can calculate the gradient of ¢ with respect to = at
the CV center by summing the products of ¢ with the z-components of the
surface vectors at all faces of the CV and dividing the sum by the CV volume:

(6¢)P o e $eSe (8.22)

Bxi AR

For ¢, we can use the values used to calculate the convective fluxes, although
one need not necessarily use the same approximation for both terms. For
Cartesian grids and linear interpolation, the standard central difference ap-
proximation is obtained:

88\ _ 98 —dw
(52), ~ 52 o2

Cell-center gradients can also be approximated within second order by
using linear shape functions; if we assume linear variation of ¢ between two
neighbor cell centers, e.g. P and E, we may write:

¢ — ¢p = (grad@)p - (rE —7TP) . (8.24)

We can write as many such equations as there are neighbors for the cell
around node P; however, we need to compute only three derivatives 9¢/dz;.
With the help of least-squares methods, the derivatives can be explicitly
computed for arbitrary CV shapes.

The derivatives calculated in this way can be interpolated to the cell face
and the diffusive flux can be calculated from Eq. (8.19). The problem with
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this approach is that an oscillatory solution may be generated in the course
of the iteration procedure and the oscillations will not be detected. How this
can be avoided is described below.

For explicit methods, this approach is very simple and effective. It is, how-
ever, not suitable for implementation in an implicit method since it produces
large computational molecules. The deferred correction approach described
in Sect. 5.6 offers a way around this problem and helps to eliminate the os-
cillations. It consists of using a simple approximation to the diffusive flux
implicitly and creating a right hand side which is the difference between the
correct and approximate fluxes. With good choices of approximations the
convergence of the implicit method is not impaired by the deferred correc-
tion.

A good approximation for the implicit part of the method is easily found.
If we use the local (n,t, s) orthogonal coordinate system attached to the cell
face center, then only the derivative in the n-direction contributes to the
diffusive flux:

Fd = e(a_qs) Se . (8.25)
on/,

On a Cartesian grid, n = z at the “¢” face and we can use the central
difference approximation:

09\ _ ¢E—¢p
(@)e = __LP,E , (8.26)

where Lp g is the distance between nodes E and P, |rg —rp| (Lp g = Az on
a uniform Cartesian grid). The interpolated cell center gradient gives (on a
uniform Cartesian grid):

(5_¢) _l¢p—¢w  1éee—¢p
on), 2 24z 2 24z

(8.27)

An oscillatory distribution of ¢ in z-direction shown in Fig. 8.8 will not
contribute to this gradient, since both ¢g — ¢w and ¢pg — ¢p are zero and
so are the gradients at each cell center. However, the gradients are large at
cell faces. Oscillations do indeed develop during the iteration process. The
obvious deferred correction approach:

d __ pd,impl d,expl d,impl7°ld
Fe - Fe + [Fe - Fe ]

, (8.28)
in which ‘impl’ and ‘expl’ denote the implicit (using Eq. (8.26)) and the
explicit (using Eq. (8.27)) flux approximation and ‘old’ means value from
previous iteration, allows oscillatory solutions to develop. A similar problem
appears in the derivation of the pressure-correction equation for colocated
arrangements and was discussed in Chap. 7.
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Fig. 8.8. On the approx-
imation of gradients at
cell faces and avoidance
of oscillatory solutions

Muzaferija (1994) recognized the problem and suggested an effective cure.
He noted that, when the line connecting nodes P and E is nearly orthogonal
to the cell face, the derivative with respect to n can be approximated by a
derivative with respect to the coordinate, £, along that line. He suggested to
use as an implicit flux approximation the expression (see Eq. (8.25)):

Fd=T.S. (6#’5) =520
e LpE

% (8.29)

If the line connecting nodes P and E is orthogonal to the cell face, this is a
second order accurate approximation and the deferred correction term should
be zero. When the grid is non-orthogonal, the deferred correction term must
contain the difference between the gradients in the ¢ and n directions. The
deferred correction formula suggested by Muzaferija (1994) is:

@G e

The first term on the right hand side is treated implicitly while the second
term is the deferred correction. The deferred correction term is calculated
using interpolated cell center gradients (e.g. obtained using Gauss’ theorem)
in n and ¢ directions, i.e.:

Fd =T,S, <g—‘§) + IS

3] -—
(ﬁ)e = (grad ¢)e U (g—?—)e = (grad¢)e . if , (831)

where % is the unit vector in the {-direction. The final expression for the ap-
proximation to the diffusive flux through the cell face ‘e’ can now be written:
e — ¢p

————0ld .
Fd= I8, 25— + IS {grad o (n—ig) | (8.32)

i.e. CDS is used to approximate the derivative in £ direction. Thus, the de-
ferred correction term, labeled “old”, becomes zero when %, = n, as required.
When the non-orthogonality is not severe, this term is small compared to the
implicit term and the convergence rate of the implicit solution method is not
impaired substantially.
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The non-orthogonality of the lines defining the CV boundaries is not rele-
vant — only the angle between the cell face normal n and the line £ connecting
the cell centers on either side is important. A 2D grid of equilateral triangles
is orthogonal in the above sense, since the directions of £ and n coincide. It
is also uniform in the sense that the distances from cell face centers to CV
centers are equal. It is much easier to optimize a grid with respect to the
angle between £ and n than the angles at the CV corners, especially if CVs
of different topology are used in the same grid.

This diffusive flux approximation (8.32) prevents oscillatory solutions. It
is very simple to implement, since only the cell face surface vector and the
positions of CV centers are needed. It is of second order accuracy on uniform
grids, and when the grid is refined systematically, the convergence behavior is
of second order even when the grid is non-uniform (see Sect. 3.3.1 for details).
It is applicable to CVs of arbitrary shape and can be adapted to schemes of
higher order.

The above scheme makes the calculation of derivatives with respect to
Cartesian coordinates very simple. By using expressions (8.22) and (8.31),
one can calculate the derivative in any direction. A subroutine which calcu-
lates derivatives is easy to program and can be used for all variables. There is
no need to transform the equations from Cartesian coordinates into another
system. This is especially handy when implementation of turbulence models
is considered, see Chap. 9 (especially for the complicated ones): the model
equations are usually complicated enough in Cartesian coordinates — trans-
formation to non-orthogonal coordinates makes them even more complex. It
is also very easy to validate the part of the computer code that calculates
gradients, by setting ¢ to be an analytic function whose derivatives can be
computed exactly.

When structured grids are used, one can also start from the expression
(8.25) and transform the derivative with respect to n into derivatives with
respect to local coordinates (£,7,(), where £ connects the CV centers on
either side and the other two coordinates lie in the face and follow the grid
directions. This procedure is similar to the one described in the preceding
section and will not be discussed in detail here. A 2D code that uses non-
orthogonal structured grids is available via Internet; see appendix for details.

In the momentum equations, the diffusive flux contains a few more terms
than does the corresponding term in the generic conservation equation, e.g.
for u;:

FS:/ pgradui-nd5+/ pa—uj-ij'nd5~ (8.33)
S. Se a.’])i

The underlined term is absent in the generic conservation equation. If p and
1 are constant, the sum of underlined terms over all CV faces is zero by virtue
of the continuity equation, see Sect. 7.1. If p and p are not constant, they —
except near shocks — vary smoothly and the integral of underlined terms over
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the whole CV surface is smaller than the integral of the principal term. For
this reason, the underlined term is usually treated explicitly. As shown above,
the derivatives are easily calculated at the cell face using the derivatives at
the CV center.

In the above approximations it was assumed that the line connecting
nodes P and E passes through the cell face center ‘¢’. In that case the ap-
proximation of the surface integral is second order accurate (midpoint rule).
When the grid is irregular, the line connecting P and E may not pass through
the cell face center, and the approximations for ¢, and (0¢/9€)e used above
are second order accurate at a point ‘e’’, see Fig. 8.9. The approximation
to the surface integral is no longer second order accurate but the additional
error is small if ‘¢’” is not far from ‘e’. If ‘e’ is close to the corners ‘se’ or ‘ne’,
the approximation becomes first order accurate.

Fig. 8.9. An alternative way of cal-
. culating cell face values and gradi-
ents

The second order accuracy of the midpoint rule integral approximation
can be preserved on irregular grids if the values of the variable and its gradient
are calculated at the cell face center with second order approximations. These
can be obtained by using appropriate shape functions. Alternatively, one can
use values at auxiliary nodes P’ and E’, which lie at the intersection of the
cell face normal n and straight lines connecting nodes P and N or E and
NE, respectively, see Fig. 8.9. Both the cell face value of the variable and its
gradient can then be approximated as on a Cartesian grid from the values
at P’ and E'. In order to avoid extended computational molecules in implicit
methods, the deferred correction approach can be used: the implicit terms
are based on the values at nodes P and E ignoring grid irregularity (i.e. using
values at ‘e’’), while the difference between the implicit term and the more
accurate approximation is treated explicitly. For example, the diffusive flux
approximation can be implemented in the following way, using a modified
version of expression (8.30):



238 8. Complex Geometries

- 0¢
s, (2) +rs.

(22) ) (g—?)]ld ‘ (8:34)

The normal gradient at a cell face center can be calculated using the usual
central difference approximation:

(5¢) e — ¢pr
on ~

) 8.35
Lp!1Ef ( )

where Lp: g/ stands for the distance between P’ and E', ie. Lpi g =
lrgr — rp:|. The values ¢p and @p can be calculated either by using bi-
linear interpolation (which is suitable on structured grids) or by using the
gradient at CV center (suitable for arbitrary CV shape):

¢pr = ¢p + (grad d)p - (rpr —7Tp) . (8.36)

The above scheme is the simplest one that is second order accurate.
Higher-order methods must use shape functions, producing a kind of blended
FE/FV method. An example of this approach is given in Sect. 8.7.

8.6.3 Approximation of Source Terms

The midpoint rule approximates a volume integral by the product of the CV
center value of the integrand and the CV volume:

QL = / 0o A2 m qpp AR (8.37)
2

This approximation is independent of the CV shape and is approximately of
second order accuracy.

The calculation of the cell volume deserves some attention. If the grid is
structured, simple formulae are available; for example, for 2D quadrilaterals
we can use the vector product of the two diagonals:

A = —[(Tne — Tow) X (Pow — rse)] = (8.38)

[ = DO e

5 [(wne - zsw)(ynw - yse) - (yne - ysw)(znw - zse)] y
where 7, is the position vector of the point ‘ne’, see Fig. 8.7. Suitable ex-
pressions for arbitrary 2D and 3D CVs will be given below.

Let us look now at the pressure terms in the momentum equations. They
can be treated either as conservative forces on the CV surface, or as non-
conservative body forces. In the first case we have (in the 2D equation for
U, using the midpoint rule approximation):
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Qp=- [pinds~ Y ps:- (8.39)
[

_pe(yne - yse) + Dw (ynw - ysw) + Pn (yne - ynw) — Ds (yse - ysw) .

In the second case we get:

Q;;:_/ 6_pdrm—<@) AQ. (8.40)
7 o ) p

The first approach is fully conservative. The second is conservative (and
equivalent to the first one) if the derivative Op/0z is calculated using Gauss’
theorem. If the pressure gradient with respect to z is transformed into gradi-
ents with respect to £ and 7 for a local coordinate system at the CV center,
one obtains:

Il; ~ —(Pe — Pw)(Wn — ¥s) + (Pn — Ps) We — Yw) - (8.41)

One can calculate the derivative at CV center by differentiating a shape
function. These approaches are in general not conservative.

Treatment of pressure terms in the equations for u, (and in 3D cases u,)
are similar to those given above for u,.

8.6.4 Three-Dimensional Grids

In 3D, the cell faces are not necessarily planar. To calculate cell volumes
and cell face surface vectors, suitable approximations are necessary. A sim-
ple method is to represent the cell face by a set of plane triangles. For the
hexahedra used in structured grids, Kordula and Vinokur (1983) suggested
decomposing each CV into eight tetrahedra (each CV face being subdivided
into two triangles) so that no overlapping occurs.

Another way to calculate cell volumes for arbitrary CVs is based on Gauss
theorem. By using the identity 1 = div(z¢), one can calculate the volume as:

AQ:/ dQ:/ div(mi)dﬂ:/mi-ndSzchSf, (8.42)
Q 2 5 -

where ‘c’ denotes cell faces and S7 is the xz-component of the cell face surface
vector (see Fig. 8.10):

Se=S.n=5%i+S'j+Sk. (8.43)

Instead of zz, one can also use yj or zk, in which case one has to sum the
products of y. .S¥ or z.S5%. If each cell face is defined in the same way for
both CVs to which it is common, the procedure ensures that no overlapping
occurs and that the sum of all CV volumes equals the volume of the solution
domain.
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An important issue is the definition of the surface vectors at the cell faces.
The simplest approach is to decompose them into triangles with one common
vertex, see Fig. 8.10. The areas and surface normal vectors of triangles are
easily computed. The surface normal vector for the whole cell face is then
the sum of surface vectors of all the triangles (see face ‘c;’ in Fig. 8.10):

2

v

Sc = [(7"2‘_1 — 7"1) X (’I"i -7 )] y (844)

| =
-
Il
[

where N, is the number of vertices in the cell face and 7; is the position vector
of the vertex ¢. Note that there are N, — 2 triangles. The above expression is
correct even if the cell face is twisted or convex. The choice of the common
vertex is not important.

Fig. 8.10. On the calculation of cell volume
and surface vectors for arbitrary control vol-
umes

The cell face center can be found by averaging the coordinates of the
center of each triangle (which is itself the average of its vertex coordinates)
weighted by its area. The area of the cell face is approximated by the mag-
nitude of its surface vector, e.g.:

Se = [Sel = 1/(52)2 + (S2)? +(52)2 . (8.45)

Note that only projections of the cell face onto Cartesian coordinate planes
are required. These are exact when the CV edges are straight, as they are
assumed to be.

Further details of discretization on 3D grids will not be presented; the
techniques described for 2D problems are easily extended to 3D, and the
increased complexity is of strictly geometrical nature.

Tt is worth noting that the derivation of high order FV methods is more
difficult than construction of FD methods of high order. In FD methods, we
only have to approximate the derivatives at a grid point with higher order
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approximations, which is relatively easy to do on structured grids (see Chap.
3). In FV methods, there are two approximation levels: approximation of the
integrals and approximation of the variable values at locations other than
CV center. The second order accuracy of the midpoint rule and linear inter-
polation is the highest accuracy achievable with single-point approximations.
Any higher order FV scheme requires interpolation of higher order at more
than one cell face location. This is manageable on structured grids, but rather
difficult on unstructured grids. For the sake of simplicity of implementation,
extension, debugging and maintenance, second order accuracy appears to be
the best compromise. Only when very high accuracy is required (discretiza-
tion errors below 1%) do higher order methods become cost-effective. One
also has to bear in mind that higher order methods produce more accurate
results than a second order method only if the grid is sufficiently fine. If the
grid is not fine enough, higher order methods may produce oscillatory solu-
tions, and the average error may be higher than for a second order scheme.
Higher order schemes also require more memory and computing time per
grid point than second order schemes. For industrial applications, for which
errors of the order of 1% are acceptable, a second order scheme coupled with
local grid refinement offers the best combination of accuracy, simplicity of
programming and code maintenance, robustness, and efficiency.

8.6.5 Block-Structured Grids

Structured grids are difficult, sometimes impossible, to construct for complex
geometries. For example, to compute the flow around a circular cylinder in a
free stream, one can easily generate a structured O-type grid around it, but
if the cylinder is located in a narrow duct, this is no longer possible; see Fig.
2.2. In such a case, block-structured grids provide a useful compromise be-
tween the simplicity and wide variety of solvers available for structured grids
and ability to handle complex geometries that unstructured grids allow. The
idea is to use a regular data structure (lexicographic ordering) within while
constructing the blocks so as to fill the irregular domain. Many approaches
are possible. Some use overlapping blocks (e.g. Hinatsu and Ferziger, 1991;
Perng and Street, 1991; Zang and Street, 1995; Hubbard and Chen, 1994,
1995). Others rely on non-overlapping blocks (e.g. Coelho et al., 1991; Lilek
et al.,, 1997b). We shall describe one approach that used non-overlapping
blocks. It is also well suited for use on parallel computers (see Chap. 11);
normally, the computing for each block is assigned to a separate processor.

The solution domain is first subdivided into several sub-domains in such
a way that each sub-domain can be fitted with a structured grid with good
properties (not too non-orthogonal, individual CV aspect ratios not too
large). An example is shown in Fig. 2.2. Within each block the indices ¢
and j are used to identify the CVs, but we also need a block-identifier. The
data is stored in a one dimensional array. The index of the node (%, §) in block
3 within that one-dimensional array is (see Table 3.2):
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[=0s+(i—-1)N}+7,

where Oj is the offset for block 3 (the number of nodes in all preceding blocks,
Le. N]N} + N?N?) and N/* and NJ* are the numbers of nodes in the i and
j directions in block m.

Block-Intertace

Block B

Block A

® Cell center
o Cell-face center

a Cell vertex

Fig. 8.11. Interface between two blocks with non-matching grids, showing interface
CV-faces and the nomenclature

The grids in two neighboring blocks need not match at the interface; an
example is shown in Fig. 8.11. Some authors use so called “hanging nodes” on
either side of the interface as boundary nodes of each block; we shall describe
another possibility. Rather than having hanging nodes we allow CVs along
interfaces to have more than four (in 3D more than six) faces.

Since the shaded CV in block A of Fig. 8.11 has three neighbors on its
east face, we cannot use the usual notation for structured grids here. This
face is not of the regular type (with one neighbor on the opposite side), so
we shall not include it while working in block A. The coefficient matrix and
the source term for this CV will thus be incomplete, since the contribution
from its east side is missing; in particular, the coefficient Ag will be zero.

In order to treat the irregular cell faces found at block interfaces, we have
to use another kind of data structure here — one similar to the one used
when the whole grid is unstructured. Each piece of the interface common
to two CVs must be identified (by a pre-processing tool) and placed on a
list together with all of the information needed to approximate the surface
integrals: the indices of the left (L) and right (R) neighbor cells, the surface
vector (pointing from L to R) and the coordinates of cell-face center. With
this information, one can use the method used in the interior of each block to
approximate the fluxes through these faces. The same approach can be used
at the “cuts” that occur in O- and C-type grids; in this case, we are dealing
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with an interface between two sides of the same block (i.e., A and B are the
same block, but the grids may not match).

Each interface cell face contributes to the source terms for the neighboring
CVs (explicit contributions to the convective and diffusive fluxes treated by
deferred correction), to the main diagonal coeflicient (Ap) of these CVs, and
to two off-diagonal coefficients: A; for node R and Agr for node L. The
problem of irregularity of data structure due to having three east neighbors is
thus overcome by regarding the contributions to the global coefficient matrix
as belonging to the interface cell faces (which always have two neighbor cells)
rather than to the CVs. It is then irrelevant how the blocks are ordered
relative to each other (the east side of one block can be connected to any side
of the other block): one has only to provide the indices of the neighbor CVs
to the interface cell faces.

The contributions from interface cell faces, namely Ar and Ag, make
the global coefficient matrix A4 irregular: neither the number of elements per
row nor the bandwidth is constant. However, this is easily dealt with. All
we need to do is to modify the iteration matrix M (see Chap. 5) so that it
does not contain the elements due to the faces on the block interfaces. We
shall describe a solution algorithm based on an ILU-type of solver; it is easily
adapted to other linear equation solvers.

1. Assemble the elements of matrix A and the source term @ in each block,
ignoring the contributions of the block interfaces.

2. Loop over the list of interface cell faces, updating Ap and Qp at nodes L
and R, and calculate the matrix elements stored at the cell face, Ay and
ARg.

3. Calculate elements of matrices L and U in each block disregarding neigh-
bor blocks, i.e. as if they were on their own.

4. Calculate the residuals in each block using the regular part of the matrix
A (Ag, Aw, AN, As, Ap, and @Qp); the residuals for the CVs along block
interfaces are incomplete, since the coefficients that refer to neighbor
blocks are zero.

5. Loop over the list of interface cell faces and update the residuals at nodes
L and R by adding the products Agrdr and Ap ¢y, respectively; once all
faces have been visited, all the residuals are complete.

6. Compute the variable update at each node in each block and return to
step 1.

7. Repeat until the convergence criterion is met.

Since the matrix elements referring to nodes in neighbor blocks do not
contribute to the iteration matrix M, one expects that the number of iter-
ations required to converge will be larger than it is in the single block case.
This effect can be studied by artificially splitting a structured grid into sev-
eral sub-domains and treating each piece as a block. As already mentioned,
this is what is done when implicit methods are parallelized by using domain
decomposition in space (see Chap. 11); the degradation of convergence rate
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of the linear equation solver is then called numerical inefficiency. Schreck
and Peri¢ (1993) and Seidl et al. (1996), among others, have performed nu-
merous tests and found that the performance - especially when conjugate
gradients and multigrid solvers are used — remains very good even for a large
number of sub-domains. When a good structured grid can be constructed, it
should be used. Block-structuring does increase the computing effort, but it
allows solution of more complex problems and it certainly requires a more
complicated algorithm.

An example of the application of this approach is presented in Sect. 8.11.
An implementation of the algorithm for O- and C-type grids is found in the
code caffa.f in directory 2dgl; see Appendix A.1. Further details of the
implementation for block-structured non-matching grids is available in Lilek
et al. (1997b).

8.6.6 Unstructured Grids

Unstructured grids allow great flexibility in adapting the grid to domain
boundaries. In general, control volumes of arbitrary shape, i.e. with any num-
ber of cell faces, can be used. However, grids with mixed CV types are not
common; usually, triangles or quadrilaterals are used in 2D and tetrahedra
or hexahedra in 3D. Prisms, pyramids, and tetrahedra may be considered
special cases of hexahedra so nominally hexahedral grids may include CVs
with less than six faces.

The data structure depends on CVs used. The main objects are the CVs
and cell vertices. When a grid is generated, a list of vertices is created. Each
CV is defined by four or eight vertices, so the list of CVs also contains a list of
associated vertices. The order of the vertices in the list represents the relative
positions of the cell faces; e.g., first four vertices of a hexahedral CV define
the bottom face and the last four the top face, see Fig. 8.12. The positions of
the six neighbor CVs is also implicitly defined; e.g., the bottom face defined
by vertices 1, 2, 3 and 4 is common to neighbor CV number 1, etc. This is
usually adopted in order to reduce the number of arrays necessary for the
definition of connectivity between CVs.

One needs also to create a list of cell faces. Such a list is easily defined
once the list of CVs and vertices exists, since each face of a CV appears
exactly once in another CV, i.e. if all CVs are scanned, the faces defined by
the same vertices appear twice. It is only important that the vertices that
define a cell face are always ordered in either clockwise or counter-clockwise
order. The same information is contained in the list of faces as that described
in preceding section for block interfaces.

Another possibility is to introduce object oriented data structure and de-
fine objects vertez, edge, face and volume. Edges are defined by the vertices
on either end, faces by lists of edges (which must form a closed polygon),
and volumes by lists of faces. The discretization requires approximations to
surface and volume integrals; it makes sense to compute these separately.
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Fig. 8.12. Definition of nominally hexahedral CVs by a list of eight vertices

The data which needs to be stored for each face or volume depends on the
integration, differentiation, and interpolation approximations used. We shall
not go into details of specific arrangements here, as there are numerous pos-
sibilities. Details can be found in books on finite elements, since unstructured
grids are the rule rather than the exception in FE methods.

Irregular unstructured grids made up of CVs with more than six faces
(polyhedral CVs) are produced when the grid is refined by dividing CVs into
smaller ones. In this case, some faces of non-refined CVs are also subdivided
into smaller faces. Such a refinement interface can be treated in the same way
discussed above for non-matching interfaces between blocks. More details of
this kind of local mesh refinement will be given in Chap. 11.

8.7 Control-Volume-Based Finite Element Methods

We give here only a short description of the hybrid FE/FV method using
triangular elements and linear shape functions. For more details on finite
element methods and their application to Navier-Stokes equations, see books
by Oden (1972), Zinkiewicz (1977), Chung (1978), Baker (1983), Girault and
Raviart (1986) or Fletcher (1991).

N, Triangular Element N; Triangular Element

Contro! Volume Control Volume

N,

Fig. 8.13. On the principles of control-volume-based finite element and dual-mesh
methods
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In this method, the solution domain is subdivided into triangular ele-
ments. The elements are used to describe the variation of the variables. The
computational nodes are located at their vertices. Any variable ¢ is assumed
to vary linearly within the element, i.e. its shape function is:

p=ar+by+c. (8.46)

The coefficients a, b and ¢ are determined by fitting the function to the nodal
values at the vertices. They are thus functions of coordinates and variable
values at the nodes.

The control volumes are formed around each node by joining the centroids
of the elements and midpoints on element edges, as shown in Fig. 8.13. The
conservation equations in integral form are applied to these CVs as described
above for the finite volume method. The surface and volume integrals are
calculated element-wise: for the CV shown in Fig. 8.13, the CV surface con-
sists of 10 sub-faces, and its volume consists of five sub-volumes (from five
elements which contribute to the CV). Since the variation of variables over
an element is prescribed in form of an analytical function, the integrals can
easily be calculated.

The algebraic equation for a CV involves the node P and its immediate
neighbors (N; to N5 in Fig. 8.13). Even though the grid consists of triangles
only, the number of neighbors varies in general from one CV to another, lead-
ing to irregular matrix structure. This restricts the range of solvers which can
be used; conjugate gradient and Gauss-Seidel solvers are usually employed.

This approach was followed — although only in 2D and using second or-
der approximations — by Baliga and Patankar (1983), Schneider and Raw
(1987), Masson et al. (1994), Baliga (1997), and others. Its extension to 3D
is straightforward, but more complicated.

Actually, one does not have to prescribe the shape functions on the ele-
ments. Instead, they can be just used to define polyhedral CVs made up of
more than one element. For example, tetrahedral grids are easy to generate,
but often have bad properties near walls; tetrahedra can be merged to cre-
ate a polyhedral CV around each tetrahedron vertex as described above. If
one adopts the methods of numerical integration, interpolation, and differ-
entiation described earlier, one can lump the sub-faces common to two CVs
to form one cell face, thus reducing the number of faces and the computing
effort in evaluating surface integrals.

This is sometimes called dual-mesh approach. An example is shown in
Fig. 8.13, where the resulting CV can be compared to that obtained from the
method described above. The number of faces of a cell is now equal to the
number of neighbor CVs. If the underlying triangular mesh is highly non-
uniform, the lines connecting node P and its neighbors will not pass through
the cell-face center. However, this can be handled using approach described
in Fig. 8.9 and in Eq. (8.36).
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8.8 Pressure-Correction Equation

The SIMPLE-algorithm (see Sect. 7.5.2) needs to be modified when the grid
is non-orthogonal and/or unstructured. The approach is described in this
section.

For any grid type, the discretized momentum equations have the following
form:

Ag" Ui p + Z AZ“ Uiy = Qi,p . (8.47)
1

The source term Q; p contains the discretized pressure gradient term. Irre-
spective of how this term is approximated, one can write:

. . 4
Qir=Qip+Qlp=Qip— <6—5>P AN . (8.48)

If the pressure term is approximated in a conservative way (as a sum of
surface forces), the mean pressure gradient over the CV can be expressed as:

Y4
= —/pi.nds - [ 240 o <§£> __Yir (8.49)
S P

0N 8x2 (51}1; - AR

As always, the correction takes the form of a pressure gradient and the
pressure is derived from a Poisson-like equation obtained by imposing the
continuity constraint. The objective is to satisfy continuity i.e. the net mass
flux into every CV must be zero. In order to calculate the mass flux, we
need velocities at the cell face centers. In a staggered arrangement these are
available. On colocated grids, they are obtained by interpolation.

It was shown in Chap. 7 that, when interpolated velocities at cell faces
are used to derive the pressure-correction equation, a large computational
molecule results as can oscillations in the pressure and/or velocities. We
described a way to modify the interpolated velocity that yields a compact
pressure-correction equation and avoids oscillatory solutions. We shall de-
scribe briefly an extension of the approach presented in Sect. 7.5.2 to non-
orthogonal grids. The method described below is valid for both conservative
and non-conservative treatment of the pressure gradient terms in the momen-
tum equations, and with a little modification can be applied to FD schemes
on non-orthogonal grids. It is also valid for arbitrarily shaped CVs, although
we shall consider the ‘e’ face of a regular CV.

The interpolated cell face velocity is corrected by subtracting the differ-
ence between the pressure gradient and the interpolated gradient at the cell
face location:

— —— g m—1
me _ Tom LY ([(r) _ (%
ui,e - (ui )e A“Qe <All;; >e [(61:2)8 <6xi>e:| ’ (850)
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where m is the iteration counter. It was shown in Sect. 7.5.2 that, for a 2D
uniform grid, the correction corresponds to a central difference approxima-
tion to the third derivative to the pressure multiplied by (Az)?; it detects
oscillations and smoothes them out. The correction term may be small and
not fulfilling its role if Ap is too large. This can happen when unsteady
problems are solved using very small time steps, since Ap contains Af2/At,
which is rarely the case. The correction term may be multiplied by a con-
stant without affecting the consistency of the approximation. This approach
to pressure-velocity coupling on colocated grids was developed in early 1980s
and is usually attributed to Rhie and Chow (1983). It is widely used and is
employed in many commercial CFD codes.

Only the normal velocity component contributes to the mass flux through
a cell face. It depends on the pressure gradient in the normal direction. This
allows us to write the following expression for the normal velocity component
v, = v -1 at a cell face:

Since Ap' is the same for all velocity components in a given CV (except near
some boundaries), one can replace A}* by this quantity.

One can calculate the derivative of pressure in the direction normal to ‘e’
face at the neighboring CV centers and interpolate it to the cell face center.
Calculation of the normal derivative at the cell face directly would require a
coordinate transformation, which is the usual procedure on structured grids.
When using CVs of arbitrary shape, we would like to avoid use of coordi-
nate transformations. Using shape functions is a possibility, but it results
in a complex pressure-correction equation. The deferred-correction approach
could be used to reduce the complexity.

Another approach can be constructed. From Fig. 8.9, we see that the pres-
sure derivative with respect to n can be approximated as a central difference:

5 f ’ ;7 —_ 7
(_zz) N PE PP PR PR (8.52)
on e |’I‘E! - Tpl| (’I‘E et ’r‘p) ‘n
The locations of the auxiliary nodes P’ and E' are easily found:
rp=re—[(re—Tp) - nIn; TR =r¢—[(Te—rE) N|N. (8.53)

These expressions are valid for a CV of any shape. The values of pressure
at the two auxiliary nodes can be calculated using cell-center values and
gradients:

pp &~ pp + (gradp)p - (rpr — rp), (8.54)
pE = pg + (gradp)g - (rgr — TE) .

With these expressions, Eq. (8.52) becomes:
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<—p> ~ PETPP (8.55)
énj, (re—rp)-n

(gradp)g - (rer — TE) ~ (gradp)p - (rp — Tp)
(rge—rp) n )

The second term on the right hand side disappears when the line connecting
nodes P and E is orthogonal to the cell face i.e. when P and P’ and E and
E’ coincide. If the objective is to prevent pressure oscillations on colocated
grids, it is sufficient to use just the first term on the right-hand side of Eq.
(8.56), i.e. one can approximate Eq. (8.51) as:

Upe = (V%) — (8.56)

The correction term in square brackets thus represents the difference between
the pressure difference pg — pp and the approximation to it calculated using
interpolated pressure gradient, (gradp), - (rg — rp). For a smooth pressure
distribution, this correction term is small and it tends to zero as the grid
is refined. The pressure gradient at the CV centers is available as it was
calculated for use in the momentum equations.

These mass fluxes calculated using the interpolated velocity,

= pevi™Se (8.57)

me

do not satisfy the continuity requirement, so their sum results in a mass

source:

Zm;:Am ;. c=e,wW,Nn,s,... (8.58)
[

which must be made to be zero. The velocities have to be corrected so that
mass conservation is satisfied in each CV. In an implicit method it is not
necessary to satisfy mass conservation exactly at the end of each outer it-
eration. Following the method described earlier, we correct the mass fluxes
by expressing the velocity correction through the gradient of the pressure
correction, thus:

W, ' 1 op'
Mg = Pely, o0 & —(p A2 S) (—v;— — | =
¢ omere ¢ AP e on e

1 PE—Pp
_(PA‘QS)e(Ag‘)e [(TE —’I’P) T
(gradp g - (rer — TE) — (gradp’)p - (rpr — ’I’P):|
(re—rp)-n '

(8.59)
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If the same approximation is applied at the other CV faces, and it is required
that the corrected mass fluxes satisfy the continuity equation:

Zm'c+4m=0 ; c=e,w,n,s,... (8.60)
c

we obtain the pressure-correction equation.

The last term on the right hand side of Eq. (8.59) leads to an extended
computational molecule in the pressure-correction equation. Since this term
is small when the non-orthogonality is not severe, it is common practice to
neglect it. When the solution converges, the pressure correction becomes zero
so the omission of this term does not affect the solution; however, it does affect
the convergence rate. For substantially non-orthogonal grids, one has to use
a smaller under-relaxation parameter a,, see Eq. (7.45).

When the above approximation is used, the pressure-correction equation
has the usual form; moreover, its coefficient matrix is symmetric so special
solvers for symmetric matrices can be used (e.g. the ICCG solver from the
conjugate gradients family, see Chap. 5 and directory solvers on publisher’s
server).

The grid non-orthogonality can be taken into account in the pressure-
correction equation iteratively, i.e. by using the deferred-correction approach.
One solves first the equation for p’ in which the non-orthogonality terms in
Eq. (8.59) are neglected. In the second step one corrects the error made in
the first step by adding another correction:

(1 (ép  ép"
il +m! = —(p AR 5)9<F> (3% + —(%) , (8.61)
P e e

which — by neglecting the non-orthogonality terms in the second correction
p" but taking them into account for the first correction p’ — leads to the
following expression for the second mass-flux correction:

] 71N\ plh — pl!
l=—(pANS (—) [—E =
me (p ) Apn . (TE _ TP) ‘n

(gradp')g - (rgr — rg) — (gradp')p - (rpr — 7p)
(re—rp)-n

(8.62)

The second term on the right-hand side can now be explicitly calculated,
since p' is available.

Since the corrected fluxes m* + ' were already forced to satisfy the
continuity equation, it follows that )" 7, = 0. This leads to an equation
for the second pressure correction p', which has the same matrix A as the
equation for p’, but a different right hand side. This can be exploited in
some solvers. The source term of the second pressure correction contains the
divergence of the explicit parts of h”.
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The correction procedure can be continued, by introducing third, fourth
etc. corrections. The additional corrections tend to zero; it is rarely necessary
to go beyond the two already described as the pressure-correction equation
includes more severe approximations than the non-exact treatment of the
effects of grid non-orthogonality.

The inclusion of the second pressure correction has a minor effect on the
performance of the algorithm if the grid is nearly orthogonal. However, if the
angle between n and £ is less than 45° in much of the domain, convergence
may be slow with only one correction. Strong under-relaxation {(adding only
5-10% of p’ to p™ 1) and reduction of the under-relaxation factors for velocity
may help but at a cost in efficiency. With two pressure-correction steps, the
performance found on orthogonal grids is obtained.
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Fig. 8.14. Geometry and predicted streamlines in a lid-driven cavity with side walls
inclined at 45°, at Re = 1000 (left), and the numbers of iterations using o, = 0.8
and one or two pressure correction steps, as a function of a, (right)

An example of performance degradation on non-orthogonal grids without
the second correction is shown in Fig. 8.14. Flow in a lid-driven cavity with
side walls inclined at 45° was calculated at Re = 1000; Fig. 8.14 also shows the
geometry and computed streamlines. The grid lines are parallel to the walls.
With the second pressure correction, the numbers of iterations required for
convergence and their dependence on the under-relaxation factor for pressure,
ap, are similar to what is found for orthogonal grids, see Fig. 7.14. If the
second correction is not included, the range of usable parameter a, is very
narrow and more iterations are required. Similar results are obtained for
other values of the under-relaxation factor for velocity a,, the differences
being greater for larger values of a,,. The range of a, for which convergence
is obtained becomes narrower when the angle between grid lines is reduced
and only one pressure correction is calculated.

The method described here is implemented in the code found in the di-
rectory 2dgl, see Appendix A.1.
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On structured grids, one can transform the normal pressure derivative
at cell faces into a combination of derivatives along grid line directions and
obtain a pressure-correction equation which involves mixed derivatives; see
Sect. 8.5. If the cross-derivatives are treated implicitly, the computational
molecule of the pressure-correction equation contains at least nine nodes in
2D and nineteen nodes in 3D. The above two-step procedure results in similar
convergence properties as the use of implicitly discretized cross-derivatives
(see Peri¢, 1990), but is computationally more efficient, especially in 3D.

8.9 Axi-Symmetric Problems

Axi-symmetric flows are three-dimensional with respect to Cartesian coordi-
nates i.e. the velocity components are functions of all three coordinates, but
they are only two-dimensional in a cylindrical coordinate system (all deriva-
tives with respect to the circumferential direction are zero, and all three
velocity components are functions of only the axial and radial coordinates,
z and r). In cases without swirl, the circumferential velocity component is
zero everywhere. As it is much easier to work with two independent variables
than three, for axi-symmetric flows, it makes sense to work in a cylindrical
coordinate system rather than a Cartesian one.

In differential form, the 2D conservation equations for mass and momen-
tum, written in a cylindrical coordinate system, read (see e.g. Bird et al.,
1962):

B , Bpvs)  10(prv.)
ot 0z r  Or

=0, (8.63)
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where the non-zero stress tensor components are:
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The above equations contain two terms which have no analog in Cartesian
coordinates: pv2 /7 in the equation for v,, which represents the apparent cen-
trifugal force, and pv,vg /r in the equation for vy, which represents the appar-
ent Coriolis force. These terms arise from the coordinate transformation and
should not be confused with the centrifugal and Coriolis forces that appear
in a rotating coordinate frame. If the swirl velocity vy is zero, the apparent
forces are zero and the third equation becomes redundant.

When a FD method is used, the derivatives with respect to both axial
and radial coordinates are approximated in the same way as in Cartesian
coordinates; any method described in Chap. 3 can be used.

Finite volume methods require some care. The conservation equations in
integral form given earlier (e.g. (7.79) and (7.80)) remain the same, with the
addition of apparent forces as source terms. These are integrated over the
volume as described in Sect. 4.3. The CV size in the f-direction is unity,
i.e. one radian. Care is needed with pressure terms. If these are treated as
body forces and the pressure derivatives in z and r directions are integrated
over the volume as shown in Egs. (8.40) and (8.41), no additional steps are
necessary. However, if the pressure is integrated over the CV surface as in
Eq. (8.40), it is not sufficient to integrate only over north, south, west and
east cell face, as was the case in plane 2D problems — one has to consider the
radial component of pressure forces onto the front and back surfaces.

Thus, we have to add these terms, which have no counterparts in planar
2D problems, to the momentum equation for v,:

2u A 2
Q=" vr,p+ppAs+(—””6) A, (8.68)
TP T P

where AS is the area of the front face.
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In the equation for vy, if it needs to be solved, one has to include the
source term (the apparent Coriolis force):

Q' =- (M)P AR . (8.69)

r

The only other difference compared to planar 2D problems is the calcu-
lation of cell face areas and volumes. The areas of cell faces ‘n’, ‘¢’, ‘w’ and
‘s’ are calculated as in plane geometry, see Eq. (8.13), with the inclusion of
a factor of r. (where ¢ denotes the cell face center). The areas of the front
and back faces are calculated in the same way as the volume in plane ge-
ometry (where the third dimension is unity), see Eq. (8.39). The volume of

axi-symmetric CVs with any number of faces is:
1™
Al = 6 Z(zi—l —z)(riy 1 riric), (8.70)
i=1

where N, denotes the number of vertices, counted counter-clockwise, with
t = 0 corresponding to ¢ = N,.

An important issue in axi-symmetric swirling flows is the coupling of
radial and circumferential velocity components. The equation for v, contains
vg, and the equation for v, the product of v, and vg as source terms, see above.
The combination of the sequential (decoupled) solution procedure and Picard
linearization may prove inefficient. The coupling can be improved by using
the multigrid method for the outer iterations, see Chap. 11, by a coupled
solution method, or by using more implicit linearization schemes, see Chap.
5.

If the coordinates z and r of the cylindrical coordinate system are replaced
by x and y, the analogy with the equations in Cartesian coordinates becomes
obvious. Indeed, if r is set to unity and vs and 794 are set to zero, these
equations become identical to those in Cartesian coordinates, with v, = u,
and v, = u,. Thus the same computer code can be used for both plane and
axi-symmetric 2D flows; for axi-symmetric problems, one sets r = y and
includes 194 and, if the swirl component is non-zero, the vg equation.

An example of application of the FV solution method described above to
axi-symmetric problems is shown in Chap. 9.

8.10 Implementation of Boundary Conditions

The implementation of the boundary conditions on non-orthogonal grids re-
quires special attention because the boundaries are usually not aligned with
the Cartesian velocity components. The FV method requires that the bound-
ary fluxes either be known or expressed in terms of known quantities and
interior nodal values. Of course, the number of CVs must match the number
of unknowns.
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We shall often refer to a local coordinate system (n, t, s), which is a rotated
Cartesian frame with n the outward normal to the boundary and ¢ and s
tangential to the boundary.

8.10.1 Inlet

Usually, at an inlet boundary, all quantities have to be prescribed. If the
conditions at inlet are not well known, it is useful to move the boundary as far
from the region of interest as possible. Since the velocity and other variables
are given, all the convective fluxes can be calculated. The diffusive fluxes are
usually not known, but they can be approximated using known boundary
values of the variables and one-sided finite difference approximations for the
gradients.

8.10.2 Outlet

At the outlet we usually know little about the flow. For this reason, these
boundaries should be as far downstream of the region of interest as possible.
Otherwise, errors may propagate upstream. The flow should be directed out
of the domain over the entire outlet cross-section, and if possible, be parallel.
In high Reynolds number flows, upstream propagation of errors — at least in
steady flows — is weak so it is easy to find approximations for the boundary
conditions. Usually one extrapolates along grid lines from the interior to the
boundary (or, better, along streamlines). The simplest approximation is that
of zero gradient along grid lines. For the convective flux this means that a
first order upwind approximation is used. The condition of zero gradient on a
grid line can be implemented implicitly. For example, at the east face the first
order backward approximation gives ¢ = ¢p. When we insert this expression
into the discretized equation for the CV next to boundary, we have:

(Ap + Ag)¢p + Awow + Anodn + Asds = Qp (8.71)

so the boundary value ¢r does not appear in the equation. This does not
mean that the diffusive flux is zero at the outlet boundary, except when the
grid is orthogonal to the boundary.

If higher accuracy is required, one has to use higher-order and one-sided
finite difference approximations of the derivatives at outlet boundary. Both
convective and diffusive fluxes have to be expressed in terms of the variable
values at inner nodes.

When the flow is unsteady, especially when turbulence is directly sim-
ulated, care is needed to avoid reflection of errors at the outlet boundary.
These issues are discussed in Sect. 9.2.
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8.10.3 Impermeable Walls

At an impermeable wall, the following condition applies:
Ui = Ui wall - (8.72)

This condition follows from the fact that viscous fluids sticks to solid bound-
ary (no-slip condition).

Since there is no flow through the wall, convective fluxes of all quantities
are zero. Diffusive fluxes require some attention. For scalar quantities, such
as thermal energy, they may be zero (adiabatic walls), they may be specified
(prescribed heat flux), or the value of the scalar may be prescribed (isothermal
walls). If the flux is known, it can be inserted into the conservation equation
for the near-wall CVs, e.g. at the south boundary:

/ Igrad¢-ndS :/ fdS = fS;, (8.73)
Ss Ss

where f is the prescribed flux per unit area. If the value of ¢ is specified
at wall, we need to approximate the normal gradient of ¢ using one-sided
differences. From such an approximation we can also calculate the value of
¢ at the wall when the flux is prescribed. Many possibilities exist; one is to
calculate the value of ¢ at an auxiliary point P’ located on the normal n, see
Fig. 8.15, and use the approximation:

99\ _ ¢p —¢s
(26) oo -

where dn = (rg —rp/) - n is the distance between points P’ and S. If the non-
orthogonality is not severe, one can use ¢p instead of ¢p/. Shape functions
or extrapolated gradients from cell centers can also be used.

y
i Fig. 8.15. On the imple-
J
mentation of boundary con-
ditions at a wall

Diffusive fluxes in the momentum equations require special attention. If
we were solving for the velocity components vy, v; and v, we could use the
approach described in Sect. 7.7. The viscous stresses at a wall are:
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Ovp, Ovy
nn = 2 ERELS = nt = —_— . .
i K < on )wall 0 T K (811 )wall (8 75)

Here we assume that the coordinate ¢ is in the direction of the shear force
at the wall, so 7,5 = 0. This force is parallel to the projection of the velocity
vector onto the wall (s is orthogonal to it). This is equivalent to the assump-
tion that the velocity vector does not change its direction between the first
grid point and the wall, which is not quite true.

Both v; and v,, can easily be calculated at node P. In 2D, the unit vector ¢
is easily obtained from coordinates of the corners ‘se’ and ‘sw’, see Fig. 8.15.
In 3D, we have to determine the direction of the vector ¢. From the velocity
parallel to the wall we can define t as follows:

v,=v—-(v-n)n = t= 2P (8.76)
[vp]

The velocity components needed to approximate the stresses are then:
Un =V -n=ung +vny+wn,, v =v-t=ut;, +vty+wt,. (877)

The derivatives can be calculated as in Eq. (8.74).
One could transform the stress 7,,; to obtain 7., 7,y etc., but this is not
necessary. The surface integral of 7,,; results in a force:

.fwall = / tTn dS = (tTntS)s (878)

3

whose z, y and z components correspond to the integrals needed in the dis-
cretized momentum equations; e.g. in 2D we have in the equation for u,:

fz = / (Tzzi + Tyzj + Tzzk) ‘ndS =1 fwall ~ (tszS)s : (8'79)
Sq

Alternatively we can use the velocity gradients at cell centers (calculated e.g.
using the Gauss theorem, see Eq. (8.20)), extrapolate them to the center of
wall cell face, calculate the shear stresses 7;;, 72y etc., and calculate the shear
force components from the above expression.

We thus replace the diffusive fluxes in the momentum equations at walls
by the shear force. If this force is calculated explicitly using values from the
previous iteration, convergence may be impaired. If the force is written as a
function of Cartesian velocity components at node P, part of it can be treated
implicitly. In this case the coefficients Ap will not be the same for all velocity
components, as is the case in the interior cells. This is undesirable, since the
coefficients Ap are needed in the pressure-correction equation, and if they
differ, we would have to store all three values. It is therefore best to use the
deferred-correction approach, as in the interior: we approximate

le =uS (8.80)

E )
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implicitly and add the difference between the implicit approximation and the
force calculated using one of the above mentioned approaches to the right
hand side of the equation. Here ¢ is the local coordinate along the grid line
connecting cell face center and node P. The coefficient Ap is then the same
for all velocity components, and the explicit terms partially cancel out, as
discussed in Sect. 7.1. The rate of convergence is almost unaffected.

8.10.4 Symmetry Planes

In many flows there are one or more symmetry planes. When the flow is
steady, there is a solution which is symmetric with respect to this plane (in
many cases, e.g. diffusers or channels with sudden expansions, there exist
also asymmetric steady solutions). The symmetric solution can be obtained
by solving the problem in part of the solution domain only using symmetry
conditions.

At a symmetry plane the convective fluxes of all quantities are zero. Also,
the normal gradients of the velocity components parallel to symmetry plane
and of all scalar quantities are zero there. The normal velocity component is
zero, but its normal gradient is not; thus, the normal stress 7,, is non-zero.
The surface integral of 7,,, results in a force:

fsym = / NThr dS ~ (nTnnS)s . (881)

El

When the symmetry boundary does not coincide with a Cartesian coor-
dinate plane, the diffusive fluxes of all three Cartesian velocity components
will be non-zero. These fluxes can be calculated by obtaining first the resul-
tant normal force from (8.81) and an approximation of the normal derivative
as described in the preceding section, and splitting this force into Cartesian
components. Alternatively, one can extrapolate the velocity gradients from
interior to the boundary and use an expression similar to (8.79), e.g. for the
u, component at the face ‘s’ (see Fig. 8.15):

fo = / (Tea + Tyoj + Toak) -1dS = i Foym & (neTanS)s - (8.:82)
Ss

As in the case of wall boundaries, one can split the diffusive fluxes at a
symmetry boundary into an implicit part, involving velocity component at
the CV center (which contributes to the coefficient Ap) or use the deferred-
correction approach to keep Ap same for all velocity components.

8.10.5 Specified Pressure

In incompressible flows one usually specifies the mass flow rate at inlet and
uses extrapolation at the outlet. However, there are situations in which the
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mass flow rate is not known, but the pressures at the inlet and outlet are
prescribed. Also, pressure is sometimes specified at a far field boundary.

When the pressure is specified at a boundary, velocity cannot be pre-
scribed — it has to be extrapolated from the interior using the same approach
as for cell faces between two CVs, see Eq. (8.51). The pressure gradient at
the boundary is approximated using one-sided differences; for example, at
the ‘e’ face, one can use expression (8.26), which is a first order backward
difference.

The boundary velocities determined in this way need to be corrected to
satisfy the mass conservation; the mass flux corrections 7/ are not zero at
boundaries where the pressure is specified. However, boundary pressure is
not corrected, i.e. p’ = 0 at boundary. This is used as a Dirichlet boundary
condition in the pressure-correction equation.

If the Reynolds number is high, the solution process will converge slowly
if the above approach is applied when the inlet and outlet pressures are
specified. Another possibility is to guess first the mass flow rate at inlet and
treat it as prescribed for one outer iteration, and consider the pressure to be
specified only at outlet. The inlet velocities should then be corrected by trying
to match the extrapolated pressure at the inlet boundary with the specified
pressure. An iterative correction procedure is used to drive the difference
between two pressures to zero.

8.11 Examples

As an example we consider laminar flow around a circular cylinder in a chan-
nel, see Fig. 8.16. At the inlet, a parabolic velocity profile is prescribed:

ue = 03 [0~ vp)H ~ (= 9w)?] . =0, (5.8

where U is the mean velocity, H = 4.1 D is the channel height and yg = —2 D
is the y-coordinate of the bottom wall. The axis of the cylinder is not on the
horizontal symmetry plane of the channel so the flow is slightly asymmetric.

Steady flow at a Reynolds number Re = 20, based on the mean velocity
in the channel and cylinder diameter, is considered first. Calculations were
performed on four systematically refined block-structured grids with non-
matching interfaces; the level two grid is shown in Fig. 8.17. The first grid
had 1250 CVs, and the finest had 80 000 CVs. Second order CDS was used for
spatial discretization. The forces on cylinder were the quantities of primary
interest.

If the configuration were fully symmetric, the steady flow would yield
zero lift force on cylinder. Due to the asymmetry, there is a small lift force,
as the flow rate (and therefore the pressure) is different above and below the
cylinder. The drag and lift coefficients are defined as:
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Fig. 8.16. Geometry and boundary conditions for laminar flow around a circular
cylinder in a channel

T

Fig. 8.17. The level two grid, used to calculate 2D flow around a circular cylinder
in a channel (5000 CVs; only part of the grid is shown)
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Fig. 8.18. Drag coefficients for the 2D flow around a cylinder in a channel as
functions of grid size: steady flow at Re = 20 (left) and the maximum drag coefficient
in a periodic unsteady flow at Re = 100 (right); from Muzaferija et al. (1995)
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(8.84)

where f, and f, are the £ and y component of the force exerted by the
fluid on the cylinder. This force is calculated by integrating the pressure and
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shear force over the cylinder surface. Values obtained using results on all four
grids are shown in Fig. 8.18; the value obtained using Richardson extrapo-
lation is also indicated. Second order convergence is obtained, as expected.
The discretization error on the finest grid was approximately 0.02%. The lift
coefficient converges in the same way; its extrapolated value is C; = 0.0105.
The lift coefficient is thus about 530 times smaller than the drag coefficient.
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Fig. 8.19. Variation of the coefficients of lift (above) and drag (below) on a cylinder
in a channel at Re = 100, as functions of time (results on the three finest grids are
shown); from Muzaferija et al. (1995)

When the Reynolds number is increased beyond a critical value (which
for a cylinder in infinite stream is about 40), the flow becomes unsteady
and vortices are shed from the cylinder. Flow at Re = 100 was investigated
by Muzaferija et al. (1995). A second-order three time-level implicit scheme
was used for time integration. Starting impulsively from rest, the flow goes
through a development stage and eventually becomes periodic. Due to vortex
shedding, both the drag and lift forces oscillate. In a symmetric configura-
tion the lift coefficient would oscillate around zero; in this case, however, it
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oscillates between Cy min = —1.021 and C} max = 0.987. The drag coefficient
oscillates between Cg min = 3.165 and Cg max = 3.228. The convergence of
the drag coefficient as the grid is refined is shown in Fig. 8.18. The time step
was the same for all grids; there are 663 time steps per oscillation period
of the lift force. Calculations with larger time steps (twice and four times
larger) showed very little dependence of the result on the time step size for
any given grid; the spatial discretization errors are much larger than the
temporal discretization errors.

Fig. 8.20. Instantaneous isobars (above) and velocity vectors (below) in the lami-
nar 2D flow around a circular cylinder in a channel at Re = 100; from Muzaferija
et al. (1995)

The drag and lift forces oscillate at different frequencies: the drag has
twice the frequency as the lift. The reason is that the drag force has one
maximum and one minimum during the growth and shedding of each vortex,
while the sign of the lift force depends on the location of the vortex i.e.
whether it is above or below the cylinder. The Strouhal number, defined as

D

St = U7 (8.85)
where T is the oscillation period in C) (corresponding to the inverse frequency
of the vortex shedding), was found to be 0.3018. This value is much higher
than for a cylinder in an infinite stream (0.18 — 0.2); the confinement in the

channel speeds up the the processes associated with vortex shedding.
The oscillations are also shifted in phase by about 10% of the drag oscil-
lation period. The variation of C4 and C] over one lift period is shown in Fig.
8.19, where results for the three finest grids are presented; the scale for Cy
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has been enlarged to emphasize the differences between the solutions. The
expected second order convergence towards grid-independence can be seen.
A further increase in Reynolds number would make the pattern more and
more irregular, eventually the flow becomes turbulent.

Figure 8.20 shows instantaneous isobars and velocity vectors. The closed
pressure contours indicate the locations of vortex centers, where the pressure
has a local minimum.
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Fig. 8.21. The level two grid used to calculate 3D flow around a circular cylinder
in a channel with square cross-section (23552 CV; only part of grid is shown)

Muzaferija et al. (1995) performed also calculations of 3D laminar flow
around a circular cylinder mounted between two walls of a square channel.
The cross-sectional configuration is the same as in the 2D case, see Fig. 8.21,
but the inlet section was 5D long. The profile for fully-developed laminar
flow in a square channel was prescribed at inlet. For the same mean velocity,
the velocity at the channel centerline is much higher than in 2D case (2.25 U
in place of 1.5 U). The boundary layers at the side walls affect the drag and
lift forces per unit cylinder length; they are higher in the 3D configuration.

Finally, Fig. 8.22 shows pressure distribution on the cylinder surface and
two surfaces of constant pressure, calculated on a grid with 188416 CV at Re
= 100. This figure highlights the difficulties of visualizing 3D flows. Velocity
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Fig. 8.22, Pressure distribution on the cylinder surface and the surfaces of constant
pressure p = 1.1 (in front of the cylinder) and p = 0.3 (behind the cylinder) for the
flow over a cylinder in a square channel, calculated on a grid with 188416 CVs at Re
= 100 (pressure surface ‘colored’ by the magnitude of the u, velocity component);
from Muzaferija et al. (1995)

vectors and streamlines, which are often used in 2D, are difficult to both draw
and interpret in 3D problems. Presentation of contours and vector projections
on selected surfaces (planes, iso-surfaces of some quantity, boundary surfaces
etc.) and the possibility to view them from different directions is perhaps

- the best way of analyzing 3D flows. Unsteady flows require animation of the
results. We shall not deal further with these issues, but want to stress their
importance.



9. Turbulent Flows

9.1 Introduction

Most flows encountered in engineering practice are turbulent and therefore
require different treatment. Turbulent flows are characterized by the following
properties:

Turbulent flows are highly unsteady. A plot of the velocity as a function
of time at most points in the flow would appear random to an observer
unfamiliar with these flows. The word ‘chaotic’ could be used but it has
been given another definition in recent years.

They are three-dimensional. The time-averaged velocity may be a function
of only two coordinates, but the instantaneous field fluctuates rapidly in
all three spatial dimensions.

They contain a great deal of vorticity. Indeed, vortex stretching is one of
the principal mechanisms by which the intensity of turbulence is increased.
Turbulence increases the rate at which conserved quantities are stirred.
Stirring is a process in which parcels of fluid with differing concentrations
of at least one of the conserved properties are brought into contact. The
actual mizing is accomplished by diffusion. Nonetheless, this process is
often called turbulent diffusion.

By means of the processes just mentioned, turbulence brings fluids of dif-
fering momentum content into contact. The reduction of the velocity gradi-
ents due to the action of viscosity reduces the kinetic energy of the flow; in
other words, mixing is a dissipative process. The lost energy is irreversibly
converted into internal energy of the fluid.

It has been shown in recent years that turbulent flows contain coherent
structures—repeatable and essentially deterministic events that are respon-
sible for a large part of the mixing. However, the random component of tur-
bulent flows causes these events to differ from each other in size, strength,
and time interval between occurrences, making study of them very difficult.
Turbulent flows fluctuate on a broad range of length and time scales. This
property makes direct numerical simulation of turbulent flows very difficult.
(See below.)

All of these properties are important. The effects produced by turbulence

may or may not be desirable, depending on the application. Intense mixing
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is useful when chemical mixing or heat transfer are needed; both of these
may be increased by orders of magnitude by turbulence. On the other hand,
increased mixing of momentum results in increased frictional forces, thus
increasing the power required to pump a fluid or to propel a vehicle; again,
an increase by an order of magnitude is not unusual. Engineers need to be
able to understand and predict these effects in order to achieve good designs.
In some cases, it is possible to control the turbulence, at least in part.

In the past, the primary approach to studying turbulent flows was exper-
imental. Overall parameters such as the time-averaged drag or heat transfer
are relatively easy to measure but as the sophistication of engineering devices
increases, the levels of detail and accuracy required also increase, as does cost
and the expense and difficulty of making measurements. To optimize a design,
it is usually necessary to understand the source of the undesired effects; this
requires detailed measurements that are costly and time-consuming. Some
types of measurements, for example, the fluctuating pressure within a flow,
are almost impossible to make at the present time. Others cannot be made
with the required precision. As a result, numerical methods have an impor-
tant role to play.

Before proceeding to the discussion of numerical methods for these flows,
it is useful to introduce a classification scheme for the approaches to predict-
ing turbulent flows. According to Bardina et al. (1980) there are six cate-
gories, most of which can be divided in sub-categories.

e The first involves the use of correlations such as ones that give the friction
factor as a function of the Reynolds number or the Nusselt number of
heat transfer as a function of the Reynolds and Prandtl numbers. This
method, which is usually taught in introductory courses, is very useful but
is limited to simple types of flows, ones that can be characterized by just
a few parameters. As its use does not require the use of a computer, we
shall say no more about it here.

e The second uses integral equations which can be derived from the equations
of motion by integrating over one or more coordinates. Usually this reduces
the problem to one or more ordinary differential equations which are easily
solved. The methods applied to these equations are those for ordinary
differential equations which are discussed in Chap. 6.

e The third is based on equations obtained by averaging the equations of
motion over time (if the flow is statistically steady), over a coordinate in
which the mean flow does not vary, or over an ensemble of realizations
(an imagined set of flows in which all controllable factors are kept fixed).
This approach is called one-point closure and leads to a set of partial dif-
ferential equations called the Reynolds-averaged Navier-Stokes (or RANS)
equations. As we shall see later, these equations do not form a closed set so
this method requires the introduction of approximations (turbulence mod-
els). Some of the turbulence models in common use today and a discussion
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of the problems associated with the numerical solution of equations con-
taining turbulence models are presented later in this chapter.

o The fourth type of method is called two-point closure. It uses equations
for the correlation of the velocity components at two spatial points or,
more often, the Fourier transform of these equations. As these methods
are rarely used except for homogeneous turbulence, we shall not consider
them further.

e The fifth is large eddy simulation (LES) and solves for the largest scale
motions of the flow while approximating or modeling only the small scale
motions. It can be regarded as a kind of compromise between one point
closure methods (see above) and direct numerical simulation (see below).

e Finally, there is direct numerical simulation (DNS) in which the Navier-
Stokes equations are solved for all of the motions in a turbulent flow.

As one progresses down this list, more and more of the turbulent motions
are computed and fewer are approximated by models. This makes the meth-
ods close to the bottom more exact but the computation time is increased
considerably.

All of the methods described in this chapter require the solution of some
form of the conservation equations for mass, momentum, energy, or chem-
ical species. The major difficulty is that turbulent flows contain variations
on a much wider range of length and time scales than laminar flows. So,
even though they are similar to the laminar flow equations, the equations
describing turbulent flows are usually much more difficult and expensive to
solve.

9.2 Direct Numerical Simulation (DNS)

The most accurate approach to turbulence simulation is to solve the Navier-
Stokes equations without averaging or approximation other than numerical
discretizations whose errors can be estimated and controlled. It is also the
simplest approach from the conceptual point of view. In such simulations, all
of the motions contained in the flow are resolved. The computed flow field
obtained is equivalent to a single realization of a flow or a short-duration lab-
oratory experiment; as noted above, this approach is called direct numerical
simulation (DNS).

In a direct numerical simulation, in order to assure that all of the signifi-
cant, structures of the turbulence have been captured, the domain on which
the computation is performed must be at least as large as the physical do-
main to be considered or the largest turbulent eddy. A useful measure of
the latter scale is the integral scale (L) of the turbulence which is essentially
the distance over which the fluctuating component of the velocity remains
correlated. Thus, each linear dimension of the domain must be at least a few
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times the integral scale. A valid simulation must also capture all of the ki-
netic energy dissipation. This occurs on the smallest scales, the ones on which
viscosity is active, so the size of the grid must be no larger than a viscously
determined scale, called the Kolmogoroff scale, 7.

For homogeneous isotropic turbulence, the simplest type of turbulence,
there is no reason to use anything other than a uniform grid. In this case,
the argument just given shows that number of grid points in each direction
must be at least L/n; it can be shown (Tennekes and Lumley, 1976) that this

ratio is proportional to Rei/ *. Here Rer is a Reynolds number based on the

magnitude of the velocity fluctuations and the integral scale; this parameter
is typically about 0.01 times the macroscopic Reynolds number engineers use
to describe a flow. Since this number of points must be employed in each of
the three coordinate directions, and the time step is related to the grid size,
the cost of a simulation scales as Re? . In terms of the Reynolds number that
an engineer would use to describe the flow, the scaling of the cost may be
somewhat different.

Since the number of grid points that can be used in a computation is
limited by the processing speed and memory of the machine on which it
is carried out, direct numerical simulation is possible only for flows at rela-
tively low Reynolds numbers and in geometrically simple domains. On present
machines, it is possible to make direct numerical simulations of homoge-
neous flows at turbulent Reynolds numbers up to a few hundred. As noted in
the preceding paragraph, this corresponds to overall flow Reynolds numbers
about two orders of magnitude larger and allows DNS to reach the low end
of the range of Reynolds numbers of engineering interest, making it a useful
method in some cases. In other cases, it may be possible to extrapolate from
the Reynolds number of the simulation to the Reynolds number of actual
interest by using some kind of extrapolation. For further details about DNS,
see the recent review by Leonard (1995).

The results of a DNS contain very detailed information about the flow.
This can be very useful but, on the one hand, it is far more information than
any engineer needs and, on the other, DNS is too expensive to be employed
very often and cannot be used as a design tool. One must then ask what
DNS can be used for. With it, we can obtain detailed information about the
velocity, pressure, and any other variable of interest at a large number of grid
points. These results may be regarded as the equivalent of experimental data
and can be used to produce statistical information or to create a ‘numerical
flow visualization.” From the latter, one can learn a great deal about the
coherent structures that exist in the flow. This wealth of information can
then be used to develop a qualitative understanding of the physics of the
flow or to construct a quantitative model, perhaps of the RANS type, which
will allow other, similar, flows to be computed.

We thus conclude that the major role that DNS can fill is as a research
tool. Some examples of kinds of uses to which DNS has been put are:
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Understanding the mechanisms of turbulence production, energy transfer,
and dissipation in turbulent flows;

Simulation of the production of aerodynamic noise;

Understanding the effects of compressibility on turbulence;
Understanding the interaction between combustion and turbulence;
Controlling and reducing drag on a solid surface.

Other applications of DNS have already been made and many others will
undoubtedly be proposed in the future.

The increasing speed of computers has made it possible to carry out DNS
of simple flows at low Reynolds numbers on workstations. By simple flows, we
mean any homogeneous turbulent flow (there are many), channel flow, free
shear flows, and a few others. On large parallel computers, it is now possible
to do DNS with 5123 (~ 1.35 x 10%) or more grid points. The computation
time depends on the machine and the number of grid points used so no useful
estimate can be given. Indeed, one usually chooses the flow to simulate and
the number of grid points to fit the available computer resources. A complete
state of the art simulation generally requires between ten and many hundred
hours. As computers become faster and memories larger, more complex and
higher Reynolds number flows will be simulated.

A wide variety of numerical methods can be employed in direct numerical
simulation and large eddy simulation. Almost any method described in this
book can be used. Because these methods have been presented in- earlier
chapters, we shall not give a lot of detail here. However, there are important
differences between DNS and LES and simulations of steady flows and it is
important that these be discussed.

The most important requirements placed on numerical methods for DNS
and LES arise from the need to produce an accurate realization of a flow that
contains a wide range of length and time scales. Because an accurate time
history is required, techniques designed for steady flows are inefficient and
should not be used without considerable modification. The need for accuracy
requires the time step to be small and, obviously, the time-advance method
must be stable for the time step selected. In most cases, explicit methods
that are stable for the time step demanded by the accuracy requirement are
available so there is no reason to incur the extra expense associated with
implicit methods; most simulations have therefore used explicit time advance
methods. A notable (but not the only) exception occurs near solid surfaces.
The important structures in these regions are of very small size and very fine
grids must be used, especially in the direction normal to the wall. Numerical
instability may arise from the viscous terms involving derivatives normal to
the wall so these are often treated implicitly. In complex geometries, it may
be necessary to treat still more terms implicitly.

The time advance methods most commonly used in DNS and LES are of
second to fourth order accuracy; Runge-Kutta methods have been used most
commonly but others, such as the Adams-Bashforth and leapfrog methods
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have also been used. In general, for a given order of accuracy, Runge-Kutta
methods require more computation per time step. Despite this, they are pre-
ferred because, for a given time step, the errors they produce are much smaller
than those of the competing methods. Thus, in practice, they allow a larger
time step for the same accuracy and this more than compensates for the-in-
creased amount of computation. The Crank-Nicolson method is often applied
to the terms that must be treated implicitly.

A difficulty with time-advance methods is that ones of accuracy higher
than first order require storage of data at more than one time step (including
intermediate time steps) and, as the amount of data contained in a single
velocity field is large, the demand for storage may exceed what is available
even with the large memories in modern computers. This puts a premium on
designing and using methods which demand relatively little storage. As an
example of a method of this kind, Leonard and Wray (1982) presented a third
order Runge-Kutta method which requires less storage than the standard
Runge-Kutta method of that accuracy.

A further issue of importance in DNS is the need to handle a wide range
of length scales; this requires a change in the way one thinks about discretiza-
tion methods. The most common descriptor of the accuracy of a spatial dis-
cretization method is its order, a number that describes the rate at which the
discretization error decreases when the grid size is reduced. Some discussion
of why this is not the appropriate measure of quality was given in Chap. 3;
we shall amplify on it here. Again, it is useful to think in terms of the Fourier
decomposition of the velocity field. We showed (Sect. 3.10) that, on a uniform
grid, the velocity field can be represented in terms of a Fourier series:

u(z) = Y (k) e** (9.1)

The highest wavenumber k that can be resolved on a grid of size Az is 7/ Az,
so we consider only 0 < k < w/Az. The series (9.1) can be differentiated term
by term. The exact derivative of e'*%, ike'#® is replaced by ikege'*® where keg
is the effective wavenumber defined in Sect. 3.10 when a finite difference
approximation is used. The plot of kg given ih Fig. 3.6 shows that central
differences are accurate only for k < w/2Az, the first half of the wavenumber
range of interest.

The difficulty for turbulent flow simulations that is not encountered in
steady flow simulations is that turbulence spectra (the distributions of tur-
bulence energy over wavenumber or inverse length scale) are usually large
over a significant part of the wavenumber range {0, m/Az} so the order of the
method, which measures the accuracy of the approximation at low wavenum-
ber, is no longer a good measure of accuracy. A better measure of error is:
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J = keryB® 0k
€ = , (9.2)
/ k*E(k) dk

where E(k) is the energy spectrum of the turbulence which, in one dimension,
is a(k)a*(k)/2, where the asterisk indicates complex conjugation. Similar
expressions can be given for the second derivative. Using the measure (9.2),
Cain et al. (1981) found that, for a spectrum typical of isotropic turbulence,
a fourth order central difference method had half the error of a second order
method, a much larger fraction than one would anticipate.

It is also useful to reiterate the importance of using an energy-conservative
spatial differencing scheme. Many methods, including all upwind ones, are dis-
sipative; that is, they include as part of the truncation error a diffusive term
that dissipates energy in a time-dependent calculation. Their use has been
advocated because the dissipation they introduce often stabilizes numerical
methods. When these methods are applied to steady problems, the dissipative
error may not be too large in the steady-state result (although we showed in
earlier chapters that these errors may be quite large). When these methods
are used in DNS, the dissipation produced is often much greater than that due
to the physical viscosity and the results obtained may have little connection
to the physics of the problem. For a discussion of energy conservation, see
section 7.1.3. Also, as demonstrated in Chap. 7, energy conservation prevents
the velocity from growing without bound and thus maintains stability.

The methods and step sizes in time and space need to be related. The
errors made in the spatial and temporal discretizations should be as nearly
equal as possible i.e. they should be balanced. This is not possible point-
by-point and for every time step but, if this condition is not satisfied in an
average sense, one is using too fine a step in one of the independent variables
and the simulation could be made at lower cost with little loss of accuracy.

Accuracy is difficult to measure in DNS and LES. The reason is inherent
in the nature of turbulent flows. A small change in the initial state of a
turbulent flow is amplified exponentially in time and, after a relatively short
time, the perturbed flow hardly resembles the original one. This is a physical
phenomenon that has nothing to do with the numerical method. Since any
numerical method introduces some error and any change in the method or the
parameters will change that error, direct comparison of two solutions with
the goal of determining the error is not possible. Instead, one can repeat the
simulation with a different grid (which should differ considerably from the
original one) and statistical properties of the two solutions can be compared.
From the difference, an estimate of the error can be found. Unfortunately, it
is difficult to know how the error changes with the grid size, so this type of
estimate can only be an approximation. A simpler approach, which has been
used by most people who compute simple turbulent flows, is to look at the
spectrum of the turbulence. If the energy in the smallest scales is sufficiently



272 9. Turbulent Flows

smaller than that at the peak in the energy spectrum, it is probably safe to
assume that the flow has been well resolved.

The accuracy requirement makes use of spectral methods common in DNS
and LES. These methods were described briefly earlier, in Sect. 3.10. In
essence, they use Fourier series as a means of computing derivatives. The
use of Fourier transforms is feasible only because the fast Fourier transform
algorithm (Cooley and Tukey, 1965) reduces the cost of computing a Fourier
transform to nlog, n operations. Unfortunately, this algorithm is applicable
only for equi-spaced grids and a few other special cases. A number of special-
ized methods of this kind have been developed for solving the Navier-Stokes
equations; the reader interested in more details of spectral methods is referred
to the book by Canuto et al. (1987).

We briefly mention one special type of method. Rather than directly ap-
proximating the Navier-Stokes equations, one could multiply them by a se-
quence of ‘test functions’ and integrate over the entire domain and then find
a solution that satisfies the resulting equations. This procedure is similar
to one used in deriving finite element methods. Functions which satisfy this
form of the equations are known as ‘weak solutions’. One can represent the
solution of the Navier-Stokes equations as a series of vector functions, each of
which has zero divergence. This choice removes the pressure from the integral
form of the equations, thereby reducing the number of dependent variables
that need to be computed and stored. The set of dependent variables can be
further reduced by noting that, if a function has zero divergence, its third
component can be computed from the other two. The result is that only
two sets of dependent variables need to be computed, reducing the memory
requirements by half. As these methods are quite specialized and their de-
velopment requires considerable space, they are not given in detail here; the
interested reader is referred to the paper by Moser et al. (1983).

Another difficulty in DNS is that of generating initial and boundary condi-
tions. The former must contain all the details of the initial three-dimensional
velocity field. Since coherent structures are an important component of the
flow, it is difficult to construct such a field. Furthermore, the effects of initial
conditions are typically ‘remembered’ by the flow for a considerable time,
usually a few ‘eddy-turnover times.” An eddy-turnover time is essentially the
integral time scale of the flow or the integral length scale divided by the root-
mean-square velocity (g). Thus the initial conditions have a significant effect
on the results. Frequently, the first part of a simulation that is started with
artificially constructed initial conditions must be discarded because it is not
faithful to the physics. The question of how to select initial conditions is as
much art as science and no unique prescriptions applicable to all flows can
be given but we shall give some examples.

For homogeneous isotropic turbulence, the simplest case, periodic bound-
ary conditions are used and it is easiest to construct the initial conditions
in Fourier space i.e., we need to create @;(k). This is done by giving the
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spectrum which sets the amplitude of the Fourier mode i.e., |i;(k)|. The re-
quirement of continuity k - 4;(k) places another restriction on that mode.
This leaves just one random number to be chosen to completely define 4,(k);
it is usually a phase angle. The simulation must then be run for about two
eddy turnover times before it can be considered to represent real turbulence.

The best initial conditions for other flows are obtained from the results
of previous simulations. For example, for homogeneous turbulence subjected
to strain, the best initial conditions are taken from developed isotropic tur-
bulence. For channel flow, the best choice has been found to be a mixture of
the mean velocity, instability modes (which have nearly the right structure),
and noise. For a curved channel, one can take the results of a fully developed
plane channel flow as the initial condition.

Similar considerations apply to the boundary conditions where the flow
enters the domain (inflow conditions). The correct conditions must contain
the complete velocity field on a plane (or other surface) of a turbulent flow
at each time step which is difficult to construct. As an example, one way this
can be done for the developing flow in a curved channel is to use results for
the flow in a plane channel. A simulation of a plane channel flow is made
(either simultaneously or in advance) and the velocity components on one
plane normal to the main flow direction provide the inflow condition for the
curved channel.

As already noted, for flows which do not vary (in the statistical sense) in
a given direction, one can use periodic boundary conditions in that direction.
These are easy to use, fit especially well with spectral methods, and provide
conditions at the nominal boundary that are as realistic as possible.

Outflow boundaries are less difficult to handle. One possibility is to use
extrapolation conditions which require the derivatives of all quantities in the
direction normal to the boundary be zero:

o9 _

5 = 0, (9.3)

where ¢ is any of the dependent variables. This condition is often used in
steady flows but is not satisfactory in unsteady flows. For the latter, it is bet-
ter to replace this condition by an unsteady convective condition. A number
of such conditions have been tried but one that appears to work well is also
one of the simplest:

0¢ 0¢

B +U pel 0, (9.4)
where U is a velocity that is independent of location on the outflow surface
and is chosen so that overall conservation is maintained i.e., it is the velocity
required to make the outflow mass flux equal to the incoming mass flux. This
condition appears to avoid the problem caused by pressure perturbations
being reflected off the outflow boundary back to the interior of the domain.
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On solid walls, no slip boundary conditions, which have been described in
Chaps. 7 and 8 may be used. One must bear in mind that at boundaries of
this type the turbulence tends to develop small but very important structures
(‘streaks’) that require very fine grids especially in the direction normal the
wall and, to a lesser extent, in the spanwise direction (the direction normal
to both the wall and the principal flow direction).

Symmetry boundary conditions, which are often used in RANS computa-
tions to reduce the size of the domain are usually not applicable in DNS or
LES because, although the mean flow may be symmetric about some partic-
ular plane, the instantaneous flow is not and important physical effects may
be removed by application of conditions of this type. Symmetry conditions
have, however, been used to represent free surfaces.

Despite all attempts to make the initial and boundary conditions as re-
alistic as possible, a simulation must be run for some time before the flow
develops all of the correct characteristics of the physical flow. This situation
derives from the physics of turbulent flows so there is little one can do to
speed up the process; one possibility is mentioned below. As we have noted,
the eddy turnover time scale is the key time scale of the problem. In many
flows, it can be related to a time scale characteristic of the flow as a whole
i.e. a mean flow time scale. However, in separated flows, there are regions
that communicate with the remainder of the flow on a very long time scale
and the development process can be very slow, making very long run times
necessary.

The best way to ascertain that flow development is complete is to monitor
some quantity, preferably one that is sensitive to the parts of the flow that
are slow to develop; the choice depends on the flow being simulated. As an
example, one might measure a spatial average of the skin friction in the
recirculating region of a separated flow as a function of time. Initially, there
is usually a systematic increase or decrease of the monitored quantity; when
the flow becomes fully developed, the value will show statistical fluctuations
with time. After this point, statistical average results (for example, for the
mean velocity or its fluctuations) may be obtained by averaging over time
and/or a statistically homogeneous coordinate in the flow. In so doing it is
important to remember that, because turbulence is not purely random, the
sample size is not the same as the number of points used in the averaging
process. A conservative estimate is to assume that each volume of diameter
equal to the integral scale (and each time period equal to the integral time
scale) represents only a single sample.

The development process can be sped up by using a coarse grid initially.
When the flow is developed on that grid, the fine grid can be introduced. If
this is done, some waiting is still necessary for the flow to develop on the fine
grid but it may be smaller than the time that would have been required had
the fine grid been used throughout the simulation.
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9.2.1 Example: Spatial Decay of Grid Turbulence

As an illustrative example of what can be accomplished with DNS, we shall
take a deceptively simple flow, the flow created by an oscillating grid in a
large body of quiescent fluid. The oscillation of the grid creates turbulence
which decreases in intensity with distance from the grid. This process of
energy transfer away from the oscillating grid is usually called turbulent dif-
fusion; energy transfer by turbulence plays an important role in many flows
so its prediction is important but it is surprisingly difficult to model. Briggs
et al. (1996} made simulations of this flow and obtained good agreement with
the experimentally determined rate of decay of the turbulence with distance
from the grid. The energy decays approximately as 7 with 2 < a < 3;
determination of the exponent a is difficult both experimentally and compu-
tationally because the rapid decay does not provide a large enough region to
allow one to compute its value accurately.

Distance from
the source

l

Fig. 9.1. Contours of the kinetic energy on a plane in the flow created by an
oscillating grid in a quiescent fluid; the grid is located at the top of the figure.
Energetic packets of fluid transfer energy away from the grid region. From Briggs
et al. (1996)

Using visualizations based on simulations of this flow, Briggs et al. (1996)
showed that the dominant mechanism of turbulent diffusion in this flow is
the movement of energetic parcels of fluid through the undisturbed fluid.
This may seem a simple and logical explanation but is contrary to earlier
proposals. Figure 9.1 shows the contours of the kinetic energy on one plane
in this flow. One sees that the large energetic regions are of approximately
the same size throughout the flow but there are fewer of them far from the
grid. The reasons are that those parcels that propagate parallel to the grid do
not move very far in the direction normal to the grid and that small ‘blobs’
of energetic fluid are quickly destroyed by the action of viscous diffusion.

The results were used to test turbulence models. A typical example of
such a test is shown in Fig. 9.2 in which the profile to the flux of turbulent
kinetic energy is given and compared with the predictions of some commonly
used turbulence models. It is clear that the models do not work very well even
in a flow as simple as this one. The probable reason is that the models were
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designed to deal with turbulence generated by shear which has a character
very different from that created by the oscillating grid.

...... Mellor-Yamada
----------- Hanjalic-Launder, 1
— Hanjalic-Launder, 2
DNS

0.0 0.5 1.0 1.5 2.0 215 310 3.5
Distance from grid

Fig. 9.2. The profile of the flux of turbulent kinetic energy, q, compared with the
predictions of some commonly used turbulence models (Mellor and Yamada, 1982;
Hanjali¢ and Launder, 1976 and 1980); from Briggs et al. (1996)

The simulation used a code that was designed for the simulation of homo-
geneous turbulence (Rogallo, 1981). Periodic boundary conditions are applied
in all three directions; this implies that there is actually a periodic array of
grids but this causes no problem so long as the distance between neighbor-
ing grids is sufficiently greater than the distance required for the turbulence
to decay. The code uses the Fourier spectral method with periodic bound-
ary conditions in all three spatial directions and a third-order Runge-Kutta
method in time.

These results illustrate some important features of DNS. The method
allows one to compute statistical quantities that can be compared with ex-
perimental data to validate the results. It also allows computation of quan-
tities that are difficult to measure in the laboratory and that are useful in
assessing models. At the same time, the method yields visualizations of the
flow that can provide insight into the physics of the turbulence. It is rarely
possible to obtain both statistical data and visualizations of the same flow
in a laboratory. As the example above shows, the combination can be very
valuable.

In direct numerical simulations, one can control the external variables in
a manner that is difficult or impossible to implement in the laboratory. There
have been several cases in which the results produced by DNS disagreed with
those of experiments and the former turned out to be more nearly correct.
One example is the distribution of turbulent statistics near a wall in a chan-
nel flow; the results of Kim et al. (1987) proved to be more accurate than
the experiments when both were repeated with more care. An earlier exam-
ple was provided by Bardina et al. (1980) which explained some apparently
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anomalous results in an experiment on the effects of rotation on isotropic
turbulence.

DNS makes it possible to investigate certain effects much more accurately
than would be otherwise possible. It is also possible to try methods of control
that cannot be realized experimentally. The point of doing so is to provide
insight into the physics of the flow and thus to indicate possibilities that may
be realizable (and to point the direction toward realizable approaches). An
example is the study of drag reduction and control on a flat plate conducted
by Choi et al. (1994). They showed that, by using controlled blowing and
suction through the wall (or a pulsating wall surface), the turbulent drag of
a flat plate could be reduced by 30%. Bewley (1994) used optimal control
methods to demonstrate the possibility that the flow could be forced to re-
laminarize at low Reynolds number and that reduction in the skin friction is
possible at high Reynolds numbers.

9.3 Large Eddy Simulation (LES)

As we have noted, turbulent flows contain a wide range of length and time
scales; the range of eddy sizes that might be found in a flow is shown schemat-
ically on the left-hand side of Fig. 9.3. The right-hand side of this figure shows
the time history of a typical velocity component at a point in the flow; the
range of scales on which fluctuations occur is obvious.

LES DNS u

¢

Fig. 9.3. Schematic representation of turbulent motion (left) and the time depen-
dence of a velocity component at a point (right)

The large scale motions are generally much more energetic than the small
scale ones; their size and strength make them by far the most effective trans-
porters of the conserved properties. The small scales are usually much weaker
and provide little transport of these properties. A simulation which treats the
large eddies more exactly than the small ones may make sense; large eddy
simulation is just such an approach. Large eddy simulations are three di-
mensional, time dependent and expensive but much less costly than DNS
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of the same flow. In general, because it is more accurate, DNS is the pre-
ferred method whenever it is feasible. LES is the preferred method for flows
in which the Reynolds number is too high or the geometry is too complex to
allow application of DNS.

It is essential to define the quantities to be computed precisely. We need
a velocity field that contains only the large scale components of the total
field. This is best produced by filtering the velocity field (Leonard, 1974); in
this approach, the large or resolved scale field, the one to be simulated, is
essentially a local average of the complete field. We shall use one-dimensional
notation; the generalization to three dimensions is straightforward. The fil-
tered velocity is defined by:

m(z) = / Gz, ui(a') do’ | (9.5)

where G(z,z'), the filter kernel, is a localized function. Filter kernels which
have been applied in LES include a Gaussian, a box filter (a simple local av-
erage) and a cutoff (a filter which eliminates all Fourier coefficients belonging
to wavenumbers above a cutoff). Every filter has a length scale associated
with it, A. Roughly, eddies of size larger than A are large eddies while those
smaller than A are small eddies, the ones that need to be modeled.

When the Navier-Stokes equations with constant density (incompressible
flow) are filtered, one obtains a set of equations very similar to the RANS
equations:

O(pu;)  O(pugy) op 0 ou;  0u;
=4 7 . 9.6
ot t 8.’1)]' 8.’1)1; t 8(1)]' - 8.’1)]' t 8.’1)2 ( )
Since the continuity equation is linear, filtering does not change it:
o(pu;)
=0. 9.7
5z, ~° (9.7)
It is important to note that, since
;Ui o (9-8)

and the quantity on the left side of this inequality is not easily computed,
a modeling approximation for the difference between the two sides of this
inequality,

S
T‘L’ J

= —p(u_iuj — UG ) (9.9)
must be introduced. In the context of LES, 7j; is called the subgrid-scale
Reynolds stress. The name ‘stress’ stems from the way in which it is treated
rather than its physical nature. It is in fact the large scale momentum flux
caused by the action of the small or unresolved scales. The name ‘subgrid

scale’ is also somewhat of a misnomer. The width of the filter, A, need not
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have anything to do with the grid size, h, other than the obvious condition
that A > h. Some authors do make such a connection and their nomenclature
has stuck. The models used to approximate the SGS Reynolds stress (9.9)
are called subgrid-scale (SGS) or subfilter-scale models.

The subgrid-scale Reynolds stress contains local averages of the small scale
field so models for it should be based on the local velocity field or, perhaps, on
the past history of the local fluid. The latter can be accomplished by using
a model that solves partial differential equations to obtain the parameters
needed to determine the SGS Reynolds stress.

9.3.1 Smagorinsky and Related Models

The earliest and most commonly used subgrid scale model is one proposed
by Smagorinsky (1963). It is an eddy viscosity model. All such models are
based on the notion that the principal effects of the SGS Reynolds stress
are increased transport and dissipation. As these phenomena are due to the
viscosity in laminar flows, it seems reasonable to assume that a reasonable
model might be:
1 27 . 77 - —
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where g is the eddy viscosity and gi]‘ is the strain rate of the large scale
or resolved field. This model can be derived in a number of ways including
heuristic methods, for example, by equating production and dissipation of
subgrid-scale turbulent kinetic energy, or via turbulence theories. Similar
models are also often used in connection with the RANS equations; see below.

The form of the subgrid-scale eddy viscosity can be derived by dimensional
arguments and is:

m = C3pA?|S|, (9.11)

where Cs is a model parameter to be determined, A is the filter length scale,
and |S| = (5:;S:;)"/2. This form for the eddy viscosity can be derived in
a number of ways. Theories provide estimates of the parameter. Most of
these methods apply only to isotropic turbulence for which they all agree
that Cs =~ 0.2. Unfortunately, Cs is not constant; it may be a function of
Reynolds number and/or other non-dimensional parameters and may take
different values in different flows.

The Smagorinsky model, although relatively successful, is not without
problems. To simulate channel low with it, several modifications are required.
The value of the parameter Cs in the bulk of the flow has to be reduced from
0.2 to approximately 0.065, which reduces the eddy viscosity by almost an
order of magnitude. Changes of this magnitude are required in all shear flows.
In regions close to the surfaces of the channel, the value has to be reduced
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even further. One successful recipe is to borrow the van Driest damping that
has long been used to reduce the near-wall eddy viscosity in RANS models:

Cs = Cso (1 - e_"+/A+)2 , (9.12)

where nt is the distance from the wall in viscous wall units (nt = nu, /v,
where u, is the shear velocity, u, = \/7w/p, and 7, is the shear stress at the
wall) and A% is a constant usually taken to be approximately 25. Although
this modification produces the desired results, it is difficult to justify in the
context of LES. An SGS model should depend solely on the local properties
of the flow and it is difficult to see how the distance from the wall qualifies
in this regard.

The purpose of the van Driest damping is to reduce the subgrid-scale eddy
viscosity near the wall; y; ~ n® in this region and models should respect this
property. An alternative is a subgrid-scale model which reduces the eddy
viscosity when the subgrid-scale Reynolds number, |S|A%/v, becomes small.
Models of this kind were suggested by McMillan and Ferziger (1980) and by
Yakhot and QOrszag (1986); the latter used renormalization group theory to
derive their model.

A further problem is that, near a wall, the flow structure is very anisotropic.
Regions of low and high speed fluid (streaks) are created; they are ap-
proximately 1000 viscous units long and 30-50 viscous units wide in both
the spanwise and normal directions. Resolving the streaks requires a highly
anisotropic grid and the choice of length scale, A, to use in the SGS model is
not obvious. The usual choice is (A; A A3)1/3 but (A% + A3 + A2)/? is pos-
sible and others are easily constructed; here 4; is the width associated with
the filter in the ith coordinate direction. It is possible that, with a proper
choice of length scale, the damping (9.12) would become unnecessary. A fuller
discussion of this issue can be found in Piomelli et al. (1989).

In a stably-stratified fluid, it is necessary to reduce the Smagorinsky pa-
rameter. Stratification is common in geophysical flows; the usual practice
is to make the parameter a function of a Richardson or Froude number.
These are related non-dimensional parameters that represent the relative im-
portance of stratification and shear. Similar effects occur in flows in which
rotation and/or curvature play significant roles. In the past, the Richardson
number was based on the properties of the mean flow field. Recent work indi-
cates that it is better to base the parameter on properties of the turbulence
than on the applied forces; Ivey and Imberger (1991) suggested using the
turbulent Froude number.

Thus there are many difficulties with the Smagorinsky model. If we wish
to simulate more complex and/or higher Reynolds number flows, it may be
important to have a more accurate model. Indeed, detailed tests based on
results derived from DNS data, show that the Smagorinsky model is quite
poor in representing the details of the subgrid-scale stresses.
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The smallest scales that are resolved in a simulation are similar in many
ways to the still smaller scales that are treated via the model. This idea leads
to an alternative subgrid-scale model, the scale-similarity model (Bardina et
al., 1980). The principal argument is that the important interactions between
the resolved and unresolved scales involve the smallest eddies of the former
and the largest eddies of the latter i.e., eddies that are a little larger or a
little smaller than the length scale, A, associated with the filter. Arguments
based on this concept lead to the following model:

5 = —p(W; — Uik;) (9.13)
where the double overline indicates a quantity that has been filtered twice.
We have given a more recent version of this model that is Galilean invariant;
the original one was not. A constant could be included on the right hand
side but it has been found to be very close to unity. This model correlates
very well with the actual SGS Reynolds stress, but dissipates hardly any
energy and cannot serve as a ‘stand alone’ SGS model. It transfers energy
from the smallest resolved scales to larger scales, which is useful. To correct
for the lack of dissipation, it is necessary to combine the Smagorinsky and
scale similarity models to produce a ‘mixed’ model. This model improves the
quality of simulations. For further details, see Bardina et al. (1980).

9.3.2 Dynamic Models

The concept underlying the scale similarity model, namely that the smallest
resolved scale motions can provide information that can be used to model
the largest subgrid scale motions, can be taken a step further, leading to the
dynamic model or procedure (Germano et al., 1990). This procedure is based
on the assumption that one of the models described above is an acceptable
representation of the small scales.

One way to understand the concept behind this method is the following.
Suppose we do a large eddy simulation on a fine grid. Let us, for the sake
of argument, regard the results as an exact representation of the velocity
field. We can then use the following procedure to estimate the subgrid-scale
model parameter. The velocity field @; can be filtered (using a filter broader
than the one used in the LES itself) to obtain a very large scale field T;;
an effective subgrid-scale field (which actually contains the smallest scales of
the simulation being done) can be obtained by subtraction of the two fields.
By multiplication and filtering, one can compute the subgrid-scale Reynolds
stress tensor produced by that field. From the large-scale field, one can also
construct the estimate of this Reynolds stress that the model would produce.
By comparing these two, we can test the quality of the model in a direct
way and, even more importantly, compute the value of the model parameter.
This can be done at every spatial point and every time step. The value of
the parameter obtained can then be applied to the subgrid scale model of the
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large eddy simulation itself. In this way, a kind of self-consistent subgrid-scale
model is produced.

Thus the essential ingredient in this model is the assumption that the
same model with the same value of the parameter can be applied to both
the actual LES and LES done on a coarser scale. A secondary assumption
that is made more for convenience than necessity is that the parameter is
independent of location. Finally, we note that the dynamic procedure gives
the model parameter as the ratio of two quantities.

The actual procedure of Germano et al. is a bit more formal than what
we have just described but the result is the same; the model parameter is
computed, at every spatial grid point and every time step, directly from
results of the LES itself. We shall not present the formal procedure here. The
interested reader is referred to the original paper of Germano et al. (1990) or
the review by Ferziger (1995).

This process should be called a procedure rather than a model as any
subgrid-scale model can be used as a basis for it. A number of variations
are possible. One particularly significant improvement to the original model
proposed by Germano et al. (1990) is the least squares procedure suggested
by Lilly (1991). The dynamic procedure with the Smagorinsky model as its
basis removes many of the difficulties described earlier:

¢ In shear flows, the Smagorinsky model parameter needs to be much smaller
than in isotropic turbulence. The dynamic model produces this change
automatically.

e The model parameter has to be reduced even further near walls. The dy-
namic model automatically decreases the parameter in the correct manner
near the wall.

e The definition of the length scale for anisotropic grids or filters is unclear.
This issue becomes moot with the dynamic model because the model com-
pensates for any error in the length scale by changing the value of the
parameter.

Although it is a considerable improvement on the Smagorinsky model,
there are problems with the dynamic procedure. The model parameter it
produces is a rapidly varying function of the spatial coordinates and time so
the eddy viscosity takes large values of both signs. Although a negative eddy
viscosity has been suggested as a way of representing energy transfer from
the small scales to the large ones (this process is called backscatter), if the
eddy viscosity is negative over too large a spatial region or for too long a
time, numerical instability can and does occur. Ong cure is to set any eddy
viscosity uy < —p, the molecular viscosity, equal to —u; this is called clipping.
Another useful alternative is to employ averaging in space or time. For details,
the reader is referred to the papers cited above. These techniques produce
further improvements but are still not completely satisfactory; finding a more
robust model for the subgrid scale is the subject of current research.
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The arguments on which the dynamic model is based are not restricted
to the Smagorinsky model. One could, instead, use the mixed Smagorinsky—
scale-similarity model. The mixed model has been used by Zang et al. (1993)
and Shah and Ferziger (1995) with considerable success.

Finally, we note that other versions of the dynamic procedure have been
devised to overcome the difficulties with the simplest form of the model.
One of the better of these is the Lagrangian dynamic model of Meneveau
et al (1996). In this model, the terms in the numerator and denominator of
the expression for the model parameter terms of the dynamic procedure are
averaged along flow trajectories. This is done by solving partial differential
equations for these quantities.

The boundary conditions and numerical methods used for LES are very
similar to those used in DNS. The most important difference is that, when
LES is applied to flows in complex geometries, some numerical methods (for
example, spectral methods) become difficult to apply. In these cases, one is
forced to use finite difference, finite volume, or finite element methods. In
principle, any method described earlier in this book could be used, but it is
important to bear in mind that structures that challenge the resolution of the
grid may exist almost anywhere in the flow. For this reason, it is important
to employ methods of the highest accuracy possible.

In LES, it is possible to use wall functions of the kind used in RANS
modeling (see next section). This approach has been shown to work well for
attached flows (see Piomelli et al., 1989) but, despite considerable effort, it
is not yet known whether this approach can be made to work for separated
flows.

It is also important to note that, because LES and DNS require large
amounts of computer time, the programs used to make these kinds of simu-
lations are usually special-purpose codes i.e., they are written for a specific
geometry and contain special programming elements designed to obtain the
highest performance on a particular machine. For this reason, the discretiza-
tion methods employed in DNS and LES are often particular to the problem
being solved.

We should also note that, because the unsteadiness that is inherent to
turbulence often affects a flow in profound ways, it is not uncommon to find
significant differences in the predictions of the two methods. This introduces
the possibility of using a crude form of LES as a tool for determining the
gross features of a flow. Indeed, a few industrial applications of this kind
have been made.

9.3.3 Deconvolution Models

The most recent approach to SGS modeling is based on the deconvolution
concept. These models attempt to estimate the unfiltered velocity from the
filtered one. They then use this estimated velocity to compute the subgrid
Reynolds stress from its definition (9.9). These models share with the dynamic
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procedure the advantage of not requiring any externally provided information
such as model constants.

We shall describe a simple version of the model in order to give a flavor of
the approach. The unfiltered velocity on the right side of Eq. (9.5) is expanded
in a Taylor series about the point . Truncating the series (usually keeping
only terms up to second order) gives a differential equation for the unfiltered
velocity in terms of the filtered velocity. We give the result for the simplest
case in which the filter kernel is symmetric about the point z. We have:

A2
Ti(z) = ui(z) + §V2ui , (9.14)

which is the desired differential equation. Shah (1998) used an approximate
inversion of this equation that consisted of using approximate factoriza-
tion (see Chap. 5) and performing just one iteration. He computed several
flows with the resulting model, obtaining very good results. Katapodes et
al. (2000) used a simpler approximate inversion which consists of simply it-
erating Eq. (9.14) to get:

A?
ui(z) = u;(z) — ﬁv%i . (9.15)

They also preesented more complex versions of the model.

A still more complex, but more accurate, approach to the deconvolution
modeling concept has been presented by Domaradzki and coworkers (Do-
maradzki and Saiki, 1997).

This ends the presentation of subgrid-scale models. At present, reason-
able subgrid-scale models exist and they generally produce good simulations.
However, the models are not sufficiently precise to be trusted to simulate a
flow that has never been treated before. There is need for further improve-
ments and there is a considerable amount of ongoing research.

9.3.4 Example: Flow Over a Wall-Mounted Cube

As an example of the method, we shall use the flow over a cube mounted on
one wall of a channel. The geometry is shown in Fig. 9.4. For the simulation
shown, which was made by Shah and Ferziger (1997), the Reynolds number
based on the maximum velocity at the inflow and the cube height is 3200.
The inflow is fully developed channel flow and was taken from a separate
simulation of that flow, the outlet condition was the convective condition
given above. Periodic boundary conditions were used in the spanwise direction
and no-slip conditions at all wall surfaces.

The LES used a grid of 240 x 128 x 128 control volumes with second order
accuracy. The time advancement method was of the fractional step type.
The convective terms were treated explicitly by a third order Runge-Kutta
method in time while the viscous terms were treated implicitly. In particular,
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Figure 9.5 gives the streamlines of the time-averaged flow in the region
close to the wall; a great deal of information about the flow can be discerned
from this plot. The incoming flow does not separate in the traditional sense
but reaches a stagnation or saddle point (marked by A on the figure) and
goes around the body. Some of the flow further above the lower wall hits the
front face of the cube; about half of it flows downwards and creates the region
of reversed flow in front of the body. As the flow down the front face of the
cube nears the lower wall, there is a secondary separation and a reattachment
line (marked by B in the figure) just ahead of the cube. On each side of the
cube, one finds a region of converging streamlines (marked as C) and another
of diverging streamlines (marked D); these are the traces of the horseshoe
vortex (about which more is said below). Behind the body one finds two
areas of swirling flow (marked E) which are the footprints of an arch vortex.
Finally, there is a reattachment line (marked H) further downstream of the
body.

1.00 2.00 3.00 4.00 5.00 6.00 7.00

Fig. 9.6. The streamlines in the vertical center plane of the flow over a wall-
mounted cube; from Shah and Ferziger (1997)

Figure 9.6 shows the streamlines of the time-averaged flow in the cen-
ter plane of the flow. Many of the features described above are clearly seen
including the separation zone in the upstream corner (F), which is also the
head of the horseshoe vortex, the head of the arch vortex (G), the reattach-
ment line (H), and the recirculation zone (I) above the body which does not
reattach on the upper surface.

Finally, Fig. 9.7 gives a projection of the streamlines of the time-averaged
flow on a plane parallel to the back face of the cube just downstream of the
body. The horseshoe vortex (J) is clearly seen as are smaller corner vortices.

It is important to note that the instantaneous flow looks very different
than the time-averaged flow. For example, the arch vortex does not exist in
an instantaneous sense; there are vortices in the flow but they are almost
always asymmetric on the two sides of the cube. Indeed, the near-symmetry
of Fig. 9.5 is an indication that the averaging time is (almost) long enough.
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1.00 2.00 3.00 4.00 5.00 6.00

Fig. 9.7. The projection of streamlines of the flow over a wall-mounted cube onto
a plane parallel to the back face, 0.1 step hight behind the cube; from Shah and
Ferziger (1997)

It is clear from these results that an LES (or DNS for simpler flows)
provides a great deal of information about a flow. Performance of such a
simulation has more in common with doing an experiment than it does to the
types of simulations described below and the qualitative information gained
from it can be extremely valuable.

9.3.5 Example: Stratified Homogeneous Shear Flow

As another example of the method, we shall treat a homogeneous flow. In
particular, because it displays many of the properties that are generic to flows
containing both shear and stratification, stratified homogeneous shear flow is
a good example of what can be done with this kind of simulation.

In homogeneous flows, the state of the turbulence is independent (in a
statistical sense) of location within the flow domain. Since the properties of
most of these flows change with time, the word ‘statistical’ is best interpreted
in terms of an ensemble average. We imagine a set of flows in which all of
the variables that can be controlled (energy, spectrum, boundary conditions,
shear rate, stratification, etc.) are identical but the initial conditions are
generated with the aid of a random number generator, each having a different
seed. Thus each flow realization differs considerably in detail from the others.
An ensemble average is an average over a large set of such flows. In practice,
one cannot generate a very large ensemble of flows so we settle for an average
over the physical domain which is permitted in homogeneous flows because
every point is equivalent to every other.

By stratification, we mean that there is a density gradient in the direction
of the gravity vector. If the stratification is unstable (heavy fluid over light),
the instability will cause rapid mixing and the density gradient will be elimi-
nated. We therefore consider the case of stable stratification (light fluid over
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heavy). The effects of stratification are felt through a body force term in the
equation for the vertical component of momentum. In many flows, density
differences are small and the density may be assumed to be constant except
in the body force term. This is called the Boussinesq approximation.

For a flow to be homogeneous, every point in the flow must ‘feel’ the same
imposed strain or, more generally, the same mean velocity derivative. This
means that the mean velocity must be linear in all of the coordinates. Even
with this restriction, there are many possibilities. Among these are plane
strain for which the mean velocity is:

Uh=Iz,, Uy=-Tzy, Us=0. (9.16)

For incompressible flow, the U;/8z; = 0 by continuity. The choice of which
velocity component is set to zero is arbitrary. The case that we shall consider
is pure shear for which:

U1 :S.’L‘g, U2=-‘0, U3=0. (917)
The final example we shall give is pure rotation:
U1 = Q.’I)Q , U2 = —Q.’L‘l B U3 =0. (918)

It is assumed that the mean flow is imposed and maintained. Physically, this is
not possible in an exact sense as the turbulence will modify the mean velocity
profile. A good approximation to homogeneous shear flow is achieved in the
laboratory by creating a flow with a linear velocity profile which includes
a uniform velocity component. The distance down the wind tunnel divided
by the mean velocity plays the role of the time. Turbulence is added to the
flow by passing it through a grid. If the mean flow is maintained, one can
decompose the velocity into the mean and turbulence:

Note that this is not the decomposition used in Reynolds-averaged mod-
eling of turbulent flows. When this decomposition is substituted into the
Navier-Stokes equations (including the buoyant force term) and advantage
is taken of the fact that the mean flow is a solution of those equations, the
result is:

ou,

E

Ouy + o U, +u Ou; _ 9, Loy + Vazu; : (9.20)
Oz; 7 Oz Tox; P pOxm oz?

The second term on the left hand side of this equation represents the
advection of the turbulence by the mean flow. The third term is the one
responsible for increasing the energy of the turbulence by vortex stretching
and is often called the production term although it is more than that. In this
term, the derivative QU;/0z; = Ij; is constant. The fourth term represents
the nonlinear interaction of turbulence with itself. The first term on the right

hand side is the buoyancy term; g is the acceleration of gravity, p is the
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mean density (assumed constant) and p is the deviation from that mean and
includes both the mean stratification and the fluctuations.

We would like to impose periodic boundary conditions on the flow because
this will permit use of spectral methods. To do this, we must be sure that the
domain is sufficiently large that the velocity is not correlated across it. If this
is not the case, the simulation would simply represent the behavior of a single
eddy, not real turbulence. We also note that periodic conditions imply that
the parts of the fluid on opposite ends of the domain are in contact. That
makes sense only if they move at the same speed, which is not the case when
a mean velocity field is imposed. To allow periodic conditions, it is necessary
to do the simulation in a coordinate system moving with the mean velocity;
the best method for achieving this was presented by Rogallo (1981) and is
briefly described below.

The equations are first transformed to a coordinate system that moves
with the mean flow. The terms that represent advection by the mean flow
are thereby eliminated. Then the production term can be formally integrated
and also eliminated. Finally, since a spectral method is used to solve the
equations and the viscous term takes a simple form in Fourier space, it too
can be integrated. The remaining equations are then advanced in time using
a Runge-Kutta method.

For a stratified flow to be homogeneous, the mean density must also have
a linear profile but, because gravity acts in only one direction, the density
profile must be:

p=S,zs+p, (9.21)

where the constant mean density has been removed. It can be treated in
exactly the same way that the mean velocity profile was and the resulting
equations can be integrated in the same way.

The presence of both stable stratification and shear means that there are
two competing forces. The shear increases the intensity of the turbulence
while stratification reduces it by converting some of its kinetic energy into
potential energy. The interplay of the two forces is what makes this flow
interesting. The parameter traditionally used to characterize their relative
importance is the gradient Richardson number:

990, (3UN
ng_paz/<8z) ; (9.22)

which represents the relative strengths of the two forces. It can be shown that
Rig, determines whether a laminar flow is stable or not (Drazin and Reid,
1981). This parameter can also be interpreted as the ratio of the squares of
the time scales associated with the two forces. The time scale associated with
the stratification is the inverse of the Brunt—V4isala frequency,

1/2
N = (3@> , (9.23)
p Oz
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while the one associated with the shear is the inverse of the shear rate S:

Y

S—E'

(9.24)

When the stratification is weak (low Ri,), the shear increases the en-
ergy of the turbulence exponentially in time. If the stratification is increased
while the shear rate is kept fixed (increasing Ri,), the rate of growth of the
turbulence is decreased (see Fig. 9.8). Eventually, a value of Ri, is reached
at which the turbulence neither grows nor decays (Ri, = 0.16 in Fig. 9.8).
At still higher stratification, the turbulence decays and eventually dies out.
Before the turbulence dies, there are oscillations in the energy that represent

cyclic transfer between kinetic energy and potential energy; these oscillations
occur at the Brunt-Viisila frequency.
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Fig. 9.8. The turbulence energy in stratified homogeneous shear flow as a function
of time at various values of the gradient Richardson number

The stationary Richardson number, Ri; (Holt et al, 1993) appears to
depend only on the Reynolds number. It is important that the latter be
measured at the stationary state. This is shown in Fig 9.9. It appears that,
at very high Reynolds number, the Ri, takes on a value of 0.25.

Another interesting property of these flows is that the shear rate made
dimensionless with turbulence quantities, S* = SL/q (where L is the inte-
gral scale of the turbulence and q = (2k)!/2, where k is the kinetic energy
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Fig. 9.9. The stationary Richardson number as a function of the Reynolds number

of the turbulence), tends to become asymptotically constant with a value
of approximately 6 in homogeneous stratified sheared turbulence, at high
Reynolds numbers and for Richardson numbers below the stationary value.
For unstratified flow, this relation can be derived by assuming that produc-
tion and dissipation are equal and the fact that, in shear flows, the structure
function b;3 = ww/q® tends to take a constant value of approximately 0.15.
These properties can be extremely useful in the construction of parameteri-
zations for these flows.

It also turns out that the gradient Richardson number is not a particu-
larly good parameter for describing the local state of a stratified flow. The
turbulent Froude number, defined by

F’I‘t (925)

q
NL
performs better in this regard. It is therefore important to note that the tur-
bulent Froude number also tends asymptotically to a constant in stationary
stratified sheared homogeneous turbulence. This actually follows from the
facts that S* becomes constant and that the gradient Richardson number is
constant. This was demonstrated recently by Shih et al. (2000) and should
be useful in modeling. These authors also showed that the asymptotic value
of Fr; is very close to the one which maximizes the mixing efficiency, the
fraction of the kinetic energy that is converted to potential energy.
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9.4 RANS Models

Engineers are normally interested in knowing just a few quantitative proper-
ties of a turbulent flow, such as the average forces on a body (and, perhaps,
its distribution), the degree of mixing between two incoming streams of fluid,
or the amount of a substance that has reacted. Using the methods described
above to compute these quantities is, to say the least, overkill. These methods
should only be used as a last resort, when nothing else succeeds or, occasion-
ally, to check the validity of a model of the type described in this section which
produces less information. Because it is based on ideas proposed by Osborne
Reynolds over a century ago, it is called the Reynolds-averaged method.

In Reynolds-averaged approaches to turbulence, all of the unsteadiness
is averaged out i.e. all unsteadiness is regarded as part of the turbulence.
On averaging, the non-linearity of the Navier-Stokes equations gives rise to
terms that must be modeled, just as they did earlier. The complexity of
turbulence, which was discussed briefly above, makes it unlikely that any
single Reynolds-averaged model will be able to represent all turbulent flows so
turbulence models should be regarded as engineering approximations rather
than scientific laws.

9.4.1 Reynolds-Averaged Navier-Stokes (RANS) Equations

In a statistically steady flow, every variable can be written as the sum of a
time-averaged value and a fluctuation about that value:

Bwi,) = Blai) + &' w1, 1) (9.26)
where

- 1 77T

3w = Jim 5 [ olaityat. (9.27)

Here ¢ is the time and T is the averaging interval. This interval must be large
compared to the typical time scale of the fluctuations; thus, we are interested
in the limit of T — oo, see Fig. 9.10. If T is large enough, ¢ does not depend
on the time at which the averaging is started.

If the flow is unsteady, time averaging cannot be used and it must be
replaced by ensemble averaging. This concept was discussed earlier and is
illustrated in Fig. 9.10:

_ 1 Y
Glait) = lim — > @ity (9.28)
n=1

where N is the number of members of the ensemble and must be large enough
to eliminate the effects of the fluctuations. This type of averaging can be
applied to any flow. We use the term Reynolds averaging to refer to any of
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3

t

Fig. 9.10. Time averaging for a statistically steady flow (left) and ensemble aver-
aging for an unsteady flow (right)

these averaging processes; applying it to the Navier-Stokes equations yields
the Reynolds-averaged Navier-Stokes (RANS) equations.

From Eq. (9.27), it follows that ¢’ = 0. Thus, averaging any linear term
in the conservation equations simply gives the identical term for the averaged
quantity. From a quadratic nonlinear term we get two terms, the product of
the average and a covariance:

wé = (W+u)(@+¢)=1d+uld . (9.29)

The last term is zero only if the two quantities are uncorrelated; this is rarely
the case in turbulent flows and, as a result, the conservation equations contain
terms such as pujuj, called the Reynolds stresses, and pu;¢', known as the
turbulent scelar fluz, among others. These cannot be represented uniquely in
terms of the mean quantities.

The averaged continuity and momentum equations can, for incompress-
ible flows without body forces, be written in tensor notation and Cartesian
coordinates as:

0pts) _ (9.30)
61?1'
d(pu;) 9 (__ T op 07
—- s ul) = — - 31
ot + azj (puzuj + puz“’]) or; + (91?]‘ ) (9.31)
where the 7;; are the mean viscous stress tensor components:
ou; (9"121'
Ti; = — ) . 9.32

Finally the equation for the mean of a scalar quantity can be written:

6(P$) 0 — —~T _i jﬁ
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The presence of the Reynolds stresses and turbulent scalar flux in the
conservation equations means that the latter are not closed, that is to say,
they contain more variables than there are equations. Closure requires use of
some approximations, which usually take the form of prescribing the Reynolds
stress tensor and turbulent scalar fluxes in terms of the mean quantities.

It is possible to derive equations for the higher order correlations e.g., for
the Reynolds stress tensor, but these contain still more (and higher-order)
unknown correlations that require modeling approximations. These equations
will be introduced later but the important point is that it is impossible to
derive a closed set of exact equations. The approximations introduced are
called turbulence models in engineering or parametrizations in the geosciences.

9.4.2 Simple Turbulence Models and their Application

To close the equations we must introduce a turbulence model. To see what
a reasonable model might be, we note, as we did in the preceding section,
that in laminar flows, energy dissipation and transport of mass, momentum,
and energy normal to the streamlines are mediated by the viscosity, so it
is natural to assume that the effect of turbulence can be represented as an
increased viscosity. This leads to the eddy-viscosity model for the Reynolds
stress:

S ou; Ouj 2
_ Tol — et J _ = .. 4
puzu] l‘l‘t (81:] + 8Ii > 3 p(s‘L]k ’ (93 )

and the eddy-diffusion model for a scalar:

o _ 0%

In Eq. (9.34), k is the turbulent kinetic energy:

1
= = (uhul, + ujul +ulul) . (9.36)

1
U Uy 2

i
The last term in Eq. (9.34) is required to guarantee that, when both sides of
the equation are contracted (the two indices are set equal and summed over),
the equation remains correct. Although the eddy-viscosity hypothesis is not
correct in detail, it is easy to implement and, with careful application, can
provide reasonably good results for many flows.

In the simplest description, turbulence can be characterized by two pa-
rameters: its kinetic energy, k, or a velocity, g = v2k, and a length scale, L.
Dimensional analysis shows that:

pe = CupglL (9.37)

where C), is a dimensionless constant whose value will be given later.
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In the simplest practical models, mixing-length models, k is determined
from the mean velocity field using the approximation ¢ = Ldu/8y and L
is a prescribed function of the coordinates. Accurate prescription of L is
possible for simple flows but not for separated or highly three-dimensional
flows. Mixing-length models can therefore be applied only to relatively simple
flows; they are also known as zero-equation models.

The difficulty in prescribing the turbulence quantities suggests that one
might use partial differential equations to compute them. Since a minimum
description of turbulence requires at least a velocity scale and a length scale,
a model which derives the needed quantities from two such equations is a
logical choice. In almost all such models, an equation for the turbulent kinetic
energy, k, determines the velocity scale. The exact equation for this quantity
is not difficult to derive:

mm+mmﬁpng( %) 8(p,” )

= — U; Uy + PU;
ot Oz; Jz; Ma:cj Or; Ui P

—— 0; 3 8u Ou}
pu; Jax T

(9.38)

For details of the derivation of this equation, see the book by Wilcox (1993).
The terms on the left-hand side of this equation and the first term on the
right-hand side need no modeling. The last term represents the product of
the density p and the dissipation, ¢, the rate at which turbulence energy is
irreversibly converted into internal energy. We shall give an equation for the
dissipation below.

The second term on the right-hand side represents turbulent diffusion of
kinetic energy (which is actually transport of velocity fluctuations by the
fluctuations themselves); it is almost always modeled by use of a gradient-
diffusion assumption:

s k
(;U'JU,U, +plu9) ~ 5; (;9:6] (9.39)
where p is the eddy viscosity defined above and oy is a turbulent Prandtl
number whose value is approximately unity. In more complex models, that
will not be described here, the eddy viscosity becomes a tensor.

The third term of the right-hand side of Eq. (9.38) represents the rate of
production of turbulent kinetic energy by the mean flow, a transfer of kinetic
energy from the mean flow to the turbulence. If we use the eddy-viscosity
hypothesis (9.34) to estimate the Reynolds stress, it can be written:

—— Ou; ~ Jt; N du; \ Ou;
oz ; dz; ' Ox; ) Ox;

Py = —pugu (9.40)
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and, as the right hand side of this equation can be calculated from quanti-
ties that will be computed, the development of the turbulent kinetic energy
equation is complete.

As mentioned above, another equation is required to determine the length
scale of the turbulence. The choice is not obvious and a number of equations
have been used for this purpose. The most popular one is based on the obser-
vations that the dissipation is needed in the energy equation and, in so-called
equilibrium turbulent flows, i.e., ones in which the rates of production and
destruction of turbulence are in near-balance, the dissipation, €, and k and
L are related by:

k3/2
e (9.41)
This idea is based on the fact, that at high Reynolds numbers, there is a
cascade of energy from the largest scales to the smallest ones and that the
energy transferred to the small scales is dissipated. Equation (9.41) is based
on an estimate of the inertial energy transfer.

Equation (9.41) allows one to use an equation for the dissipation as a
means of obtaining both £ and L. No constant is used in Eq. (9.41) because
the constant can be combined with others in the complete model.

Although an exact equation for the dissipation can be derived from the
Navier-Stokes equations, the modeling applied to it is so severe that it is best
to regard the entire equation as a model. We shall therefore make no attempt
to derive it. In its most commonly used form, this equation is:

O(pe) = O(puye) € e 0 [ Oe )
——+ L =Cg P~ —-pCor—+— | —=— ] . 9.42
a Oz YRR PGe2 K Oz; \ oc Oz; (9.42)
In this model, the eddy viscosity is expressed as:
kZ
= pCuVkL = PCu— - (9.43)

The model based on Egs. (9.38) and (9.42) is called the k—& model and has
been widely used. This model contains five parameters; the most commonly
used values for them are:

C, =009 C.=144; Coy=192 0, =10; o0.=13. (9.44)

The implementation of this model in a computer code is relatively simple
to carry out. The RANS equations have the same form as the laminar equa-
tions provided the molecular viscosity, u, is replaced by the effective viscosity
tteft = p+ py. The most important difference is that two new partial differen-
tial equations need to be solved. This would cause no problem but, because
the time scales associated with the turbulence are much shorter than those
connected with the mean flow, the equations with the k-& model (or any
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other turbulence model) are much stiffer than the laminar equations. Thus,
there is little difficulty in the discretization of these equations other than
one to be discussed below but the solution method has to take the increased
stiffness into account.

For this reason, in the numerical solution procedure, one first performs an
outer iteration of the momentum and pressure correction equations in which
the value of the eddy viscosity is based on the values of k and ¢ at the end of
the preceding iteration. After this has been completed, an outer iteration of
the turbulent kinetic energy and dissipation equations is made. Since these
equations are highly nonlinear, they have to be linearized prior to iteration.
After completing an iteration of the turbulence model equations, we are ready
to recalculate the eddy viscosity and start a new outer iteration.

The stiffness is the reason why the mean flow and turbulence equations
are treated separately in the method just described; coupling the equations
would make convergence very difficult to obtain. Too large a time step (or its
equivalent in an iterative method) can lead to negative values of either k of ¢
and numerical instability. It is therefore necessary to use under-relaxation in
the iterative method for these quantities; the values of the under-relaxation
parameters are similar to the ones used in the momentum equations (typically
0.6-0.8).

The profiles of the turbulent kinetic energy and its dissipation are typi-
cally much more peaked near the wall than the mean velocity profile. These
peaks are difficult to capture; one should probably use a finer grid for the
turbulence quantities than for the mean flow but this is rarely done. If the
same grid is used for all quantities, the resolution may be insufficient for the
turbulence quantities and there is a chance that the solution will contain wig-
gles which can lead to negative values of these quantities in this region. This
possibility can be avoided by locally blending the central difference scheme
with a low order upwind discretization for the convective terms in the k and
€ equations. This, of course, decreases the accuracy to which these quantities
are calculated but is necessary if the same grid is used for all quantities.

Boundary conditions are needed for the model equations. These are gen-
erally similar to the conditions applied to any scalar equation. However, at
solid walls there may be significant differences. One possibility is to solve the
equations accurately right up to the wall. Then the conditions to be applied
are the standard no-slip ones for the velocity. In the k- model, it is appro-
priate to set k = 0 at the wall but the dissipation is not zero there; instead
one can use the condition:

32k) <akl/2 > ?
e=v| <= or £=2w . (9.45)
<3"2 wall on / an

When this is done, it is generally necessary to modify the model itself near
the wall. It is argued that the effects that need to be modeled are due to the
low Reynolds number of the turbulence near the wall and a number of low
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Reynolds number modifications of the k- model have been proposed; see
Patel et al. (1985) and Wilcox (1993) for a review of some of these modifica-
tions.
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Fig. 9.11. The turbulent boundary layer: velocity profile as a function of distance
normal to the wall (dashed lines are from corresponding equations, solid line rep-
resents experimental data)

At high Reynolds number, the viscous sublayer of a boundary layer is so
thin that it is difficult to use enough grid points to resolve it. This problem
can be avoided by using wall functions, which rely on the existence of a
logarithmic region in the velocity profile; the velocity profile of a turbulent
boundary layer is shown in Fig. 9.11. In the logarithmic layer, the profile is:

1
ut=2L = 2 lnn*t 4+ B, (9.46)
K
where T; is the mean velocity parallel to the wall u, is the shear velocity
given by ur = /|7w|/p. Here, 7, is the shear stress at the wall, & is called
the von Karman constant (x = 0.41), B is an empirical constant related to
the thickness of the viscous sublayer (B = 5.5 in a boundary layer over a
smooth flat plate; for rough walls, smaller values for B are obtained) and n*
is the dimensionless distance from the wall:
nt =2 (9.47)
7
It is often assumed that the flow is in local equilibrium, meaning the
production and dissipation of turbulence are nearly equal. If this is the case,
one can show:

ur = CL/ Wk . (9.48)

From this equation and Eq. (9.46) we can derive an expression connecting
the velocity at the first grid point above the wall and the wall shear stress:
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_ 2 /4 Ut
Tw = pu; = pC, n\/Eln(nﬂLE)’ (9.49)

where E = e*B. The control volume nearest the wall has one face that lies
on the wall. In the equation for the momentum parallel to the wall for that
control volume, the shear stress at the wall is required. It may be taken from
Eq. (9.49) i.e. this boundary condition allows us to obtain a closed set of
equations.

When these ‘law of the wall’ type boundary conditions are used, the dif-
fusive flux of k through the wall is usually taken to be zero, yielding the
boundary condition that the normal derivative of & is zero.

The dissipation boundary condition is derived by assuming equilibrium i.e.
balance of production and dissipation in the near wall region. The production
in wall region is computed from:

Pk ~ Tw ?—v—t

5 (9.50)

which is an approximation to the dominant term of Eq. (9.40) that is valid
near the wall; it is valid because the shear stress is nearly constant in this
region. We need the dissipation (= production) at the midpoint of the control
volume closest to the wall. The velocity derivative required can be derived
from the logarithmic velocity profile (9.46):

_ 1/4 54—
(Qv_‘> -~ Ur = M , (9.51)
on/)p KNP Knp

which, together with Eq. (9.49), provides a second equation relating the wall
shear stress and the velocity at the first grid point. From these two equations,
both quantities may be computed.

When the above approximations are used, the equation for € is not applied
in the control volume next to the wall; instead, ¢ is at the CV center set equal
to:

O34 3/2
ep = +—F | (9.52)
Knp
This expression is derived from Eq. (9.41) using the approximation for the
length scale
K

63/—411 ~25n, (9.53)

which is valid near wall under the conditions used to derive the ‘law of the
wall’ model.

It should be noted that the above boundary conditions are valid when the
first grid point is within the logarithmic region, i.e. when n}f > 30. Problems
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arise in separated flows; within the recirculation region and, especially, in the
separation and reattachment regions, the above conditions are not satisfied.
Usually the possibility that wall functions may not be valid in these regions is
ignored and they are applied everywhere. However, if the above conditions are
violated over a large portion of the solid boundaries, serious modeling errors
may result. Low Reynolds number versions of the models (or an alternative
model) should be used in these regions but their accuracy has not yet been
demonstrated for a wide range of flows.

At computational boundaries far from walls, the following boundary con-
ditions can be used:

o If the surrounding flow is turbulent;:

_0Ok _0e e?
U‘a—x = —€ U'a_x - - 52? . (954)
e In a free stream:
kz
k=~0; e=0; pt:Cup?zO. (9.55)

At an inflow boundary, k and ¢ are often not known; if they are available,
the known values should, of course, be used. If k is not known, it is usually
taken to have some small value, say 10~*%2. The value of € should be selected
so that the length scale derived from Eq. (9.41) is approximately one-tenth
of the width of a shear layer or the domain size. If the Reynolds stresses
and mean velocities are measured at inlet, £ can be estimated using the
assumption of local equilibrium; this leads to (in a cross-section = const.):

€~ —Uﬁa—u : (9.56)
By

A number of other two-equation models have been proposed; we shall
describe just one of them. An obvious idea is to write a differential equation
for the length scale itself; this has been tried but has not met with much
success. The second most commonly used model is the k—w model, originally
introduced by Saffman but popularized by Wilcox. In this model, use is made
of an equation for an inverse time scale w; this quantity can be given various
interpretations but they are not very enlightening so they are omitted here.
The k-w model uses the turbulent kinetic energy equation (9.38) but it has

to be modified a bit:

O(pk) | Olpujk) . .. K M) Ow
T 92, =P, —pf8 kw+(9m‘j p+az az; | - (9.57)

Nearly everything that was said about it above applies here. The w equation
as given by Wilcox (1998)is:
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O(pw)  O(puw) = w 5 0 e\ Ow
ot + 817j —-akPk—pBw +517—j u+0'_* ‘(’E . (958)

w

In this model, the eddy viscosity is expressed as:

k
o=p- (9.59)

The coefficients that go into this model are a bit more complicated than those
in the k—e model. They are:

a:g, B=0075, B"=009, of=0"=2, c=pwk.(9.60)

The numerical behavior of this model is similar to that of the k- model.
The reader interested in knowing more about these models is referred
to the book by Wilcox (1998). A popular variant of this model has been
introduced by Menter (1993) and is used a lot in aerodynamics.
An example of the application of the k— model is given below.

9.4.3 The v2f Model

As should be clear from the above, a major problem with turbulence models
is that the proper conditions to be applied near walls are not known. The
difficulty comes from the fact that we simply do not know how some of these
quantities behave near a wall. Also, the variation of the turbulent kinetic
energy and, even more so, the dissipation are very rapid near a wall. This
suggests that it is not a good idea to try to prescribe conditions on these
quantities in that region. Another major issue is that, despite years of effort
devoted to it, the development of ‘low Reynolds number’ models designed to
treat the near-wall region, relatively little success has been achieved.

Durbin (1991) suggested that the problem is not that the Reynolds num-
ber is low near a wall (although viscous effects are certainly important). The
impermeability condition (zero normal velocity) is far more important. This
suggests that instead of trying to find low Reynolds number models, one
should work with a quantity that becomes very small near a wall due to the
impermeability condition. Such a quantity is the normal velocity (usually
called v by engineers) and its fluctuations (v'?) and so Durbin introduced
an equation for this quantity. It was found that the model also required a
damping function f, hence the name v?-f (or v2f) model. It appears to give
improved results at essentially the same cost as the k—¢ model.

There are similar problems with Reynolds stress models near walls, espe-
cially with the pressure-strain terms. To remedy this problem, Durbin sug-
gested the use of elliptic relaxation. The idea is the following. Suppose that
¢i; is some quantity that is modeled. Let the value predicted by a model be
¢;;- Instead of accepting this value as the one to be used in the model, we
solve the equation:
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1
V3¢ — ﬁ@j = ¢y, (9.61)
where L is the length scale of the turbulence, usually taken to be L ~ k%/2 /€.
The introduction of this procedure appears to relieve a great deal of the
difficulty. More details on these and other similar models can be found in a

recent, book by Durbin and Pettersson Reif (2001).

9.4.4 Example: Flow Around an Engine Valve

We briefly present an application of the k—¢ model. Valves in internal combus-
tion engines are usually optimized by performing experiments on steady flows
at several valve lifts. Lilek et al. (1991) reported the results of a combined
numerical and experimental investigation of one particular geometry. The ge-
ometry was axi-symmetric, so a 2D solution method using a boundary-fitted
grid was used. Second-order CDS discretization with three systematically
refined grids were used; the finest had 216 x 64 CVs. By comparing the
solutions on these three grids, the discretization error was estimated to be
around 3% on the finest grid. Figure 9.12 shows portion of the second level
grid.
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Fig. 9.12. Section of a grid (level two) used to calculate flow around a valve (from
Lilek et al., 1991)

The computations were done before the experimental data was available;
only the mass flow rate was prescribed. The inlet boundary was upstream
of the valve, where the profiles for fully-developed annular flow (calculated
separately for the same mass flow rate) were imposed. This is typical for a case
in which the exact conditions at the inlet are not known. The outlet boundary
was placed in the exhaust pipe, one diameter downstream of the constriction,
see Fig. 9.13. Zero streamwise gradient of all variables was specified there. At
the walls, the wall functions described in the preceding sections were used.
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The calculated streamlines and contours of the turbulent kinetic energy
are shown in Fig. 9.13. A small separation occurs at the valve throat; major
recirculation regions are found behind the valve and in the corner. The high-
speed flow around the valve forms an expanding annular jet which hits the
cylinder wall and flows along it toward the exit, forming a wall jet. Strong
turbulence is created at the edges of this jet and along the walls.

>

Fig. 9.13. Calculated streamlines (above) and contours of the kinetic energy (be-
low) in flow around valve (from Lilek et al., 1991)

In Fig. 9.14 a comparison of calculated and measured axial and radial
mean velocity profiles is shown. The profiles have rather complex shapes, but
they are fairly well predicted; significant discrepancies between measurement
and computation exist in some cross-sections and are probably due to the
inadequacy of the model although this has not been definitively established.

The important question is: can such calculations be used for optimization
in engineering practice? The answer is yes, if care is taken. The predictions
obtained when turbulence models are used are not accurate enough that
they can be accepted quantitatively without testing. However, the trends
may be accurately reproduced so that the design predicted to be the best by
the model also performs the best in tests. Calculations based on turbulence
models can reduce the number of experimental tests required and thus re-
duce the cost and the time required for development of a new product. The
authors know of numerous instances in which industrial corporations have
used computational fluid dynamics in this way. In recent years, computation
has replaced testing to a large degree and has changed the way in which
experimental facilities are used.
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Similar conclusions were drawn by Bertram and Jansen (1994), who used a
commercial CFD code employing the k—¢ turbulence model and wall functions
to calculate drag of three variants of a ship hull model. They found that the
computed drag coefficient was low by about 12% in absolute value; however,
the relative increase or reduction of the drag when the geometry was changed
was predicted with the accuracy of about 2%. The best hull form from the
numerical study was also the best in the towing tank.
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Fig. 9.14. Comparison of calculated and measured axial (left) and radial (right)
velocity profiles in flow around valve (from Lilek et al., 1991)

A word of caution is necessary. New phenomena may appear in the flow
when the geometry is changed and may not be well represented by the tur-
bulence model. In such a case, computational methods may not produce
accurate answers. An example is provided by a modification of the above
example; Lilek et al. (1991) reported poor agreement between predicted and
measured velocity profiles downstream of the valve for halved lift.

9.5 Reynolds Stress Models

Eddy-viscosity models have significant deficiencies; some are consequences of
the eddy-viscosity assumption, Eq. (9.34), not being valid. In two dimensions,
there is always a choice of the eddy viscosity that allows this equation to
give the correct profile of the shear stress (the 1-2 component of 7;;). In
three-dimensional flows, the Reynolds stress and the strain rate may not be
related in such a simple way. This means that the eddy viscosity may no
longer be a scalar; indeed, both measurements and simulations show that it
becomes a tensor quantity. Anisotropic (tensor) models based on using the
k and ¢ equations have been proposed. They are relatively new and not yet
sufficiently tested so we shall not present them here; see Craft et al. (1995)
for an example. Reynolds and colleagues have developed a structure-based
model that is quite promising.
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The most complex models in common use today are Reynolds stress mod-

els which are based on dynamic equations for the Reynolds stress tensor
1

Tij = pwu; itself. These equations can be derived from the Navier-Stokes
equations and are:
87,-1» a(mm) _ aﬂj ou;
et ae s = kg kg, ) T ee - H+
d Oty
a_u( B2k +C”'°> ' 962

The first two terms of the right hand side are the production terms and
require no approximation or modeling.
The other terms are:

ou BU
[[=» (azj + 5 i) , (9.63)

ij

which is often called the pressure-strain term. It redistributes turbulent ki-
netic energy among the components of the Reynolds stress tensor but does
not change the total kinetic energy. The next term is:

ou; au
= , .64
peis #sz sz (9 6 )
which is the dissipation tensor. The last term is:
Cijk = pululul, Lup +pf Puld, + p'u (Szk (9.65)

and is often called the turbulent diffusion.

The dissipation, pressure-strain, and turbulent diffusion terms cannot be
computed exactly in terms of the other terms in the equations and therefore
must be modeled. The simplest and most common model for the dissipation
term treats it as isotropic:

2
Eij = geéij (9.66)

This means that an equation for the dissipation must be solved along with
the Reynolds stress equations. Typically, this is taken to be the dissipation
equations used in the k—¢ model. More sophisticated (and therefore more
complex) models have been suggested.

The simplest model for the pressure-strain term is one that assumes that
the function of this term is to attempt to make the turbulence more isotropic.
This model has not met with great success and a number of proposals for im-
provements have been made in recent years. We shall not describe or discuss
these models here. The interested reader is referred to Launder (1989, 1990),
Hanjali¢ (1994), Launder and Li (1994) and Craft and Launder (1995).
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The turbulent diffusion terms are usually modeled using a gradient diffu-
sion type of approximation. In the simplest case, the diffusivity is assumed to
be isotropic and is simply a multiple of the eddy viscosity used in the models
discussed earlier. In recent years, anisotropic and nonlinear models have been
suggested. Again, no attempt is made to discuss them in detail here.

In three dimensions, Reynolds stress models require the solution of seven
partial differential equations in addition to the equations for the mean flow.
Still more equations are needed when scalar quantities need to be predicted.
These equations are solved in a manner similar to that for the k—¢ equations.
The only additional issue is that when the Reynolds-averaged Navier-Stokes
equations are solved together with a Reynolds stress model they are even
stiffer than those obtained with the k—e equations and even more care is
required in their solution and the calculations usually converge more slowly.

While there is no doubt that Reynolds stress models have greater potential
to represent turbulent flow phenomena more correctly than the two-equation
models (see Hadzié, 1999, for some illustrative examples), their success so far
has been moderate. Excellent results have been obtained for some flows in
which k- models perform badly (e.g., swirling flows, flows with stagnation
points or lines, flows with strong curvature and with separation from curved
surfaces, etc.); however, in some flows their performance is hardly better at
all. There is a lot of current research in this field, and new models are often
proposed. Which model is best for which kind of flow (none is expected to
be good for all flows) is not yet clear, partly due to the fact that in many
attempts to answer this question numerical errors were too large to allow clear
conclusions to be reached (Bradshaw et al., 1994). In many workshops on the
subject of evaluation of turbulence models, the differences between solutions
produced by different authors using supposedly the same model are often
as large if not larger than the differences between the results of the same
author using different models. This is one reason why numerical accuracy
is emphasized in this book; its importance can not be overemphasized and
constant attention to it is required.

9.6 Very Large Eddy Simulation

Researchers have attempted to build LES from the ground up starting with
simple flows and going on to increasingly more complex flows in small steps. In
most of these simulations, a large fraction of the energy of the turbulence was
in the resolved scales and good results were achieved. Success is not assured
for complex flows; this would be the case if sufficient computer resources were
available, but that is not always the case.

The objective of flow simulation is usually to obtain a few selected prop-
erties of the flow at minimum cost. It is wise to use the simplest tool that
will provide the desired results but it is not easy to know in advance how
well each method will work. Clearly, if RANS methods are successful, there
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is no reason to use LES and DNS. On the other hand, when RANS does not
work, it may be a good idea to try LES.

One way to use simulation methods in the near term is to perform LES
and/or DNS of ‘building block’ flows, ones that are structurally similar to
those of actual interest. From the results, RANS models that can be applied
to more complex flows can be validated and improved. RANS computations
can then be the everyday tool. LES need be performed only when there are
significant changes in the design.

There have been large eddy and direct numerical simulations of complex
flows. Some have been spectacularly successful while others met with more
limited success. It is important to determine what kinds of flows LES is
good at and which ones give it problems. Large parts of the roadmap await
completion.

It appears that we have to either use RANS, which is affordable, or LES,
which is more accurate but rather expensive. It is natural to ask whether
there is a method that provides the advantages of both RANS and LES
while avoiding the disadvantages?

Flows over bluff bodies usually produce strong vortices in their wakes.
These vortices produce fluctuating forces on the body in both the streamwise
and spanwise directions whose prediction is very important. These include
flows over buildings (wind engineering), ocean platforms, and vehicles, among
others. If the vortices are sufficiently larger than the bulk of the motions that
constitute the ‘turbulence’, it should be possible to construct a filter that
retains the vortices while removing the smaller-scale motions. In so doing, one
may convert an aperiodic flow into a periodic one, which may have significant
consequences.

A method that accomplishes this is called either very large eddy simula-
tion (VLES) or unsteady RANS. In this method, one uses a RANS model but
computes an unsteady flow. The results often contain periodic vortex shed-
ding. When the results of such a simulation are time-averaged, they often
agree better with experiments than steady RANS computations. While there
are questions about the quantitative accuracy of this approach, it certainly
has some merit, at least for the near future. An example of this approach is
the prediction of buoyancy-driven flows by Kenjeres (1998).

Finally, we mention a method called detached eddy simulation (DES)
which has been suggested for separated flows (Travin et al., 2000). In this
approach, RANS is used for the attached boundary layer and LES is applied
to the free shear flow resulting from separation. This requires some means of
producing the initial conditions for the LES in the separation region and this
is a difficulty. Only a few simulations of this kind have been made to date
and the results are not yet conclusive.
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10.1 Introduction

Compressible flows are important in aerodynamics and turbomachinery
among other applications. In high speed flows around aircraft, the Reynolds
numbers are extremely high and turbulence effects are confined to thin bound-
ary layers. The drag consists of two components, frictional drag due to the
boundary layer and pressure or form drag which is essentially inviscid in na-
ture; there may also be wave drag due to shocks which may be computed
from the inviscid equations provided that care is taken to assure that the
second law of thermodynamics is obeyed. If frictional drag is ignored, these
flows may be computed using the inviscid momentum FEuler equations.

Due to the importance of compressible flow in civilian and military ap-
plications, many methods of solving the equations of compressible flow have
been developed. Among these are special methods for the Euler equations
such as the method of characteristics and numerous methods that may be
capable of extension to viscous flows. Most of these methods are specifically
designed for compressible flows and become very inefficient when applied to
incompressible flows. A number of variations on the reason for this can be
given. One is that, in compressible flows, the continuity equation contains a
time derivative which drops out in the incompressible limit. As a result, the
equations become extremely stiff in the limit of weak compressibility, necessi-
tating the use of very small time steps or implicit methods. Another version of
the argument is that the compressible equations support sound waves which
have a definite speed associated with them. As some information propagates
at the flow velocity, the larger of the two velocities determines the allowable
time step in an explicit method. In the low speed limit, one is forced to take
a time step inversely proportional to the sound speed for any fluid veloc-
ity; this step size may be much smaller than the one a method designed for
incompressible flows might allow.

Discretization and solution of the compressible flow equations can be car-
ried out with methods already described. For example, to solve the time-
dependent equations, one can use any of the time-advance methods discussed
in Chap. 6. As the effect of diffusion is usually small in compressible flows
because the Reynolds numbers are high, there may be discontinuities e.g.
shocks, in the flow. Special methods for producing smooth solutions near
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shocks have been constructed. These include simple upwind methods, flux
blending methods, essentially non-oscillatory (ENO) methods, and total vari-
ation diminishing (TVD) methods. These will not be described here but may
be found in a number of other books, e.g. Anderson et al. (1984) and Hirsch
(1991).

10.2 Pressure-Correction Methods for Arbitrary Mach
Number

To compute compressible flows, it is necessary to solve not only the continuity
and momentum equations but also a conservation equation for the thermal
energy (or one for the total energy) and an equation of state. The latter is a
thermodynamic relation connecting the density, temperature, and pressure.
The energy equation was given in Chap. 1; for incompressible flows it reduces
to a scalar transport equation for the temperature and only the convection
and heat conduction are important. In compressible flows, viscous dissipation
may be a significant heat source and conversion of internal energy to kinetic
energy (and vice versa) by means of flow dilatation is also important. All
terms in the equations must then be retained. In integral form the energy
equation is:

—(2/phd9+/phv-nd5=/kgradT-ndS’+
ot o s

/Q[v gradp + S : gradv | d.Q+—/pd.Q (10.1)

Here h is the enthalpy per unit mass, T is the absolute temperature (K), k is
the thermal conductivity and S is the viscous part of the stress tensor, S =
T + pl. For a perfect gas with constant specific heats, ¢, and c,, the enthalpy
becomes h = ¢, T, allowing the energy equation to be written in terms of the
temperature. Furthermore, under these assumptions, the equation of state is:

p=pRT, (10.2)

where R is the gas constant. The set of equations is completed by adding the
continuity equation:

—(2-/ pdﬂ+/pv-nd5=0 (10.3)
ot Jo s

and the momentum equation:

gt/ pvd9+/p'uv ndS = /T nd5'+/ pbdf? (10.4)
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where T is the stress tensor (including pressure terms) and b represents body
forces per unit mass; see Chap. 1 for a discussion of various forms of these
equations.

It is natural to use the continuity equation to compute the density and to
derive the temperature from the energy equation. This leaves role of deter-
mining the pressure to the equation of state. We thus see that the roles of the
various equations are quite different from the ones they play in incompress-
ible flows. Also note that the nature of the pressure is completely different.
In incompressible flows there is only the dynamic pressure whose absolute
value is of no consequence; for compressible flows, it is the thermodynamic
pressure whose absolute value is of critical importance.

The discretization of the equations can be carried out using the methods
described in Chaps. 3 and 4. The only changes required involve the boundary
conditions (which need to be different because the compressible equations are
hyperbolic in character), the nature and treatment of the coupling between
the density and the pressure, and the fact that shock waves, which are very
thin regions of extremely large change in many of the variables, may exist in
compressible flows. Below we shall extend the pressure-correction method to
flows at arbitrary Mach number, following the approach of Demirdzi¢ et al.
(1993). Similar methods have been published by Issa and Lockwood (1977),
Karki and Patankar (1989) and Van Doormal et al. (1987).

10.2.1 Pressure—Velocity—Density Coupling

As mentioned above, the discretization of the compressible momentum equa-
tions is essentially identical to that employed for the incompressible equa-
tions, see Chaps. 7 and 8, so we shall not repeat it here. We shall limit the
discussion to the implicit pressure-correction method described in Chap. 7,
but the ideas can be applied to other schemes as well.

To obtain the solution at the new time level, several outer iterations are
performed; see Sect. 7.3.4 for a detailed description of the scheme for incom-
pressible flows. If time step is small, only a few outer iterations per time
step are necessary. For steady problems, the time step may be infinite and
the under-relaxation parameter acts like a pseudo-time step. We consider
only the segregated solution method, in which the linearized (around values
from the previous outer iteration) equations for velocity components, pres-
sure correction, temperature and other scalar variables are solved in turn.
While solving for one variable, other variables are treated as known.

The discretized momentum equation for the velocity component u; at at
the mth outer iteration may be written (see Sect. 7.3.4):

iy - B DA a0 (57
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(10.5)
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Here Qm_l represents the source term minus the contribution of the pressure
term; in what follows, the discretization methods applied to this term and
the pressure term are not important. Also, we consider only two time level
schemes and 2D geometry.

The velocities obtained by solving linearized momentum equations and
using ‘old’ pressure and density, Eq. (10.5), do not satisfy the mass conser-
vation equations; that’s why they carry an asterisk. When the mass fluxes
computed from these velocities and the ‘old’ density (denoted here by 7*;
see Eq. (8.12)) are inserted into the discretized continuity equation:

m—1 n
Lij’)ﬂ+r'n;+m;v+m;+m:=Q;n, (10.6)
there results an imbalance ()7, that must be eliminated by a correction
method. For incompressible flows, the mass flux and the velocity are es-
sentially equivalent and the imbalance is corrected by correcting the velocity.
Since velocity correction is proportional to the gradient of the pressure correc-
tion, as was shown in Sect. 7.3.4, an equation for the pressure correction can
be derived and solved. This procedure is not applicable in the compressible
case.

In compressible flows the mass flux depends on both the velocity compo-
nent normal to the cell face, v,, and the (variable) density, p. To correct the
mass flux imbalance, both the density and the velocity must be corrected.
The corrected mass flux on the ‘e’ face of a CV can be expressed as:

mgn = (pm_l + Pl)e(vrrzm + 'U;z)e'se » (10.7)

where p' and v}, represent the density and velocity corrections, respectively.
The mass flux correction is thus:

my = (077 Sup)e + (U Sp')e + (PvpS)e - (10.8)

The underscored term is usually neglected as it is of second order in the
corrections and thus becomes zero more rapidly than the other two terms.
Near convergence, this approximation is certainly permissible; one hopes that
it does not affect the rate of convergence of the method when the solu-
tion is far from converged. This term can be taken into account using a
predictor-corrector approach, as described in Sect. 8.8 for the treatment of
non-orthogonality in the pressure-correction equation.

The first of the two remaining terms in the mass flux correction is identical
to the one obtained for incompressible flows. In Sect. 8.8 it was shown that,
for the colocated variable arrangement, this term can be approximated in the
SIMPLE method as (see Eq. (8.59)):

1 dp’
m160 Yo = = (P LS AN — | | =— 10.
(p Svn)e (p S )e (A;" )e <5n)e ) ( 9)
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where n is the coordinate in the direction of the outward normal to the cell
face. Since the coefficient Ap is the same for any Cartesian velocity compo-
nent, we can take Ap® = A%,

The second term in the mass flux correction, Eq. (10.8), is due to com-
pressibility; it involves the correction to density at the CV face. If the SIM-
PLE method is to be extended to compressible flows, we must also express
the density correction in terms of the pressure correction. This can be done
as follows.

If the temperature is, for one outer iteration, regarded as fixed, we can
write:

I ?B ' '
o <8p>Tp =C,p . (10.10)

The coefficient C, can be determined from the equation of state; for a perfect
gas:

_(0p\ _ 1
C, = (3_19)T = =7 (10.11)

For other gases, the derivative may need to be computed numerically. The
converged solution is independent of this coefficient because all corrections
are then zero; only the intermediate results are affected. It is important that
the connection between the density and pressure corrections be qualitatively
correct and the coeflicient can, of course, influence the convergence rate of
the method.

The second term in the mass flux correction can now be written:

(v Sp')e = (pm—l ) o (10.12)
e

The mass flux correction on the ‘e’ face of a CV is then (see Fig. 7.5):

G ma TN (o0 L (Co
m, = —(p SAQ)9<A1§ \3n e+ o= epe. (10.13)

The value of p’' at the cell face center and the normal component of the
gradient of p' at the cell face center need to be approximated. Any of the
approximations described in Chap. 4 for convective and diffusive terms can
be used for this purpose.

The continuity equation, which must be satisfied by the corrected mass
fluxes and density (see Eq. (10.8)) is:

pp A2

gy + 1y + 1y, + 1y g+ Q=0 (10.14)
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If Eq. (10.10) is used to express pp in terms of pp and the approximation
(10.13) of the mass flux correction is substituted into this equation, we arrive
at an algebraic system of equations for the pressure correction:

Appp + Y Aip = —QF, . (10.15)
!

The coeflicients in this equation depend on the approximations used for the
gradients and cell face values of the pressure correction. The part which stems
from the velocity correction is identical to that for the incompressible case,
see Eqgs. (8.59) and (10.13). The second part depends on the approximation
used for the ‘convective’ term; it corresponds to the convective contribution
to the conservation equations, see Chap. 4 and 7 for examples.

Despite the similarity in appearance to the pressure-correction equation
for incompressible flows, there are important differences. The incompressible
equation is a discretized Poisson equation, i.e. the coefficients represent an
approximation to the Laplacian operator. In the compressible case, there are
contributions that represent the fact that the equation for the pressure in a
compressible flow contains convective and unsteady terms, i.e. it is actually
a convected wave equation. For an incompressible flow, if the mass flux is
prescribed at the boundary, the pressure may be indeterminate to within
an additive constant. The presence of convective terms in the compressible
pressure equation makes the solution unique.

The relative importance of the two terms in the mass flux correction de-
pends on the type of flow. The diffusive term is of order 1/Ma? relative to the
convective term so the Mach number is the determining factor. At low Mach
numbers, the Laplacian term dominates and we recover the Poisson equation.
On the other hand, at high Mach number (highly compressible flow), the con-
vective term dominates, reflecting the hyperbolic nature of the flow. Solving
the pressure-correction equation is then equivalent to solving the continuity
equation for density. Thus the pressure-correction method automatically ad-
justs to the local nature of the flow and the same method can be applied to
the entire flow region.

For the approximation of the Laplacian, central difference approxima-
tions are always applied. On the other hand, for the approximation of con-
vective terms a variety of approximations may be used, just as is the case
for the convective terms in the momentum equations. If higher-order approx-
imations are used, the ‘deferred correction’ method may be used. On the
left-hand side of the equation, the matrix is constructed on the basis of the
first-order upwind approximation while the right-hand side contains the dif-
ference between the higher-order approximation and the first-order upwind
approximation, assuring that the method converges to the solution belonging
to the higher-order approximation; see Sect. 5.6 for details. Also, if the grid
is severely non-orthogonal, deferred correction can be used to simplify the
pressure-correction equation as described in Sect. 8.8.
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These differences are reflected in the pressure-correction equation in an-
other way. Because the equation is no longer a pure Poisson equation, the
central coefficient Ap is not the negative of the sum of the neighbor coefli-
cients. Only when dive = 0, is this property obtained.

10.2.2 Boundary Conditions

For incompressible flows the following boundary conditions are usually ap-
plied:

e Prescribed velocity and temperature on inflow boundaries;

e Zero gradient normal to the boundary for all scalar quantities and the ve-
locity component parallel to the surface on a symmetry plane; zero velocity
normal to such a surface;

e No-slip (zero relative velocity) conditions, zero normal stress and pre-
scribed temperature or heat flux on a solid surface;

o Prescribed gradient (usually zero) of all quantities on an outflow surface.

These boundary conditions also hold for compressible flow and are treated in
the same way as in incompressible flows. However, in compressible flow there
are further boundary conditions:

Prescribed total pressure;

Prescribed total temperature;

Prescribed static pressure on the outflow boundary; !

At a supersonic outflow boundary, zero gradients of all quantities are usu-
ally specified.

The implementation of these boundary conditions is described below.

Prescribed Total Pressure on the Inflow Boundary. The implemen-
tation of these boundary conditions will be described for the west boundary
of a two-dimensional domain with the aid of Fig. 10.1.

One possibility is to note that, for isentropic flow of an ideal gas, the total
pressure is defined as:

_
BN S AN (10.16)
Dy =D 9 ’YRT ’ .

where p is the static pressure and v = ¢,/cy. The flow direction must be
prescribed; it is defined by:

u .
tanf =2, ie wuy=uytanf. (10.17)
Uy
! For incompressible flows the static pressure can also be prescribed on either the
in- or outflow boundary. As the mass flux is a function of the difference in pressure
between the inflow and outflow, the velocity at the inflow boundary cannot be
prescribed if the pressure is prescribed at both in- and outflow boundaries.



316 10. Compressible Flow

These boundary conditions can be implemented by extrapolating the pressure
from the interior of the solution domain to the boundary and then calculating
the velocity there with the aid of Eqs. (10.16) and (10.17). These velocities
can be treated as known within an outer iteration. The temperature can be
prescribed or it can be calculated from the total temperature:

2 2
7—1uz+uy
T, = 14— — 1. .
b T( 5 7RT> (10.18)

This treatment leads to slow convergence of the iterative method as there
are many combinations of pressure and velocity that satisfy Eq. (10.16). One
must implicitly take into consideration the influence of the pressure on the
velocity at the inflow. One way of doing this is described below.

Fig. 10.1. A control volume next to an
inlet boundary with a prescribed flow di-
rection

At the beginning of an outer iteration the velocities at the inflow bound-
ary (side ‘w’ in Fig. 10.1) must be computed from Eqgs. (10.16) and (10.17)
and the prevailing values of the pressure; they will then be treated as fixed
during the outer iteration of the momentum equation. The mass fluxes at
the inflow are taken from the preceding outer iteration; they should satisfy
the continuity equation. From the solution of the momentum equation, (u7**,
u;’“‘), a new mass flux ™" is computed. The ‘prescribed’ velocities on the
inflow boundary are used to compute the mass flux there. In the following
correction step, the mass flux (including its value at the inflow boundary) is
corrected and mass conservation is enforced. The difference between the mass
flux correction on the boundary and that at interior control volume faces is
that, at the boundary, only the velocity and not the density is corrected. The
velocity correction is expressed in terms of the pressure correction and not

its gradient:

Up o = (881:) P = Cubly 5 Uy = Uy tanf. (10.19)

The coefficient C,, is determined with the aid of Eq. (10.16):
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m—1
Cy=— YRT .(10.20
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The correction of the mass flux at the inflow boundary is expressed as:
my = [p" T (ST + SV tan B)lw =
[P Cu(S” + S¥tan B)]  (P),, - (10.21)

The pressure correction at the boundary, mw, is expressed by means of
extrapolation from the center of the neighboring control volume i.e. as a linear
combination of pp and pg. From the above equation we obtain a contribution
to the coefficients Ap and Ag in the pressure correction equation for the
control volume next to the boundary. Since the density is not corrected at the
inflow, there is no convective contribution to the pressure correction equation
there so the coefficient Aw is zero.

After solution of the pressure correction equation, the velocity components
and the mass fluxes in the entire domain including the inflow boundary are
corrected. The corrected mass fluxes satisfy the continuity equation within
the convergence tolerance. These are used to compute the coefficients in all of
the transport equations for the next outer iteration. The convective velocities
at the inflow boundary are computed from Egs. (10.16) and (10.17). The
pressure adjusts itself so that the velocity satisfies the continuity equation
and the boundary condition on the total pressure. The temperature at the
inflow is calculated from Eq. (10.18), and the density from the equation of
state (10.2).

Prescribed Static Pressure. In subsonic flows, the static pressure is usu-
ally prescribed on the outflow boundary. Then the pressure correction on
this boundary is zero (this is used as a boundary condition in the pressure
correction equation) but the mass flux correction is non-zero. The velocity
components are obtained by extrapolation from the neighboring control vol-
ume centers, in a way similar to calculating cell-face velocities on colocated
grids, e.g. for the ‘e’ face and mth outer iteration:

e Ty 1 spmt dpm—1
Ve = (V%) A.Qe<zg>e [<—6n )e——< . )J , (10.22)

where v, is the velocity component in the direction normal to outflow bound-
ary, which is easily obtained from Cartesian components and the known com-
ponents of the unit outward normal vector, v, = v - n. The only difference
from the calculation of the velocity at inner cell faces is that here the overbar
denotes extrapolation from inner cells, rather than interpolation between cell
centers on either side of the face. At high flow speeds, if the outflow boundary
is far downstream, one can usually use the simple upwind scheme, i.e. use
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the cell-center values (node P) in place of values denoted by overbar; linear
extrapolation from W and P is also easily implemented on structured grids.

The mass fluxes constructed from these velocities do not, in general, sat-
isfy the continuity equation and must therefore be corrected. Both the ve-
locity and density need normally to be corrected, as described above. The
velocity correction is:

b 1 op'
Une = —Aﬂe(El (E>e . (10.23)

The convective (density) contribution to the mass flux correction would turn
out to be zero (since p, = (C,p)e, and p}, = 0 since the pressure is prescribed);
however, although pressure is prescribed, the temperature is not fixed (it is
extrapolated from inside), so the density does need to be corrected. The
simplest approximation is the first-order upwind approximation, i.e. taking
p. = pp. The mass flux correction is then given by (10.13). Note, however,
that the density correction is not used to correct the density at the outflow
boundary - it is calculated always from the equation of state once the pressure
and temperature are calculated. The mass flux, on the other hand, has to
be corrected using the above expression, since only the correction used to
derive the pressure-correction equation does ensure mass conservation. Since,
at convergence, all corrections go to zero, the above treatment of density
correction is consistent with other approximations and does not affect the
accuracy of the solution, only the rate of convergence of the iterative scheme.
The coefficient for the boundary node in the pressure-correction equation
contains no contribution from the convective term (due to upwinding) — its
contribution goes to the central coefficient Ap. The pressure derivative in the
normal direction is usually approximated as:

op/ P — Pp
L) T 10.24
<5")e Leg ' (10-24

where Lp g is the distance from cell center P to the outflow cell face E.

The coefficient Ap in the pressure correction equation for the control vol-
ume next to the boundary thus changes compared to those at inner CVs. Due
to the convective term in the pressure-correction equation and the Dirichlet
boundary condition where static pressure is specified, it usually converges
faster than for incompressible flow (where Neumann boundary conditions
are usually applied at all boundaries and the equation is fully elliptic).

Non-Reflecting and Free-Stream Boundaries. At some portions of the
boundary the exact conditions to be applied may not be known, but pressure
waves and/or shocks should be able to pass through the boundary without
reflection. Usually, one-dimensional theory is used to compute the velocity
at boundary, based on the prescribed free-stream pressure and temperature.
If the free-stream is supersonic, shocks may cross the boundary and one
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makes then a distinction between the parallel velocity component, which is
simply extrapolated to the boundary, and the normal component, which is
computed from theory. The latter condition depends on whether compression
or expansion (Prandtl-Meyer) waves hit the boundary. The pressure is usually
extrapolated from the interior to the boundary, while the normal velocity
component is computed using the extrapolated pressure and the prescribed
free-stream Mach number.

There are many schemes designed to produce non-reflecting and free-
stream boundaries. Their derivation relies on the outgoing characteristics
computed via one-dimensional theory; the implementation depends on the
discretization and the solution method. A detailed discussion of these (nu-
merical) boundary conditions can be found in Hirsch (1991).

Supersonic Outflow. If the flow at the outflow is supersonic, all of the
variables at the boundary must be obtained by extrapolation from the inte-
rior, i.e. no boundary information needs to be prescribed. The treatment of
the pressure correction equation is similar to that in the case in which the
static pressure is prescribed. However, since the pressure at the boundary is
not prescribed but is extrapolated, the pressure correction also needs to be
extrapolated — it is not zero as in the above case. Since pf; is expressed as a
linear combination of pi, and pi, (if the pressure gradient can be neglected,
one may also set p = pp), the node E does not occur in the algebraic equa-
tion, so Ag = 0. The coeflicients of nodes appearing in the approximation
of the mass-flux correction through the boundary are different from those in
the interior region.

Some examples of application of the pressure-correction scheme to solving
compressible flow problems are presented below. More examples can be found
in Demirdzié¢ et al. (1993) and in Lilek (1995).

10.2.3 Examples

We present below the results of the solution of Euler equations for a flow
over a circular arc bump. Figure 10.2 shows the geometry and the predicted
isolines of Mach number for the subsonic, transonic and supersonic condi-
tions. The thickness-to-chord ratio of the circular arc is 10% for subsonic
and transonic cases and 4% for the supersonic case. Uniform inlet flow at
Mach numbers Ma = 0.5 (subsonic), 0.675 (transonic) and 1.65 (supersonic)
is specified. Since Euler equations are solved, viscosity is set to zero and slip
conditions are prescribed at walls (flow tangency, as for symmetry surfaces).
These problems were the test cases in a workshop in 1981 (se Rizzi and Vi-
viand, 1981) and are often used to assess the accuracy of numerical schemes.

For subsonic flow, since the geometry is symmetric and the flow is inviscid,
the flow is also symmetric. The total pressure should be constant throughout
the solution domain, which is useful in assessing numerical error. In the tran-
somic case, one shock is obtained on the lower wall. When the oncoming flow
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Fig. 10.2. Predicted Mach number contours for inviscid flow through a channel
with a circular arc bump in lower wall: subsonic flow at Ma;, = 0.5 (above), tran-
sonic flow at Ma;n, = 0.675 (middle), and supersonic flow at Mai, = 1.65 (bottom);
from Lilek (1995)

is supersonic, a shock is generated as the flow reaches the bump. This shock
is reflected by the upper wall; it crosses another shock, which issues from the
end of the bump, where another sudden change in wall slope is encountered.

Figure 10.3 shows distribution of Mach number along lower and upper
walls for the three cases, respectively. The solution error is very small on
the finest grid and subsonic flow; this can be seen from the effects of grid
refinement, as well as from the fact that the Mach numbers at both walls
at the outlet are identical and equal to the inlet value. The total pressure
error was below 0.25%. In the transonic and supersonic cases, grid refine-
ment affects only the steepness of the shock; it is resolved within three grid
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Fig. 10.3. Predicted Mach number profiles along lower and upper wall for inviscid
flow through a channel with a circular arc bump in lower wall: subsonic flow at
Mai, = 0.5 (above; 95% CDS, 5% UDS), transonic flow at Maj, = 0.675 (middle;
90% CDS, 10% UDS), and supersonic flow at Mai, = 1.65 (bottom; 90% CDS, 10%
UDS); from Lilek (1995)

points. If central differencing is used for all terms in all equations, strong os-
cillations at the shocks make solution difficult. In the calculations presented
here, 10% of UDS and 90% of CDS were used to reduce the oscillations; they
are still present, as can be seen from Fig. 10.3, but they are limited to two
grid points near the shock. It is interesting to note that the position of the
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shocks does not change with grid refinement — only the steepness is improved
(this was observed in many applications). The conservation properties of the
FV method used and the dominant role of CDS approximations is probably
responsible for this feature.

In Fig. 10.4 the Mach number contours are shown for supersonic case using
pure CDS for all cell-face quantities. The coefficient Ap would be zero in this
case on a uniform grid; deferred correction approach makes it possible to
obtain the solution for pure CDS even in the presence of shocks and absence
of diffusion terms in the equations. The solution contains more oscillations,
but the shocks are better resolved.

Fig. 10.4. Predicted Mach number contours for supersonic inviscid flow through
a channel with a circular arc bump in lower wall (160 x 80 CV grid, 100% CDS
discretization); from Lilek (1995)

Another example of the application of the pressure-correction method to
high speed flow is presented below. The geometry and boundary conditions
are shown in Fig. 10.5. It represents upper half of a plane, symmetric con-
verging/diverging channel. At the inlet, the total pressure and enthalpy were
specified; at the outlet, all quantities were extrapolated. The viscosity was
set to zero, i.e. the Euler equations were solved. Five grids were used: the
coarsest had 42 x5 CVs, the finest 672 x 80 CVs.

The lines of constant Mach number are shown in Fig. 10.6. A shock wave
is produced behind the throat, since the flow cannot accelerate due to the
change in geometry. The shock wave is reflected from the walls twice before
it exits through the outlet cross-section.

In Fig. 10.7 the computed pressure distribution along the channel wall is
compared with experimental data of Mason et al. (1980). Results on all grids
are shown. On the coarsest grid, the solution oscillates; it is fairly smooth
on all other grids. As in the previous example, the locations of the shocks do
not change with grid refinement but the steepness is improved as the grid is
refined. The numerical error is low everywhere except near the exit, where
the grid is relatively coarse; the results on the two finest grids can hardly be
distinguished. Agreement with the experimental data is also quite good.
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Fig. 10.5. Geometry and boundary conditions for the compressible channel flow
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Fig. 10.6. Mach number contours in the compressible channel flow (from minimum
Ma = 0.22 at inlet to maximum Ma = 1.46, step 0.02); from Lilek (1995)

P/P,

Fig. 10.7. Comparison of pre-
dicted (Lilek, 1995) and mea-
sured (Mason et al.,, 1980)
distribution of pressure along
channel wall

The solution method presented in this section tends to converge faster
as the Mach number is increased (except when the CDS contribution is so
large that strong oscillations appear at the shocks; in most applications it
was about 90-95%). In Fig. 10.8 the convergence of the method for the so-
lution of laminar incompressible flow at Re = 100 and for the supersonic
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flow at Ma = 1.65 over a bump (see Fig. 10.4) in a channel is shown. The
same grid and under-relaxation parameters are used for both flows. While
in the compressible case the rate of convergence is nearly constant, in the
incompressible case at low Reynolds number it gets lower as the tolerance is
tightened. At very high Mach numbers, the computing time increases almost
linearly with the number of grid points as the grid is refined (the exponent
is about 1.1, compared to about 1.8 in case of incompressible flows). How-
ever, as we shall demonstrate in Chap. 11, the convergence of the method for
elliptic problems can be substantially improved using the multigrid method,
making the method very efficient. The compressible version of the method is
suitable for both steady and unsteady flow problems.
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Fig. 10.8. Convergence of the pressure-
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e correction method for laminar flow at Re =
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0 500 1000 Over a bump in channel (160 x 80 CV grid);

Iter. from Lilek (1995)

For ultimate accuracy one should apply grid refinement locally near the
shocks, where the profiles suddenly change slope. The methods of applying
local grid refinement and the criteria about where to refine the grid will be
described in Chap. 11. Also, the blending of CDS and UDS should be applied
locally, only in the vicinity of shocks, and not globally, as in the above appli-
cations. The criteria for decision where and how much of UDS to blend with
CDS can be based on a monotonicity requirement on the solution, on total
variation diminishing (TVD, see next section) or other suitable requirements.

10.3 Methods Designed for Compressible Flow

The method described above is an adaptation of methods designed for com-
puting incompressible flows to the treatment of compressible flows. It was
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mentioned several times in this book that there are methods specifically de-
signed for the solution of compressible flows. In particular, these methods can
be used in conjunction with the artificial compressibility methods described
in Chap. 7. In this section, we briefly describe some of these methods. The
purpose is to give enough information about these methods to allow compari-
son with the methods described above. We shall not present them in sufficient
detail to allow the reader to develop codes based on them. The latter task re-
quires a separate volume; readers interested in such a treatment are referred
to the texts by Hirsch (1991) and Anderson et al. (1984).

Historically, the development of methods for the computation of com-
pressible flows proceeded in stages. Initially (until about 1970), only the
equations for linearized potential flow were solved. Later, as computer capac-
ity increased, interest moved progressively to the non-linear potential flow
equations and, in the 1980’s, to the Euler equations. Methods for the viscous
or Navier-Stokes equations (more properly, the RANS equations, because the
high Reynolds numbers assure that the flows are turbulent) are the subject
of current research and are proving very difficult to develop. So, we see that,
in contrast to the situation for low speed flows, most solvers for high speed
flows are designed to deal only with the inviscid case.

If there is a major theme running through these methods, it is explicit
recognition that the equations are hyperbolic and thus have real characteris-
tics along which information about the solution travels at finite speeds. The
other essential issue (which arises from the existence of characteristics) is
that the compressible flow equations support shock waves and other kinds
of discontinuities in the solutions; the discontinuities are sharp in inviscid
flows but have finite width when the viscosity is non-zero. Respecting these
properties is important so it is explicitly taken into account in most methods.

These methods are mainly applied to the aerodynamics of aircraft, rock-
ets, and turbine blades. In nearly all cases, the flow is steady. Since the speeds
are high, explicit methods would need to use very small time steps and would
be very inefficient. Consequently, implicit methods would be useful and have
been developed. However, the nature of the equations makes it difficult to
construct efficient implicit methods and, as we shall see below, many of the
methods used are explicit.

The need to treat discontinuities raises another set of issues. We have
seen that, in the attempt to capture any kind of rapid change in a solution,
discretization methods are likely to produce results that contain oscillations
or ‘wiggles’. This is especially so when non-dissipative discretizations (which
includes essentially all central-difference schemes) are used. A shock (or any
other discontinuity) represents the extreme of a rapidly varying solution and
therefore presents the ultimate challenge to discretization methods. It can be
shown that no discretization method of order higher than first can guarantee
a monotonic solution when the solution contains discontinuities. Since accu-
racy is best obtained through the use of central-difference methods (or their
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equivalents in finite volume methods), many modern methods for compress-
ible flow use central differences everywhere except near the discontinuities
where special upwind methods are applied.

These are the issues that must be faced in the design of numerical methods
for compressible flows. We now look, in a very general and superficial way,
at some of the methods that have been proposed to deal with them.

10.3.1 An Overview of Some Specific Methods

The earliest schemes were based on explicit methods and central differencing.
One of the most notable of these is the method of MacCormack (1969) which
is still used. To avoid the problem of oscillations at shocks in this type of
method, it is necessary to introduce artificial dissipation into the equations.
The usual second-order dissipation {equivalent to ordinary viscosity) would
smooth the solution everywhere so a term more sensitive to the rapid vari-
ation at the shock is needed. A fourth-order dissipative term i.e., an added
term that contains fourth derivatives of the velocity, is the most common
addition but higher-order terms have also been used.

The first effective implicit methods were developed by Beam and Warming
(1978). Their method is based on approximate factorization of the Crank-
Nicolson method and can be considered an extension of the ADI method
presented in Chap. 6 to compressible flow. As with the ADI method, this
method has an optimum time step for convergence to a steady solution. The
use of central differences again requires addition of an explicit fourth-order
dissipative term to the equations.

More recently, there has been an interest in upwind schemes of greater
sophistication. The objective is always to produce a well-defined discontinu-
ity without introducing an undue amount of error into the smooth part of
the solution. One scheme for accomplishing this is the flux-vector-splitting
method of Steger and Warming (1981) to which a number of modifications
and extensions have been suggested. The idea is to locally split the flux (since
the application is to the Euler equations, this means the convective flux of
momentum) into components that flow along the various characteristics of
the equations. In general, these fluxes flow in different directions. Each flux
is then treated by an upwind method appropriate to the direction in which
it flows. The resulting method is fairly complex but the upwinding provides
stability and smoothness at discontinuities.

Finally, we mention a class of schemes that use limiters to provide smooth
and accurate solutions. The earliest of these (and one of the easiest to explain)
is the flux-corrected transport (FCT) method of Boris and Book (1973). In a
one-dimensional version of the method, one might compute the solution using
a simple first-order upwind method. The diffusive error in the solution can be
estimated (one way is to use a higher-order scheme and take the difference).
This estimated error is then subtracted from the solution (a so-called anti-
diffusive step) but only to the extent that it does not produce oscillations.
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Still more sophisticated methods are based on similar ideas and are gen-
erally referred to as fluz limiters. The concept is to limit the flux of the
conserved quantity into a control volume to a level that will not produce a
local maximum or minimum of the profile of that quantity in that control
volume. In total variation diminishing (TVD) schemes, one of the most pop-
ular types of these methods, the idea is to reduce the total variation of the
quantity ¢ defined by:

TV(g") = lak — gpl, (10.25)
k

where k is a grid point index, by limiting the flux of the quantity through
the control volume faces.

These methods have been demonstrated to be capable of producing very
clean shocks in one-dimensional problems. The obvious way of applying them
in multi-dimensional problems is to use the one-dimensional version in each
direction. This is not entirely satisfactory, for reasons similar to those that
make upwind methods for incompressible flows inaccurate in more than one
dimension; this issue was discussed in Sect. 4.7.

TVD schemes reduce the order of approximation in the vicinity of a dis-
continuity. They become first order at the discontinuity itself because this is
the only approximation that is guaranteed to yield a monotonic solution. The
first-order nature of the scheme means that a great deal of numerical dissipa-
tion is introduced. Another class of schemes, called essentially non-oscillatory
(ENO) schemes has been developed. They do not demand monotonicity and,
instead of reducing the order of the approximation, they use different compu-
tational molecules or shape functions near a discontinuity; one-sided stencils
are used to avoid interpolation across discontinuity.

In weighted ENO-schemes, several stencils are defined and checked for
oscillations they produce; depending on the kind of detected oscillations,
weight factors are used to define the final shape function (usually called
reconstruction polynomial). For computational efficiency, the stencils should
be few in number and compact, but to avoid oscillations while keeping a high
order of approximation requires that a large number of neighbors be used
in the scheme. Sophisticated methods for unstructured adaptive grids are
described by Abgrall (1994), Liu et al. (1994), Sonar (1997), and Friedrich
(1998), among others. These schemes are difficult to implement in implicit
methods; in explicit methods they increase the computing time per time step,
but the accuracy and lack of oscillations usually compensates for the higher
cost.

Finally, we mention that, although they were designed for the solution of
elliptic equations, multigrid methods have been applied with great success to
compressible flow problems.

It will also be noted that most of the recent methods just described are
explicit. This means that there are limitations on the time steps (or effective
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equivalent) that can be used with them. As usual, the limitation takes the
form of a Courant condition but, due to the presence of sound waves, it has
the modified form:

|u £ c| At
— <

e , (10.26)

where c¢ is the sound speed in the gas and, as usual, a is a parameter that
depends on the particular time-advancement method used.
For flows that are only slightly compressible i.e., Ma = u/c < 1, this
condition reduces to:
c At
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which is much more restrictive than the Courant condition:

uAt

- (10.28)

that is usually applicable in incompressible flows. Thus methods for compress-
ible flows tend to become very ineflicient in the limit of slightly compressible
flow. The pressure-correction methods presented above seem to be fairly ef-
ficient for both incompressible and compressible, steady and unsteady flows.
This is why they are mostly used in general-purpose commercial codes, aimed
at a wide range of applications from incompressible to highly compressible
flow.



11. Efficiency and Accuracy Improvement

The best measure of the efficiency of a solution method is the computational
effort required to achieve the desired accuracy. There are several methods
for improving the eficiency and accuracy of CFD methods; we shall present
three that are general enough to be applied to any of the solution schemes
described in previous chapters.

11.1 Error Analysis and Estimation

The various types of errors which are unavoidable in the numerical solution
of fluid flow problems have been briefly discussed in Sect. 2.5.7. Here we give
a more detailed discussion of the various types of error and discuss how these
can be estimated and eliminated. Issues of code and model validation will
also be addressed.

11.1.1 Description of Errors

Modelling Errors. Fluid flow and related processes are usually described
by integral or partial differential equations that represent basic conservation
laws. The equations may be considered a mathematical model of the prob-
lem. Although the Navier-Stokes equations can be considered exact, solving
them is impossible for most flows of engineering interest. Turbulence places
huge demands on computer resources if it is to be simulated directly; other
phenomena like combustion, multi-phase flow, chemical processes etc. are
difficult to describe exactly and inevitably require the introduction of model-
ing approximations. Newton’s and Fourier’s laws are themselves only models,
although they are solidly based on experimental observations for many fluids.

Even when the underlying mathematical model is nearly exact, some prop-
erties of the fluid may not be exactly known. All fluid properties depend
strongly on temperature, species concentration and, possibly, pressure; this
dependence is often ignored, introducing additional modeling errors (e.g. the
use of the Boussinesq approximation for natural convection, the neglect of
compressibility effects in low Mach-number flows, etc.).

The equations require initial and boundary conditions. These are often
difficult to specify exactly. In other cases, one is forced to approximate them
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for various reasons. Often what should be an infinite solution domain is taken
as finite and artificial boundary conditions are applied. We often have to make
assumptions about the flow at the inlet to the solution domain as well as at
the lateral and outlet boundaries. Thus, even when the governing equations
are exact, approximations made at the boundaries may affect the solution.

Finally, the geometry may be difficult to represent exactly; often we have
to neglect details for which it is difficult to generate grids. Many codes that
use structured or block-structured grids cannot be applied to very compli-
cated problems without simplifying the geometry.

Thus, even if we were able to solve the equations and specified boundary
conditions exactly, the result will not describe the flow exactly due to the
errors in the model assumptions. We therefore define the modeling error as the
difference between the real flow and the exact solution of the mathematical
model.

Discretization Errors. Furthermore, we are seldom able to solve the gov-
erning equations exactly. Every numerical method produces approzimate so-
lutions, since various approximations have to be made to obtain an algebraic
system of equations that can be solved on computer. For example, in FV
methods one has to employ appropriate approximations for surface and vol-
ume integrals, variable values at intermediate locations, and time integrals.
Obviously, the smaller the spatial and temporal discrete elements, the more
accurate these approximations become. Using better approximations can also
increase the accuracy; however, this is not a trivial matter as more accurate
approximations are more difficult to program, need more computing time
and storage, and may be difficult to apply to complex geometry. Usually, one
selects the approximations prior to writing a code so the spatial and tempo-
ral grid resolution are the only parameters at user’s disposal to control the
accuracy.

The same approximation may be very accurate in one part of the flow but
inaccurate elsewhere. Uniform spacing (either in space or in time) is seldom
optimal, since the flow may vary strongly locally in both space and time;
where the changes in variables are small, the errors will also be small. Thus,
with the same number of discrete elements and the same approximations, the
errors in the results may differ by an order of magnitude or more. Since the
computational effort is proportional to the number of discrete elements, their
proper distribution and size is essential for computational efficiency (the cost
of achieving the prescribed accuracy).

We define the discretization error as the difference between the exact
solution of the governing equations and the exact solution of the discrete
approximation.

Iteration Errors. The discretization process normally produces a coupled
set of non-linear algebraic equations. These are usually linearized and the lin-
earized equations are also solved by an iterative method since direct solution
is usually too expensive.
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Any iteration process has to be stopped at some stage. We must therefore
define a convergence criterion to decide when to stop the process. Usually,
iteration is continued until the levels of residual has been reduced by a par-
ticular amount; this can be shown to be equivalent to reducing the error by
an equal amount.

Even if the solution process is convergent, and we iterate long enough, we
never obtain the ezact solution of the discretized equations; round-off errors
due to finite arithmetic precision of the computer will provide a lower bound
on the error. Fortunately, round-off error does not become an issue until the
solution error becomes close to the arithmetic precision of computer and that
is far more accuracy than is usually necessary.

We define the iteration error as the difference between the exact and the
iterative solutions of the discretized equations. Although this kind of error
has nothing to do with discretization itself, the effort required to reduce the
error to a given size grows as the number of discrete elements is increased. It
is therefore essential to choose an optimum level of iteration error — one that
is small enough compared to the other errors {which could not be assessed
otherwise) but not smaller (because the cost would be larger than necessary).

Programming and User Errors. It is often said that all computer codes
have bugs — which is probably true. It is the responsibility of the code de-
veloper to try to eliminate them; an issue that we shall discuss here. It is
difficult to locate programming errors by studying the code — a better ap-
proach is to devise test problems in which errors caused by bugs might show
up. Results of test calculations must be carefully examined before applying
the code to routine applications. One should check that the code converges
at the expected rate, that the errors decrease with the number of discrete
elements in the expected way, and that the solution agrees with accepted
solutions produced either analytically or by another code.

A critical part of the code is the boundary conditions. The results must
be checked to see if the boundary condition applied is really satisfied; it is not
unusual to find that they are not. Peri¢ (1993) discussed one such problem.
Another common source of problems is the inconsistency in approximations
of terms that are closely coupled; for example, in a stationary bubble the
pressure drop across the free surface must be balanced by the surface tension.
Simple flows for which analytical solutions are known are very useful for the
verification of computer codes. For example, a code using moving grids can
be examined by moving the interior grid while keeping the boundaries fixed
and using stationary fluid as the initial condition; the fluid should remain
stationary and should not be affected by the grid movement.

The accuracy of a solution depends not only on the discretization method
and the code but also on the user of the code; it is easy to obtain bad results
even with a good code! Although most user mistakes lead to errors which
fall into one of the above three categories, it is important to distinguish
between systematic errors, which are inherently present in the method, and
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the avoidable errors, which are due to inappropriate or improper use of the
code.

Many user errors are due to incorrect input data; often the error is found
only after many computations have been carried out — and sometimes it
is never found! Frequent errors are due to geometry scaling or parameter
selection, when dimensionless form of the equations is used. Another kind of
user error is due to a poor numerical grid (an inadequate distribution of grid
points can increase the errors by an order of magnitude or more — or prevent
one from getting solution at all).

11.1.2 Estimation of Errors

Every numerical solution contains errors; the important thing is to know
how big the errors are, and whether their level is acceptable in the particular
application. The acceptable level of error can vary enormously. What may be
an acceptable error in an optimization study in the early design stage of a
new product, where only qualitative analysis and the response of the system
to design changes is important, could be catastrophic in another application.

It is thus as important to know how good the solution is for the particular
application as it is to obtain the solution in the first place. Especially when
using commercial codes, the user should concentrate on a careful analysis of
the results and on estimation of the errors, as far as possible. This may be
a great burden for a beginner, but an experienced CFD practitioner will do
this routinely.

Error analysis should be done in an order reversed from the order in
which they were introduced above. That is, one should begin by estimating
the iteration error (which can be done within a single calculation), then
the discretization error (which requires a minimum of two calculations on
different grids) and, finally, the modeling error (which may require many
calculations). Each of these should be an order of magnitude smaller than
the one it precedes or the estimation of the later errors will not be sufficiently
accurate.

Estimation of Iteration Errors. Knowing when to stop the iteration pro-
cess is crucial from the point of view of computational efficiency. As a rule of
thumb, the iteration errors (sometimes also called convergence errors) should
be at least an order of magnitude lower than discretization errors. There is
no point in iterating to the round-off level; for most engineering applications,
relative accuracy (error compared to a reference value) of the three to four
significant digits in any variable is more than sufficient.

There are a number of ways of estimating these errors; Ferziger and Perié
(1996) analyzed three of them in detail; see also Sect. 5.7. It can be shown that
the rate of reduction of error is the same as rate at which the residual and the
difference between successive iterates are reduced, except in the initial stage
of iteration. This was demonstrated in Fig. 7.10: the curves for the norm of
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the residual, the norm of difference between successive iterates, the estimated
error, and the actual iteration error are all parallel after some iterations.

Therefore, if one knows the error level at the start of computation (which
is the solution itself if one starts with zero fields and somewhat lower if a
rough but reasonable guess is made), then one can be confident that the error
will fall 2-3 orders of magnitude if the norm of residuals (or of differences
between two iterates) has fallen 3-4 orders of magnitude. This would mean
that the first two or three most significant digits will not change in further
iterations, and thus that the solution is accurate within 0.01-0.1 %.

A common error is to look at the magnitude of the differences between
successive iterates and stop computations when they do not differ by more
than a certain small number. However, the difference can be small because
the iterations are slowly converging while the iteration error may be enor-
mous. In order to estimate the magnitude of the error, one has to properly
normalize the difference between successive iterates; when the convergence
is slow, the normalization factor becomes large (see Sect. 5.7). On the other
hand, requiring that the norm of differences fall three to four orders of mag-
nitude is usually a safe criterion. Since the linear equation solvers in most
CFD methods require the computation of residuals, the simplest practice is
to monitor their norm (the sum of absolute values or square root of the sum
of squares).

On a coarse grid, where the discretization errors are large, one can allow
larger iteration errors; tighter tolerance is required for fine grids. This is
automatically taken into account if the convergence criterion is based on the
surn of residuals and not on the average residual per node, since the sum grows
with growing number of nodes and thus tightens the convergence criterion.

When a new code is developed, or a new feature is added, one has to
demonstrate beyond reasonable doubt that the solution process does con-
verge until the residuals reach the round-off level. Very often, the lack of such
convergence indicates that errors are present, especially in the implementa-
tion of boundary conditions. Sometimes, the limit is below the threshold at
which the convergence is declared and may not be noticed. In other cases, the
procedure may stop converging (or even diverge) much earlier. Once all new
features have been thoroughly tested, one can return to the usual convergence
criteria.

Also, if one tries to obtain a steady solution for a problem which is in-
herently unsteady (e.g. flow around a circular cylinder at a Reynolds number
for which the von Karman vortex street is present), some iterative methods
may not converge. Since each iteration can be interpreted as a pseudo-time
step, it is likely that the process will not diverge, but that the residuals os-
cillate indefinitely. This often happens if the geometry is symmetric and the
steady symmetric solution is unstable (e.g. diffusers or sudden expansions;
steady solutions — both laminar and Reynolds-averaged — are asymmetric,
with a larger separation region on one side). One can check whether this is
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the problem by reducing the Reynolds number or computing the flow for one
half of the geometry, using a symmetry boundary condition - or perform a
transient computation.

Estimation of Discretization Errors. Discretization errors can only be
estimated if solutions on systematically refined grids are compared; see Sect.
3.10.2 and 3.9 for more details. As noted earlier, these errors are due to
the use of approximations for the various terms in the equations and the
boundary conditions. For problems with smooth solutions, the quality of an
approximation is described in terms of its order, which relates the truncation
error of the approximation to the grid spacing to a some power; if the trun-
cation error of a spatial derivative is proportional to say (Az)?, we say that
the approximation is of pth order. The order is not a direct measure of the
magnitude of the error; it indicates how the error changes when the spacing is
changed. Approximations of the same order may have errors which differ as
much as an order of magnitude; also, an approximation of a lower order may
have a smaller error for a particular grid than one of higher order. However,
as the spacing becomes smaller, the higher-order approximation will certainly
become more accurate.

It is easy to find the order of many approximations using Taylor series
expansion. On the other hand, different approximations may be used for
different terms, so the order of the solution method as a whole may not be
obvious (it is usually of the order of the least accurate approximation of a
significant term in the equation). Also, errors in the implementation of the
algorithm in the computer code may yield a different order than expected.
It is therefore important to check the order of the method for each class of
problems using the actual code.

The best way to analyze discretization errors on structured grids is to
halve the spacing in each direction. However, this is not always possible; in
3D, this requires an eight-fold increase in the number of nodes. Thus, the third
grid has 64 times as many points, and we may not be able to afford another
refinement level. On the other hand, the errors are usually not uniformly
distributed, so there is no point in refining the whole grid. Furthermore, when
unstructured grids with arbitrary control volumes or elements are used, there
are no local coordinate directions and the elements are refined in a different
manner.

What is important is that the refinement is substantial and systematic.
Increasing the number of nodes in one direction from say 54 to 62 is not
very useful, except in an academic problem with uniform error distribution
and a uniform grid; the refined grid should have at least 50 % more nodes
in each direction than the original grid. Systematic refinement means that
the grid topology and relative spatial density of grid points should remain
comparable on all grid levels. A different distribution of grid points may lead
to substantial changes in discretization errors without changing the number
of nodes. An example is shown in Fig. 7.11: the results obtained on a non-



11.1 Error Analysis and Estimation 335

uniform grid, which was finer near walls, are an order of magnitude more
accurate than those obtained on a uniform grid with the same number of
nodes. Both solutions converge to the same grid-independent solution with
the same order (second), but the errors differ in magnitude by a factor of 10
or more! Other examples with similar conclusions were shown in Figs. 6.3,
6.5, and 7.18.

The above example stresses the importance of good grid design. For prac-
tical engineering applications, grid generation is the most time-consuming
task; it is often difficult to generate any grid, let alone a grid of high quality.
A good grid should be as nearly orthogonal as possible (note that orthog-
onality has a different meaning in different methods; in a FV method, the
angle between the cell-face normal and the line connecting neighboring cell
centers is what counts — a tetrahedral grid may be orthogonal in this sense).
It should be dense where large truncation errors are expected — hence the
grid designer should know something about the solution. This is the most
important criterion and is best met by using an unstructured grid with lo-
cal refinement. Other criteria of quality depend on the method used (grid
smoothness, aspect and expansion ratios etc.).

The simplest means of estimation of discretization errors is based on
Richardson extrapolation and assumes that calculations can be done on grids
sufficiently fine that monotone convergence is obtained. (If this is not the case,
it is likely that the error is larger than one would like.) The method is there-
fore only accurate when the two finest grids are fine enough and the order
of error reduction is known. The order may be computed from the results
on three consecutive grids from the following formula provided that all three
are fine enough in the above sense (see Roache, 1994, and Ferziger and Perié,
1996, for more details):

log <¢2h - ¢4h>
p= b — Pan , (11.1)
logr

where r is the factor by which the grid density was increased (r = 2 if the
spacing is halved), and ¢, denotes the solution on a grid with an average
spacing h. The discretization error is then estimated as:

P — P2n

Thus, when the spacing is halved, the error in the solution on one grid is
equal to one third of the difference between the solutions on that and the
preceding grid for a second-order method; for a first-order method, the error
is equal to the aforementioned difference.

For the example from Fig. 7.11, Richardson extrapolation applied to
both uniform and non-uniform grid leads to the same estimate of the grid-
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independent solution within five significant digits, although the errors in the
solutions are an order of magnitude different.

Note that the error can be computed for integral quantities (drag, lift, etc.)
as well as for field values but the order of convergence may not be the same
for all quantities. It is usually equal to the theoretical order (e.g. second)
for problems with smooth solutions, e.g. laminar flows. When complicated
models (for turbulence, combustion, two-phase flow etc.) or schemes with
switches or limiters are used, the definition of order may be difficult. However,
it is not absolutely necessary to compute quantities like the order p or what
Roache (1994) calls the grid convergence index; it is sufficient to show the
change in the computed quantity of interest for a series of grids (preferably
three). If the change is monotonic and the difference decreases with grid
refinement, one can easily estimate where the grid-independent solution lies.
Of course, one should also use the Richardson extrapolation to estimate the
grid-independent solution.

Note also that the refinement need not extend over the whole domain. If
the estimate indicates that the error is much smaller in some regions than
elsewhere, local refinement can be used. This is particularly true for flows
around bodies, where high resolution is needed only in the vicinity of the
body and in the wake. Methods using local refinement strategies are very ef-
ficient. However, care is needed; if the grid is not refined where the truncation
errors are large, large errors may occur elsewhere, since the errors are subject
to the same transport processes (convection and diffusion) as the variables
themselves.

Estimation of Modeling Errors. Modeling errors are the most difficult
ones to estimate; to do so, we need data on the real flow. In most cases, data
are not available. Therefore, modeling errors are usually estimated only for
some test cases, for which detailed and accurate experimental data are avail-
able, or for which accurate simulation data exist (e.g. large-eddy or direct
numerical simulation data). In any case, before one can compare a com-
putation with experiment, the iteration and discretization errors should be
analyzed and shown to be small enough. In some cases the modeling and
discretization errors cancel each other, so that results on a coarse grid may
agree better with experimental data than ones obtained on a finer grid. Ex-
perimental data should therefore not be used to verify the code; one must
use systematic analysis of the results. Only when it is proven beyond reason-
able doubt that the results do converge towards a grid-independent solution
and that the discretization errors are small enough, can one proceed with
comparison of numerical solution and experimental data.

It is also important to bear in mind that the experimental data are only
approximate, and that the measurement and data processing errors can be
significant. They may also contain significant systematic errors. However,
they are indispensable for the validation of models. One should compare
computational results only with experimental data of high accuracy. Analysis
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of the experimental data is essential if they are to be used for validation
purposes.

One should also note that modeling errors differ for different quantities;
for example, computed pressure drag may agree well with the measured value,
but the computed friction drag may be substantially in error. Mean velocity
profiles are sometimes well predicted, while the turbulence quantities may
be under- or over-predicted by a factor of two. It is important to compare
results with a variety of quantities in order to assure that the model really is
accurate.

Detection of Programming and User Errors. A kind of errors that is
difficult to quantify is the programming error. These may be simple “bugs”
(typing errors that do not prevent the code from compiling) or serious al-
gorithmic errors. The analysis of iteration and discretization errors usually
helps the developer find them, but some may be so consistent that they
remain undiscovered for years (if ever), especially when there are no exact
reference solutions to compare.

A critical analysis of results is essential for the discovery of potential
user errors; it is therefore crucial that the user have solid knowledge of fluid
dynamics in general and of the problem to be solved in particular. Even
if the CFD code that is being used has been validated on other flows, the
user can make errors in setting-up the simulation so that the results may
be significantly in error (e.g. due to errors in geometry representation, in
boundary conditions, in flow parameters etc.). User errors may be difficult to
spot (e.g. when an error in scaling is made and the computed flow corresponds
to a different Reynolds number than anticipated); the results should therefore
be critically evaluated, if possible also by someone other than the person who
performed the computation.

11.1.3 Recommended Practice for CFD Uncertainty Analysis

One should distinguish between wvalidation of a newly developed CFD code
(or new features added to an existed code) and validation of an established
code for a particular problem.

Validation of a CFD Code. Any new code or added feature should un-
dergo systematic analysis with the aim of assessing the discretization errors
(both spatial and temporal), of defining convergence criteria in order to as-
sure small iteration errors, and of eliminating as many ‘bugs’ as possible.
For this purpose one has to select a set of test cases representative of the
range of problems solvable by the code, and for which sufficiently accurate
solutions (analytical or numerical) are available. Since one wants to assure
that the equations are correctly solved for the specified boundary conditions,
experimental data are not the best way to measure the quality of numerical
solutions. Reference solutions are needed to locate errors in the algorithm or
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programming which may pass the tests associated with estimation of iteration
and discretization errors.

One should first analyze the approximations used in the discretization
to determine the order of convergence of solutions towards a grid (or time
step) independent solution. This is the lowest-order truncation error in the
significant terms in the equations (but note that not all terms are equally
important — their importance depends on the problem). In some cases ap-
proximations of lower order may be used at a boundary than in the interior
without reducing the overall order. An example is the use of one-sided first-
order approximations at boundaries while second-order central differences are
used in the interior; the overall convergence is second order. However, this
may not be true if low-order approximations are used with Neumann-type
boundary conditions.

Iteration errors should be analyzed next; as a first step, one should make
a calculation in which iterations are continued until their level is reduced
to the double-precision round-off level (this requires at least 12 orders of
magnitude reduction of the residual). A test case, which has a known steady
solution, must be selected. Otherwise, iterations may stop converging at some
stage because iterations can be interpreted as pseudo-time steps and the
natural instability of the flow may not allow a steady solution. An example
is the case of flow around a circular cylinder around Reynolds-number 50.
Once an accurate solution is available, one can compare it with solutions
at intermediate stages, thus evaluating the iteration error. The error can be
compared with estimates, or their reduction can be related to the reduction of
the residual or the difference between successive iterates, as discussed above.
This should help to establish convergence criteria (both for inner iterations,
i.e. for linear equation solver, and for outer iterations, i.e. solution of the
non-linear equations).

Discretization errors should be analyzed by comparing solutions on a se-
quence of systematically refined grids and time steps. Systematic refinement
is easy for structured or block-structured grids: one creates e.g. three grids
of different sizes. For unstructured grids, this task is not as straight-forward,
but one can create grids with similar distributions of relative grid sizes but
different absolute sizes. Systematic refinement is crucial in regions of high
truncation errors, which act as sources of discretization errors, which are
both convected and diffused in the same way as the dependent variables
themselves. As a rule of thumb, the grid must be fine and systematically re-
fined where the second and higher-order derivatives of the solution are large.
This is typically near walls and in shear layers and wakes.

Solutions with sufficiently small iteration errors should be obtained on
at least three grids and compared; both the order of convergence and the
discretization error can be estimated in this way if the grids are fine enough so
that monotonic convergence prevails. If this is not the case, further refinement
is necessary. If the computed order is not the expected one, errors have been
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made and must be sorted out. The estimated discretization error should be
compared with the required accuracy.

This procedure must be repeated for a number of test cases similar to the
applications in order to try to root out as many error sources as possible.
Only when a systematic analysis of the results produced by the code has
been made and grid and time-step independent solutions (in the sense that
the discretization errors have been reliably estimated and are small enough)
have been obtained, should one compare the solutions with analytical or other
reference solutions. This is the final check for programming or algorithmic
errors. Comparing solutions obtained on one grid with reference solutions is
not meaningful, since often some quantities may accidentally agree well or
some errors may cancel out.

Code validation says nothing about the accuracy with which the numeri-
cally accurate solutions represent real flows. No matter which turbulence (or
other) model we use, we have to be sure that we are solving the equations
that incorporate the models correctly. Comparisons of solutions obtained by
different groups using the same grid and the same turbulence model but dif-
ferent codes often show larger differences than when one group uses the same
code but different turbulence models (this is the conclusion reached at many
workshops). The models appear to be differently implemented, the boundary
conditions differently treated etc. This is a difficult problem for which no sat-
isfactory solution has been found. The differences may be due to differences
in implementation but, if the models used are really identical and the imple-
mentation is correct and errors have been evaluated and eliminated, every
code should produce the same result and the differences should disappear.
This is why we have stressed the need for validation and error evaluation.

Validation of CFD Results. Validation of CFD results includes the anal-
ysis of discretization and modeling errors; one can assume that a validated
code is used with appropriate convergence criteria, so that iteration errors
can be excluded.

One of the most important factors which affects the accuracy of CFD
results is the quality of the numerical grid. Note that even a poor grid, if
refined enough, should produce the correct solution; it will just cost more.
Furthermore, even the best code may produce poor results on a bad and
insufficiently refined grid, and a code based on simpler and less accurate
approximations may produce excellent results if the grid is tuned for the
problem being solved. (However, this is often a matter of getting the various
errors to cancel each other.) Discretization errors may be reduced by a proper
distribution of grid points; see Fig. 7.11.

Many commercial codes have been made sufficiently robust that they run
on any grid the user might provide. However, robustness is usually achieved
at the expense of accuracy (for example, by using upwind approximations). A
careless user may not pay much attention to grid quality and thereby obtain
inaccurate solutions with little effort. The effort invested in grid generation,



340 11. Efficiency and Accuracy Improvement

error estimation, and optimization should be related to the desired level of
accuracy of the solutions. If only qualitative features of the flow are sought,
a quick job may be acceptable, but for a quantitatively accurate results at
reasonable cost, high grid quality is required.

Comparison with experimental data requires that the experimental un-
certainty be known. It is best to compare only fully converged results (ones
from which iteration and discretization error have been removed) with exper-
imental data, because this is the only way that the effect of a model can be
assessed. Experimental uncertainty bars usually extend on both sides of the
reported value. If discretization errors are not small compared to the exper-
imental uncertainty, nothing can be learned about the value of the models
used. Estimation of modeling errors is the most difficult task in CFD.

In many cases the exact boundary conditions are not known and one
has to make assumptions. Examples are far-field conditions for flows around
bodies and inlet turbulence properties. In such a case, it is essential to vary
the critical parameter (location of far-field boundary, turbulence quantities)
over a substantial range to estimate the sensitivity of the solution to this
factor. Often it is possible to obtain good agreement for reasonable values of
the parameters but, unless the experimental data provide them, this amounts
to little more than sophisticated curve fitting. That is why it is essential to
choose experimental data that provide all of the necessary quantities and
to discuss the importance of taking such data with the people who make
the measurements. Some turbulence models are very sensitive to inlet and
free-stream turbulence levels, leading to substantial changes in results for
relatively minor variation in the parameters.

If a number of variants of the same geometry are to be studied, one can
often rely on a validation performed for a typical representative case. It is
reasonable to assume that the same grid resolution and the same model will
produce discretization and modeling errors of the same order as those in the
test case. While this is true in many cases, it may not always be so and
care is needed. Changes in geometry may lead to the appearance of new flow
phenomena (separation, secondary flow, instability etc.), which the model
used may not capture. Thus, the modeling error may increase dramatically
from one case to another although the change in geometry may be minor (e.g.
the computation of flow around an engine valve may be accurate within 3 %
for one valve opening and qualitatively wrong for a slightly smaller opening;
see Lilek at al., 1991, for a more detailed description).

General Suggestions. The definition of rigid rules for validation of CFD
codes and results is both difficult and impractical. While use of Richardson
extrapolation is recommended wherever possible for estimating discretization
errors, it may be difficult to obtain conclusive answers on all questions (e.g.
the order may turn out to be different for different quantities). When several
types of models are employed (for turbulence, two-phase flow, free-surface
effects etc.) it may be difficult to separate different effects from one another.
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The most important steps in any quantitative CFD analysis can, however,
be summarized as:

¢ Generate a grid of appropriate structure and fineness (locally refined in
regions of rapid variation of the flow and wall curvature).

e Refine the grid systematically (unstructured grids may be selectively re-
fined: where the errors are small, refinement is not needed).

¢ Compute the flow on at least three grids and compare the solutions (making
sure that the iteration errors are small); if the convergence is not mono-
tonic, refine the grid again. Estimate the discretization error on the finest
grid.

¢ If available, compare numerical solutions with reference data to estimate
the modeling errors.

Any reasonable estimate of numerical errors is better than none; and numer-
ical solutions are always approzimate solutions, so one has to question their
accuracy all the time.

11.2 Grid quality and optimization

Discretization errors are always reduced when a grid is refined; reliable esti-
mation of these errors requires a grid refinement study for each new applica-
tion. Optimization of a grid with a given number of grid points can reduce
the discretization errors by as much (or more) than systematic refinement of
a non-optimal grid. It is therefore important to pay attention to grid quality.

Grid optimization is aimed at improving the accuracy of approximations
to surface and volume integrals. This depends on the discretization method
used; in this section, we discuss grid features which affect the accuracy of the
methods described in this book.

To obtain convective fluxes with maximum accuracy with linear inter-
polation and/or the midpoint rule, the line connecting two neighboring CV
centers should pass through the center of the common face. In certain cases,
especially when a block-structured grid is used, situations like the one shown
in Fig. 11.1 are unavoidable. Most automatic grid generators create grids of
this kind at protruding corners, since they usually create layers of hexahedra
or prisms at boundaries. To improve the accuracy without adaptation one
should locally refine the grid as shown in Fig. 11.1. This reduces the distance
between cell-face center k and the point at which the straight line connecting
nodes C and Ny, passes through the cell face, k’. The distance between these
two points, relative to the size of the cell face (e.g. v/S;) is a measure of the
grid quality. Cells in which this distance is too large should be refined until
the distance between &’ and k is reduced to an acceptable level.

Maximum accuracy for the diffusive flux is obtained when the line con-
necting the neighboring CV centers is orthogonal to the cell face and passes
through the cell-face center. Orthogonality increases the accuracy of the
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Fig. 11.1. An example of poor grid quality due to a large distance between k and
k' (left) and the improvement through local grid refinement (right)

central-difference approximation to the derivative in the direction of cell-face
normal:

(?f> ~ N = bc (11.3)
on k' IT'N,c - Tcl

This approximation is second-order accurate at the midpoint between the two
cell centers; higher-order approximations can be obtained using polynomial
fits even when &’ is not midway between the nodes. If the non-orthogonality
is not negligible, estimation of the normal derivative requires the use of many
nodes. This may lead to convergence problems.

If ' is not the cell-face center, the assumption that the value at k' rep-
resents the mean value over the cell face is no longer second-order accu-
rate. Although corrections or alternative approximations are possible, most
general-purpose CFD codes use simple approximations such as (11.3) and
the accuracy is substantially reduced if the grid properties are unfavorable.
A simple correction which restores the second-order accuracy is:

bk = dpr + (grad @)y, - (rx —7Tw) . (11.4)
In most finite-volume methods it is not important that the grid lines be
orthogonal at CV corners; only the angle between the line connecting neigh-
boring CV centers and the cell-face normal matters (see angle 6 in Fig. 11.2).
A tetrahedral grid can be orthogonal in this sense. An angle # that is far from
90° can lead to large errors and convergence problems and should be avoided.
In the situation shown in Fig. 11.1, the line connecting the neighboring CV
centers is orthogonal to the cell face, so that the gradient at k' is accurately
computed but, due to the large distance between &' and k, the accuracy of
the flux integrated over the surface is poor.
Other kinds of undesirable distortions of CVs may be encountered. Two
are depicted in Fig. 11.3. In one case, the upper face of a regular hexahedral
CV is rotated around its normal, warping the adjacent faces. In the other
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Fig. 11.2. An example of grid non-orthogonality

case, the top face is sheared in its own plane. Both features are undesirable
and should be avoided if at all possible.

Fig. 11.3. An example of poor grid quality due to warping (middle) and distortion
(right)

Grids made of triangles in 2D and tetrahedra in 3D can cause unexpected
problems. One such situation is shown in Fig. 11.4; the CV centered around
node C is very narrow. While the velocity component in z-direction at node
C is strongly coupled to the pressure at nodes N2 and Nj, the pressure gradi-
ent in y-direction must be computed from much more widely spaced nodes.
As a result, the y-component of the velocity vector at node C may attain
large values and this component may oscillate. The problem is even more
pronounced in 3D. The pressure-velocity coupling algorithm may not be able
to remove these oscillations and the outer iterations may not converge. It is
therefore important that triangles or tetrahedra with large aspect ratios be
avoided. CVs of this kind may be produced near solid walls if one tries to
resolve the boundary layer by reducing the distance between grid nodes in
the wall-normal direction, see Fig. 11.4. Using layers of hexahedra or prisms
near walls usually reduces the problem considerably.

If the computational nodes are placed at the CV centroids, volume inte-
grals approximated by the midpoint rule are second-order accurate. However,
CVs may sometimes be so deformed, that the centroid is actually situated
outside the CV. This should be avoided. The grid generator should inspect
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Fig. 11.4. An example of poor-quality triangular and tetrahedral grids.

the grid it produces and indicate to the user that problematic cells exist
unless it is able to correct them automatically.

Some of these problems can be avoided by subdividing problematic cells
(and, possibly, some surrounding cells). Unfortunately, in some cases the only
solution is the generation of a new grid.

11.3 Multigrid Methods for Flow Calculation

Almost all iterative solution methods converge more slowly on finer grids. The
rate of convergence depends on the method; for many methods, the number
of outer iterations to obtain a converged solution is linearly proportional to
the number of nodes in one coordinate direction. This behavior is related to
the fact that information travels only one grid per iteration and, for conver-
gence, information has to travel back and forth across the domain several
times. Multigrid methods, for which the number of iterations is independent
of the number of grid points, have received a lot of attention in the past
decade. It has been demonstrated by many authors, including the present
ones, that solution of the Navier-Stokes equations by multigrid methods is
very efficient. Experience with a wide variety of laminar and turbulent flows
shows a tremendous reduction in computing effort resulting from implemen-
tation of the multigrid idea (see the review paper by Wesseling, 1990). We
give here a brief summary of a version of the method used by the authors;
many other variants are possible, see proceedings of the international con-
ferences devoted to multigrid methods in CFD, e.g. McCormick (1987), and
Hackbusch and Trottenberg (1991).

In Chap. 5 we presented a multigrid method for solving linear systems of
equations efficiently. We saw there that the multigrid method uses a hierarchy
of grids; in the simplest case, the coarse ones are subsets of the fine ones. It
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is ideal for solving the Poisson-like pressure or pressure-correction equation
when fractional step or other explicit time-stepping methods are applied to
unsteady flows because accurate solution of the pressure equation is required;
this is often done in LES and DNS of flows in complex geometry. On the other
hand, when implicit methods are used, the linear equations need not be solved
very accurately at each iteration; reduction of the residual level by one order
of magnitude suffices and can usually be achieved with a few iterations of
one of the basic solvers such as ILU or CG. More accurate solution will not
reduce the number of outer iterations but may increase the computing time.

For steady flow problems, we have seen that implicit solution methods are
preferred and acceleration of the outer iterations is very important. Fortu-
nately, the multigrid method can be applied to outer iterations. The sequence
of operations that constitute one outer iteration is then considered as the
‘smoother’ in accord with multigrid terminology.

In a multigrid version of a finite volume method for steady flows on a
structured grid, each coarse grid CV is composed of four CVs of the next
finer grid in 2D and eight in 3D. The coarsest grid is usually generated first
and the solution process starts by solving the problem on it. Each CV is then
subdivided in finer CVs. After a converged solution is found on the coarsest
grid, it is interpolated to the next finer grid to provide the starting solution.
Then a two-grid procedure is begun. The process is repeated until the finest
grid is reached and a solution on it is obtained. As noted earlier, this strategy
is called full multigrid procedure (FMG).

After m outer iterations on the grid with spacing h, the short-wavelength
error components have been removed and the intermediate solution satisfies
the following equation:

AROR - QR =o' (1L3)

where p}* is the residual vector after the mth iteration. The solution process
is now transferred to the next coarser grid whose spacing is 2h. As noted
earlier, both the cost of an iteration and the convergence rate are much more
favorable on the coarse grid, giving the method its efficiency.

The equations solved on the coarse grid should be smoothed versions of the
fine grid equations. With a careful choice of definitions, one can assure that
the equations solved appear identical to the ones solved earlier on that grid
i.e. the coefficient matrix is the same. However, the equations now contain
an additional source term:

z‘izh(.%zh - th = x‘izh(}zh - th = Pap - (11-6)
If set, to zero, the left-hand side of Eq. (11.6) would represent the coarse grid
equations. The right-hand side contains the correction that assures that the
solution is a smoothed fine grid solution rather than the coarse grid solution
itself. The additional terms are obtained by smoothing (‘restricting’) of the

fine grid solution and residual; they remain constant during the iterations on
the coarse grid. The initial values of all terms on the left hand side of the
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above equation are the corresponding terms on the right hand side. If the
fine-grid residual is zero, the solution will be <2>2h = ¢~>2h.

Only if the residual on the fine grid is non-zero, will the coarse-grid ap-
proximation change from its initial value (since the problem is non-linear, the
coeflicient matrix and the source term also change, which is why these terms
carry a = symbol). Once the solution on the coarse grid is obtained (within a
certain tolerance), the correction

¢ = dan — don (11.7)

is transferred by interpolation (‘prolonged’) to the fine grid and added to the
existing solution ¢7*. With this correction, much of the low-frequency error in
the solution on the fine grid is removed, saving a lot of iterations on the fine
grid. This process is continued until the solution on fine grid is converged.
Richardson extrapolation may then be used to obtain an improved starting
guess for the next finer grid, and a three level V-cycle is initiated, and so on.

For structured grids, simple bilinear (in 2D) or trilinear (in 3D) interpo-
lation is usually used to transfer variable values from fine to coarse grids and
corrections from coarse to fine grids. Although more complex interpolation
techniques can and have been used, in most cases this simple technique is
quite adequate.

Coarse grid Fine grid

Fig. 11.5. Transfer of variables from
fine to coarse grid and vice-versa

Another way to transfer a variable from one grid to another is to compute
the gradient of that variable at the CV centers of the grid on which it was
calculated (coarse or fine). An efficient way to calculate gradients at the
centers of arbitrary CVs using Gauss theorem was described in Chap. 8. It is
then easy to calculate the variable value anywhere nearby using this gradient
(this corresponds to linear interpolation). For the case shown in Fig. 11.5,
we can calculate the coarse-grid variable value at node C by averaging the
values calculated using the fine-grid CV gradients:
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N¢
bo = - Ylbe, + (gradd)e, - (re — 7)1, (11.8)
i=1

where Nt is the number of fine-grid CVs in one coarse-grid CV (on structured
grids, four in 2D and eight in 3D). The coarse CV does not need to know
which fine CVs belong to it — it only needs to know how many there are.
On the other hand, each fine-grid CV (child) knows which coarse grid CV
(parent) it belongs to; it has only one parent.

Similarly, the coarse grid correction is easily transferred to the fine grid.
One calculates the gradient of the correction at the coarse grid CV center;
the correction at the fine-grid nodes which lie within this CV are calculated
from:

¢F, = dc + (gradg’)c - (rr, —70) . (11.9)

This interpolation is more accurate than simple injection of the coarse CV
correction to all fine CVs within it (this can also be done, but smoothing of
the correction is necessary after prolongation). On structured grids, one can
easily implement other kinds of polynomial interpolation.

In FV methods, the conservation property can be used to transfer the mass
fluxes and residuals from the fine to the coarse grid. In 2D, the coarse grid CV
is made up of four fine grid CVs and the coarse grid equation should be the
sum of its daughter fine grid CVs equations. The residuals are thus simply
summed over fine grid CVs, and the initial mass flux at coarse CV faces is
the sum of the mass fluxes at the fine CV faces. During calculations on coarse
grids, the mass fluxes are not calculated using restricted velocities but are
corrected using velocity corrections, (the former would be less accurate and
the correction is smoother than the variable itself). For the generic variables
we may write:

$r1=ITer and Pt =gp + I ¢ (11.10)

where [ ,f‘l is the operator describing the transfer from fine to coarse grid
and If_, is the operator describing the transfer from coarse to fine grid; Egs.
(11.8) and (11.9) provide examples of these operators.

The treatment of the pressure terms in the momentum equations deserves
special mention. Since initially p = p and the pressure terms are linear, we
may work with the difference p’ = p — p. Then we do not need to restrict
the pressure from fine to coarse grids. Note that this is not the pressure
correction p' of SIMPLE and related algorithms; it is a correction of the finer
grid pressure and is based on the velocity corrections uj = @; —@;. As already
mentioned, the initial coarse grid mass fluxes, m, are obtained by summing
the corresponding fine grid mass fluxes. These change only if the velocities
change; we assume that the fine grid mass fluxes are mass-conserving at the
beginning of the multigrid cycle; if not, the mass imbalance can be included
in the pressure-correction equation on the coarse grid.
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It is important to take care that the implementation of boundary condi-
tions also fulfills the consistency requirements. For example, if a symmetry
boundary condition is implemented by setting the boundary value equal to
the value at the near-boundary node, the restriction operator cannot calcu-
late the boundary value of ¢ by interpolating the fine grid boundary values;
it must calculate ¢ at all inner nodes and then apply the boundary condition
to it, i.e. set ¢ at the symmetry boundary equal to ¢ at the near-boundary
nodes. If the boundary condition is applied to ¢, then ¢’ would not be the
same at the boundary and next-to-boundary nodes, and a gradient of ¢'
would be passed to the finer grid. Then the solution on the fine grid cannot
be converged beyond a certain limit. A similar situation can occur due to
inconsistencies in treating other boundary conditions, but we shall not list
all the possibilities here. It is important to assure that the iteration errors
can be reduced to machine accuracy (even though this criterion will not be
used when the code is put into production); if this is not possible, something
is wrong]!

Other strategies (e.g., W-cycles) may be used for cycling between the
grids. Efficiency may be improved by basing the decision to switch from one
grid to another on the rate of convergence. The simplest choice is the V-
cycle described above with a fixed number of iterations on each grid level.
The behavior of the FMG method for the V-cycle with typical numbers of
iterations at each level is schematically shown in Fig. 11.6. The optimum
choice of parameters is problem dependent, but their effect on performance
is not as dramatic as for the single-grid method. Details of multigrid methods
can be found in the book by Hackbusch (1985).

Converged solution Prolongation Q 5

O

O Intermediate solution

Restriction §
—) 3 ;Z
AQ 9 ©
@ 1

Fig. 11.6. Schematic presentation of FMG scheme using V-cycles, showing typical
numbers of outer iterations at different stages in one cycle

The multigrid method can be applied to unstructured grids as well as
structured grids. In FV methods, one usually joins fine grid CVs to produce
coarse grid CVs; the number of fine CVs per coarse CV may differ, depending
on the shape of CVs (tetrahedra, pyramids, prisms, hexahedra etc.). The
multigrid idea can even be used if the coarse and fine grids are not related by
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systematic refinement or coarsening — the grids may be arbitrary; it is only
important that the solution domain and boundary conditions be the same on
all levels, and that one grid is substantially coarser than the other (otherwise
computational efficiency is not improved). The restriction and prolongation
operators are then based on generic interpolation methods; such multigrid
methods are called algebraic multigrid methods (see e.g. Raw, 1995, and Weiss
et al., 1999).

For unsteady flows with implicit methods and small time steps, the outer
iterations usually converge very rapidly (residual reduction by an order of
magnitude per outer iteration), so multigrid acceleration is not necessary.
The biggest savings are achieved for fully elliptic (diffusion-dominated) prob-
lems, and the smallest for convection-dominated problems (Euler equations).
Typical acceleration factors range from 10 to 100 when five grid levels are
used. An example is given below.

When computing turbulent flows with the k- turbulence model, inter-
polation may produce negative values of k£ and/or ¢ in the early cycles of a
multigrid method; the corrections then have to be limited to maintain positiv-
ity. In problems with variable properties, the properties may vary by several
orders of magnitude within the solution domain. This strong non-linear cou-
pling of the equations may cause the multigrid method to become unstable.
It may be better to update some quantities (e.g. the turbulent viscosity in
the k — € turbulence model) only on the finest grid and keep them constant
within a multigrid cycle.
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Under-relaxation factors are relatively unimportant in multigrid methods
for laminar flows; the methods are less sensitive to these parameters than the
single grid method. In Fig. 11.7 we show the dependence of the number of
required outer iterations to solve the lid-driven cavity problem at Re = 1000
on the under-relaxation factor for velocity (using optimum under-relaxation
of pressure correction, see Sect. 7.8) for two grids. The number of iterations
varies by about 30% in the range of o, between 0.5 and 0.9, while for the
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single grid method, the variation was by a factor of five to seven (higher for
finer grids; see Fig. 7.15). However, for turbulent flows, heat transfer, etc.,
under-relaxation may affect the multigrid method substantially.

The full multigrid method described above provides solutions on all grids.
The cost of solving on all of the coarse grids is about 30% of the cost of the
finest grid solution. If the solution process were started on the finest grid with
zero fields, more total effort is needed than if the FMG approach is used. The
savings resulting from more accurate initial fields usually outweigh the cost
needed to obtain them. In addition, having solutions on a series of grids allows
evaluation of discretization errors, as discussed in Sect. 3.9 and provides a
basis for grid refinement. The grid refinement process may be stopped when
the desired accuracy is achieved. Also, Richardson extrapolation may be used.

The multigrid approach to accelerating outer iterations described above
can be applied to any solution method for the Navier-Stokes equations.
Vanka (1986) applied it to the point-coupled solution method; Hutchinson
and Raithby (1986) and Hutchinson et al. (1988) use it with a line-coupled
solution technique. Methods of the SIMPLE type and fractional-step meth-
ods are also well suited for multigrid acceleration; see e.g. Hortmann et, al.
(1990) and Thompson and Ferziger (1989). The role of the smoother is now
taken by the basic algorithm (e.g. SIMPLE); the linear equation solver plays
a minor role.

In Table 11.1 we compare the numbers of outer iterations needed to solve
the 2D lid-driven cavity flow problem at Reynolds numbers Re = 100 and
Re = 1000 using different solution strategies. SG denotes the single-grid
method with a zero initial field. PG denotes the prolongation scheme, in
which the solution from the next coarser grid is used to provide the initial
field. MG denotes the multigrid method using V-cycles, with the finest grid
having zero initial fields. Finally, FMG denotes the multigrid method de-
scribed above, which can be considered a combination of the PG and MG
schemes.

The results show that, for the Re = 100 case, MG and FMG need about
the same number of outer iterations on the finest grid level — a quality initial
guess does not save much. For the single-grid scheme, the savings are sub-
stantial: on the 128 x 128 CV grid, the number of iterations is reduced by a
factor of 3.5. The multigrid method reduces the number of iterations on that
grid by a factor of 15; this factor increases as the grid is refined. The number
of iterations remains constant in the MG and FMG methods from the third
grid onwards, while it increases by a factor of four in SG and by a factor of
2.5 in the PG scheme.

For high Reynolds number flows, the situation changes a bit. SG needs
fewer iterations than at Re = 100, except on coarse grids, on which the
use of CDS slows convergence. PG reduces the number of iterations by less
than a factor of two. MG needs about twice as many iterations as it did for
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Table 11.1. Numbers of iterations and computing times required by various ver-
sions of the solution method to reduce the L; residual norm by four orders of
magnitude when solving the lid-driven 2D cavity flow problem (a, = 0.8, a, = 0.2,
non-uniform grid; for PG and FMG, CPU-times include computing times on all
coarser grids)

. No. outer Iter. CPU-Time
Re Grid o "pa ‘MG FMG SG PG MG FMG
82 58 58 58 58 0.3 0.3 0.3 0.3
162 61 51 47 45 0.9 1.2 14 1.5
100 322 156 99 41 41 9.1 7.0 4.0 5.0
642 555 256 40 40 1408 7.1 130 169
1282 2119 620 40 40 21419 7026 509  66.5
2562 - - 40 40 - - 2422 293.8
82 124 124 124 124 0.5 0.5 0.5 0.5
162 156 162 123 132 2.2 2.5 2.8 2.9

32? 250 288 132 132 14.0 19.2 11.2 13.8

1
000 642 433 400 93 73 97.0 1207 32.0 385
1282 1352 725 83 41 13834 8511 1215 924

2562 - - 83 31 - - 5129 2788

Re = 100. However, FMG becomes more efficient as the grid is refined — the
number of iterations required is actually lower on a 256 x 256 CV grid than
for Re = 100. This is typical behavior of the multigrid method applied to
the Navier-Stokes equations. The FMG approach is usually the most efficient
one.

Results similar to those presented in Table 11.1 are also obtained for the
3D cavity flow; see Lilek et al. (1997a) for details.

In Fig. 11.8 the reduction of residual norm (the sum of absolute values
of the residual over all CVs) of the turbulent kinetic energy k are shown
for the computation of turbulent flow in a segment of a tube bundle made
with the & — ¢ model. The curves are typical for the MG and SG meth-
ods. In practical applications, reduction of residuals by three to four orders
of magnitude usually suffices. Here the residuals were reduced more than
necessary, to show that the rate of convergence does not deteriorate. The
saving in computing time varies from application to application: it is lower
for convection-dominated than for diffusion-dominated flows.

11.4 Adaptive Grid Methods and Local Grid
Refinement

Issues of accuracy have plagued computational fluid dynamics from its incep-
tion. There are many published results with significant errors. Tests intended
to determine model validity have sometimes proven inconclusive because the
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numerical errors were greater than the effects of the model. Recent com-
parative studies in which the same problem was solved by different groups
using different codes reveal that the differences between solutions obtained
using different codes with the same models are often larger than the differ-
ences between solutions obtained using the same code and different models
(Bradshaw et al., 1994; Rodi et al., 1995). These differences can only be due
to numerical error or user mistakes, if the models are really the same (it is
not unusual that supposedly same models turn out to be different due to
different interpretation, implementation, or boundary treatment). For valid
comparisons of models, it is critical that errors be estimated and reduced.
The first essential is a method of estimating errors; the Richardson method
given earlier is a good choice. A method of estimating the error without the
need to perform calculations on two grids is to compare the fluxes through
CV faces that result from the discretization method employed in the solution
and a more accurate (higher-order) method. This is not as accurate as the
Richardson method, but it does serve the purpose of indicating where the er-
rors are large. Since the higher-order approximation is usually more complex,
it is used only to calculate the fluxes after a converged solution with the base
method has been obtained. For example, one can fit a polynomial of degree
three through the cell centers on either side of a particular face and use the
variable values and gradients at these two cell centers to find the coefficients
of the polynomial (see Sect. 4.4.4 for an example). Assume that, if this ap-
proximation had been used, the exact solution ¢ would have been obtained
instead of the solution ¢ that resulted from the usual approximations. The
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difference between fluxes computed using the cubic (F{) and linear fits (F,;Zs )
should be added to the discretized equation as an additional source term to
recover the “exact” solution. If we define the discretization error €4 and the
source term 7 (which is often called tau-error) as follows:

d=0—9¢ and =) (Ff-F)), (11.11)
k

we obtain the following link between an estimate of the discretization error
and the tau-error:

Aced + > Apep = 1c . (11.12)
k

Instead of solving this equation system for €9, it is often sufficient to simply
normalize the 7¢ by Ac¢c and use this quantity as an estimate of the dis-
cretization error; this corresponds to performing one Jacobi iteration on the
system of Egs. {11.12) starting with zero initial values. The reason is that the
above analysis is only approximate and the computed quantity is rather an
indication than estimation of the discretization error. For more details and
examples of application of this method of error estimation, see Muzaferija
and Gosman (1997).

If the error estimate at a particular grid point is larger than a prescribed
level, the cell is labeled for refinement. The boundaries of the refinement
region should be extended by some margin, which should be a function of
the local mesh size; the width of two to four cells is usually a sensible choice.

Block-structured grids require that refinement be performed block-wise;
non-matching interface capability is required if not all blocks are refined.
For unstructured grids, local refinement can be cell-wise, as illustrated in
Fig. 11.9. Otherwise, cells to be refined may be clustered and new blocks of
refined grid be defined, as will be described later.

The objective is to make the error everywhere smaller than some tolerance
§, either in terms of the absolute error, ||¢|, or the relative error, ||e/#||. This
can be accomplished by using methods of differing accuracy, an approach
commonly used in ordinary differential equation solvers, but this is rarely
done. One can also refine the grid everywhere but this is wasteful. A more
flexible choice is to refine the grid locally where the errors are large. Experi-
enced users of CFD codes may generate grids that are fine where necessary
and coarse elsewhere, so that they yield a nearly uniform distribution of dis-
cretization error. However, this is difficult to do, especially if the geometry
contains small but important protrusions e.g. mirrors on cars, appendages on
ships and other vessels, small inlets and outlets on walls of large chambers
etc. In such cases, local grid refinement is essential.

Some authors perform calculations on the refined portion of the grid only,
using boundary conditions taken from the coarse grid solution at the refine-
ment interface. This is called the passive method because the solution on the
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Fig. 11.9. Local grid refinement for the calculation of flow in a combustor: the
coarsest grid (top), second refinement (middle) and final grid (bottom; fifth level);
from Muzaferija and Gosman, 1997

unrefined part of the grid is not re-computed (see Berger and Oliger, 1984).
This feature makes the method inappropriate for elliptic problems in which a
change in conditions in any region may affect the solution everywhere. Meth-
ods that allow the influence of the refined grid solution to spread over the
whole domain are called active methods. Such methods have been developed
by Caruso et al. (1985) and Muzaferija (1994), among others.

One kind of active method (e.g. Caruso et al., 1985) proceeds exactly
as the passive method with the important difference that the procedure is
not complete when the fine grid solution has been computed. Rather, it is
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necessary to compute a new coarse grid solution; this solution is not the one
that would be computed on the coarse grid covering the entire domain but
a smoothed version of the fine grid solution. To see what is needed, suppose
that:

Lr(én) = Qn (11.13)

is a discretization of the problem on a grid of size h; £ represents the operator.
To force the solution to be a smoothed version of the fine-grid solution in the
region which has been refined we replace the coarse-grid problem by:

_ [ Lan(¢n), in the refined region;
L = ¢ Z2h\PR) ’ 11.14
2n(¢2n) { Q2n, in the remainder of the domain, ( )

where ¢, is the smoothed fine-grid solution (i.e. its representation on the
coarse grid). The solution is then iterated between the coarse and fine grids
until the iteration error is small enough; about four iterations usually suffice.
Since the solution on each grid does not need to be iterated to final tolerance
each time, this method costs only a little more than the passive method.

In another kind of active method (Muzaferija, 1994; Muzaferija and Gos-
man, 1997) the grids are combined into a single global grid, including the
refined grid as well as the non-refined part of the original grid. This requires
a solution method that allows CVs with arbitrary numbers of faces. CVs at an
interface between refined and non-refined regions have more faces and neigh-
bors than regular CVs, see Fig. 11.10. For the global conservation property of
the FV method to be retained, the face of a non-refined CV on the refinement
boundary has to be treated as two (in 2D, and four in 3D) separate sub-faces,
each common to two CVs. In the discretization, the sub-faces are treated ex-
actly like any other face between two CVs. The computer code needs to have
a data structure that can handle this situation and the solver needs to be
able to handle the irregular matrix structure that results. Conjugate gradient
type solvers are a good choice; multigrid solvers with Gauss-Seidel smoothers
can also be used with some limitations. The data structure can be optimized
by storing cell-face and cell-volume related values in separate arrays. For a
simple discretization scheme like the one described in Chap. 8, this is easily
done: each cell face is common to two CVs so, for each face, one needs to
store pointers to the nodes of neighbor CVs, surface vector components, and
the matrix coeflicients. The computer code for solving the flow problem is
then the same for locally refined and standard grids; only the pre-processor
needs adaptation to enable it to handle the data for locally refined grids.

If Chimera, grids are used, the code needs no changes, but the interpolation
coefficients and the nodes involved in interpolation need be redefined after
each refinement.

As many levels of grid refinement as necessary can be used; usually at least
three levels are required but as many as eight have been used. The advantage
of the adaptive grid method is that, because the finest grid occupies only a
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Fig. 11.10. A non-refined
CV at the refinement inter-
face: it has six faces (ci,
...,C¢) in common with six
neighbor CVs (Ny, ..., Ne)

small part of the domain, the total number of grid points is relatively small
so both the cost of computation and the memory requirements are reduced
enormously. Furthermore, it can be designed so that the user need not be an
expert grid designer. Especially for flows around bluff bodies such as cars,
airplanes, and ships, in which very fine grids are needed near the body and
in the wake but coarse grids can be used elsewhere, local grid refinement is
essential for accurate and efficient simulation.

Finally, these methods combine very well with the multigrid method. The
nested grids can be regarded as the ones used in multigrid; the only important
difference is that, because the coarse grids provide enough accuracy where
refinement was not necessary, the finest grids do not cover the entire domain.
In the non-refined region, equations to be solved remain the same for both
levels. Since the largest cost of the multigrid method is due to iterations on
the finest grid, the savings can be very large, especially in 3D. For further
details, see Thompson and Ferziger (1989) and Muzaferija (1994).

In Fig. 11.9 an example of the use of locally refined grids to solve a
complex flow problem is presented. Fluid is injected into a large combustion
chamber through holes of different size. Uniform grid refinement would soon
exhaust the computer memory. For example, refining the first grid which has
342 CV uniformly four times yields a grid with 1.4 million CVs; the locally
refined grid shown in the figure has the same number of refinements and
about 0.25 million CVs, about one sixth as many. The uniformly refined grid
thus requires about six times as much memory, an even larger increase in
computing time, and yields only slightly higher accuracy. In compressible
flows, local grid refinement is necessary to resolve shocks efficiently.

11.5 Parallel Computing in CFD

The rapid growth in capability of single-processor computers has slowed in
recent years. It now appears that further increases in speed will require mul-
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tiple processors i.e., parallel computers. The advantage of parallel computers
over classical vector supercomputers is scalability. They also use standard
chips and are therefore cheaper to produce. Commercially available paral-
lel computers may have thousands of processors, terabytes of memory and
computing power measured in teraflops. However, algorithms designed for
traditional serial machines may not run efficiently on parallel computers.

If parallelization is performed at the loop level (as is the case with auto-
parallelizing compilers), Amdahl’s law, which essentially says that the speed
is determined by the least efficient part of the code, comes into play. To
achieve high efficiency, the portion of the code that cannot be parallelized
has to be very small.

A better approach is to subdivide the solution domain into sub-domains
and assign each sub-domain to one processor. In this case the same code runs
on all processors, on its own set of data. Since each processor needs data that
resides in other sub-domains, exchange of data between processors and/or
storage overlap is necessary.

Explicit schemes are relatively easy to parallelize, since all operations are
performed on data from preceding time steps. It is only necessary to exchange
the data at the interface regions between neighboring sub-domains after each
step is completed. The sequence of operations and the results are identical on
one and many processors. The most difficult part of the problem is usually
the solution of the elliptic Poisson-like equation for the pressure.

Implicit methods are more difficult to parallelize. While calculation of
the coefficient matrix and the source vector uses only ‘old’ data and can
be efficiently performed in parallel, solution of the linear equation systems
is not easy to parallelize. For example, Gauss elimination, in which each
computation requires the result of the previous one, is very difficult to perform
on parallel machines. Some other solvers can be parallelized and perform the
same sequence of operations on n processors as on a single one, but they are
either not efficient or the communication overhead is very large. We shall
describe two examples.

11.5.1 Iterative Schemes for Linear Equations

The red-black Gauss-Seidel method is well suited for parallel processing. It
was briefly described in Sect. 5.3.9 and consists of performing Jacobi itera-
tions on two sets of points in an alternating manner. In 2D, the nodes are
colored as on a checkerboard; thus, for a five point computational molecule,
Jacobi iteration applied to a red point calculates the new value using data
only from black neighbor nodes, and vice versa. The convergence properties
of this solver are exactly those of the Gauss-Seidel method, which gave the
method its name.

Computation of new values on either set of nodes can be performed in
parallel; all that is needed is the result of the previous step. The result is
exactly the same as on a single processor. Communication between processors
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working on neighbor sub-domains takes place twice per iteration — after each
set of data is updated. This local communication can be overlapped with
computation of the new values. This solver is suitable only when used in
conjunction with a multigrid method, as it is rather inefficient.

—

I i ie N, I i ie N;

Fig. 11.11. Parallel processing in the SIP solver in the forward loops (left) and in
the backward loop (right); shaded are regions of uneven load

ILU-type methods (e.g. the SIP-method presented in Sect. 5.3.4) are re-
cursive, making parallelization less straightforward. In the SIP-algorithm, the
elements of the L and U matrices, Egs. (5.41), depend on the elements at
the W and S nodes. One cannot start the calculation of the coefficients on
a sub-domain, other than the one in the southwest corner, before data are
obtained from its neighbors. In 2D, the best strategy is to subdivide the do-
main into vertical stripes i.e., use a 1D processor topology. Computation of L
and U matrices and iteration can then be performed fairly efficiently in par-
allel (see Bastian and Horton, 1989). The processor for sub-domain 1 needs
no data from other processors and can start immediately; it proceeds along
its bottom or southernmost line. After it has calculated the elements for the
rightmost node, it can pass those values to the processor for sub-domain 2.
While the first processor starts calculation on its next line, the second one
can compute on its bottom line. All n processors are busy when the first one
has reaches the n-th line from bottom. When the first processor reaches the
top boundary, it has to wait until the last processor, which is n lines behind,
is finished; see Fig. 11.11. In the iteration scheme, two passes are needed. The
first is done in the manner just described while the second is essentially its
mirror image.

The algorithm is as follows:

for j =2 to N; — 1 do:
receive Ug(is — 1,7), Un(is — 1,3) from west neighbor;
for 7 =45 to i, do:

calculate UE(Z’])a LW(Zv.])a UN(Z’])7 L5(27])7 LP(Zvj))
end ¢;
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send Ug(ie,J), Un(ie,j) to east neighbor;
end j;

form =1 to M do:

for j =2 to N; — 1 do:
receive R(is — 1,j) from west neighbor;
for ¢ = is to i, do:

calculate p(i, j), R(i,j);

end ¢;
send R(i.,j) to east neighbor;

end j;

for j = N; —1 to 2 step -1 do:
receive §(i, + 1,j) from east neighbor;
for i =1, to is step -1 do:
calculate 4(3,j);
update variable;
end ¢;
send §(is,j) to west neighbor;
end j;
end m.

The problem is that this parallelization technique requires a lot of (fine
grain) communication and there are idle times at the beginning and end
of each iteration; these reduce the efficiency. Also, the approach is limited
to structured grids. Bastian and Horton (1989) obtained good efficiency on
transputer-based machines, which have a favorable ratio of communication
to computation speed. With a less favorable ratio, the method would be less
efficient.

The conjugate gradient method (without preconditioning) can be paral-
lelized straightforwardly. The algorithm involves some global communication
(gathering of partial scalar products and broadcasting of the final value),
but the performance is nearly identical to that on a single processor. How-
ever, to be really efficient, the conjugate gradient method needs a good pre-
conditioner. Since the best pre-conditioners are of the ILU-type (SIP is a very
good pre-conditioner), the problems described above come into play again.

The above development shows that parallel computing environments re-
quire redesign of algorithms. Methods that are excellent on serial machines
may be almost impossible to use on parallel machines. Also, new standards
have to be used in assessing the effectiveness of a method. Good paralleliza-
tion of implicit methods requires modification of the solution algorithm. The
performance in terms of the number of numerical operations may be poorer
than on a serial computer, but if the load carried by the processors is equalized
and the communication overhead and computing time are properly matched,
the modified method may be more efficient overall.
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11.5.2 Domain Decomposition in Space

Parallelization of implicit methods is usually based on data parallelism or
domain decomposition, which can be performed both in space and time. In
spatial domain decomposition, the solution domain is divided into a certain
number of sub-domains; this is similar to block-structuring of grids. In block-
structuring the process is governed by the geometry of the solution domain,
while, in domain decomposition, the objective is to maximize efficiency by
giving each processor the same amount of work to do. Each sub-domain is
assigned to one processor but more than one grid block may be handled by
one processor; if so, we may consider all of them as one logical sub-domain.

As already noted, one has to modify the iteration procedure for parallel
machines. The usual approach is to split the global coefficient matrix A into
a system of diagonal blocks A;;, which contain the elements connecting the
nodes that belong to the ith sub-domain, and off-diagonal blocks or coupling
matrices A;; (i # j), which represent the interaction of blocks i and j. For
example, if a square 2D solution domain is split into four sub-domains and
the CVs are numbered so that the members of each sub-domain have consec-
utive indices, the matrix has the structure shown in Fig. 11.12; a five-point
molecule discretization is used in this illustration. The method described be-
low is applicable to schemes using larger computational molecules; in this
case, the coupling matrices are larger.

T e r

\Q An|l  Ap| A ] Solution domain
\ \\ ? Q \\ Subdomain boundaries
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Fig. 11.12. Structure of the global coefficient matrix when a square 2D solution
domain is subdivided into 4 sub-domains

For efficiency, the iterative solver for the inner iterations should have as
little data dependency (data provided by the neighbors) as possible; data
dependency may result in long communication and/or idle times. Therefore,
the global iteration matrix is selected so that the blocks are de-coupled, i.e.
M;; = 0 for i # j. The iteration scheme on sub-domain i is then:
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My = Q! — (Ay — M) — ZAijd);n_l (G#1). (11.15)
i)

The SIP solver is easily adapted to this method. Each diagonal block
matrix M;; is decomposed into L and U matrices in the normal way; the global
iteration matrix M = LU is not the one found in the single processor case.
After one iteration is performed on each sub-domain, one has to exchange the
updated values of the unknown ¢™ so that the residual p™ can be calculated
at nodes near sub-domain boundaries.

When SIP solver is parallelized in this way, the performance deteriorates
as the number of processors becomes large; the number of iterations may
double when the number of processors is increased from one to 100. However,
if the inner iterations do not have to be converged very tightly, as is the
case for some implicit schemes described in Chap. 7, parallel SIP can be
quite efficient because SIP tends to reduce the error rapidly in the first few
iterations. Especially if the multigrid method is used to speed-up the outer
iterations, the total efficiency is quite high (80% to 90%; see Schreck and
Peri¢, 1993, and Lilek et al., 1995, for examples). A 2D flow prediction code
parallelized in this way is available via Internet; see appendix for details.
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Fig. 11.13. Number of iterations in the ICCG solver as a function of the number of
processors (uniform grid with 64® CVs, Poisson equation with Neumann boundary
conditions, LC after each pre-conditioner sweep, | sweeps per CG iteration, residual
norm reduced two orders of magnitude; from Seidl, 1997)

Conjugate gradient based methods can also be parallelized using the above
approach. Below we present a pseudo-code for the preconditioned CG solver.
It was found (Seidl et al., 1995) that the best performance is achieved by
performing two pre-conditioner sweeps per CG iteration, on either single- or
multi-processors. Results of solving a Poisson equation with Neumann bound-
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ary conditions, which simulates the pressure-correction equation in CFD ap-
plications, are shown in Fig. 11.13. With one pre-conditioner sweep per CG
iteration, the number of iterations required for convergence increases with
the number of processors. However, with two or more pre-conditioner sweeps
per CG iteration, the number of iterations remains nearly constant. However,
in different applications one may obtain different behaviour.

Initialize by setting: & = 0, ¢° = ¢in, p° = Q — Adin, p° = 0, so = 10%°
Advance the counter: k = k + 1
On each sub-domain, solve the system: Mz* = p*=—1!
LC: exchange z* along interfaces
Calculate: s* = p*~1. 2%
GC: gather and scatter s*
ﬁk — sk / Sk——l
p* = 2k 4 ghph—1
LC: exchange p* along interfaces
o = si/(p* - Ap®)
GC: gather and scatter o
¢k — ¢k—1 + akpk
pk — pk—l _ akApk
o Repeat until convergence.

To update the right hand side of Eq. (11.15), data from neighbor blocks
is necessary. In the example of Fig. 11.12, processor 1 needs data from pro-
cessors 2 and 3. On parallel computers with shared memory, this data is
directly accessible by the processor. When computers with distributed mem-
ory are used, communication between processors is necessary. Each processor
then needs to store data from one or more layers of cells on the other side
of the interface. It is important to distinguish local (LC) and global (GC)
communication.

Local communication takes place between processors operating on neigh-
boring blocks. It can take place simultaneously between pairs of processors;
an example is the communication within inner iterations in the problem con-
sidered above. GC means gathering of some information from all blocks in a
‘master’ processor and broadcasting some information back to the other pro-
cessors. An example is the computation of the norm of the residual by gath-
ering of the residuals from the processors and broadcasting the result of the
convergence check. There are communication libraries, like PVM (Sunderam,
1990) or TCGMSG (Harrison, 1991), available on most parallel computers.

If the number of nodes allocated to each processor (i.e. the load per pro-
cessor) remains the same as the grid is refined (which means that more pro-
cessors are used), the ratio of local communication time to computing time
will remain the same. We say that LC is fully scalable. However, the GC time
increases when the number of processors increases, independent of the load
per processor. The global communication time will eventually become larger
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than the computing time as the number of processors is increased. Therefore,
GC is the limiting factor in massive parallelism. Methods of measuring the
efficiency are discussed below.

11.5.3 Domain Decomposition in Time

Implicit methods are usually used for solving steady flow problems. Although
one is tempted to think that these methods are not well suited to parallel com-
puting, they can be effectively parallelized by using domain decomposition in
time as well as in space. This means that several processors simultaneously
perform work on the same sub-domain for different time steps. This technique
was first proposed by Hackbusch (1984).

Since none of the equations needs to be solved accurately within an outer
iteration, one can also treat the ‘old’ variables in the discretized equation as
unknowns. For a two-time-level scheme the equations for the solution at time
step n can be written:

A"¢"™ + BMop" T = Q™. (11.16)

Since we are considering implicit schemes, the matrix and source vector may
depend on the new solution, which is why they carry the index n. The simplest
iterative scheme for solving simultaneously for several time steps is to de-
couple the equations for each time step and use old values of the variables
where necessary. This allows one to start the calculation for the next time
step as soon as the first estimate for the solution at the current time step is
available, i.e. after one outer iteration is performed. The extra source term
containing the information from the previous time step(s) is updated after
each outer iteration, rather than being held constant as in serial processing.
When the processor k, working on time level t,, is performing its mth outer
iteration, the processor k — 1, working on time level t,,_;, is performing its
(m + 1)th outer iteration. The equation system to be solved by processor k&
in the mth outer iteration is then:

(Am¢™)F = (@™~ — (B " )L, . (11.17)

The processors need to exchange data only once per outer iteration, i.e. the
linear equation solver is not affected. Of course, much more data is transferred
each time than in the method based on domain decomposition in space. If
the number of time steps treated in parallel is not larger than the number
of outer iterations per time step, using the lagged old values does not cause
a significant increase in computational effort per time step. On the last time
step in a parallel sequence, the term (B"¢™!),_, is included in the source
term, as it does not change within iterations.

Figure 11.14 shows the structure of the matrix for a two-time-level scheme
with simultaneous solution on four time steps. Time-parallel solution methods
for CFD problems have been used by Burmeister and Horton (1991), Horton
(1991), and Seid! et al. (1995), among others. The method can also be applied
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to multilevel schemes; in that case the processors have to send and receive
data from more than one time level.

11.5.4 Efficiency of Parallel Computing

The analysis of the performance of parallel programs is usually measured by
the speed-up factor and efficiency defined by:

_Ii Etot _ TS

S":Tn’ " aT,

(11.18)
Here T is the execution time for the best serial algorithm on a single processor
and T, is the execution time for the parallelized algorithm using n processors.
In general 75 # T3, as the best serial algorithm may be different from the
best parallel algorithm; one should not base the efficiency on the performance
of the parallel algorithm executed on a single processor.

The speed-up is usually less than n (the ideal value), so the efficiency
is usually less than 1 (or 100%). However, when solving coupled non-linear
equations, it may turn out that solution on two or four processors is more
efficient than on 1 processor so, in principle, efficiencies higher than 100% are
possible (the increase is often due to the better use of cash memory when a
smaller problem is solved by one processor).

Although not necessary, the processors are usually synchronized at the
start of each iteration. Since the duration of one iteration is dictated by
the processor with the largest number of CVs, other processors experience
some idle time. Delays may also be due to different boundary conditions in
different sub-domains, different numbers of neighbors, or more complicated
communication.

The computing time 7, may be expressed as:

T, = Nri, (11.19)
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where N is the total number of CVs, 7 is the time per floating point op-
eration and is is the number of floating point operations per CV required
to reach convergence. For a parallel algorithm executed on n processors, the
total execution time consists of computing and communication time:

Tn =T + T = NiVrin + T™ (11.20)

where N7V is the number of CVs in the largest sub-domain and TF°™ is
the total communication time during which calculation cannot take place.
Inserting these expressions into the definition of the total efficiency yields:

poo_ T _ Ny _
n nT, n(Nri,+ Teom)
1g 1 NeY

& T Toom JTate e = ERmERAED (11.21)
This equation is not exact, since the number of floating point operations
per CV is not constant (due to branching in the algorithm and the fact
that boundary conditions affect only some CVs). However, it is adequate to
identify the major factors affecting the total efficiency. The meanings of these
factors are:

o EnU™ — The numerical efficiency accounts for the effect of the change in
the number of operations per grid node required to reach convergence due
to modification of the algorithm to allow parallelization;

e EP2" — The parallel efficiency accounts for the time spent on communica-
tion during which computation cannot take place;

e E!® — The load balancing efficiency accounts for the effect of some pro-
cessors being idle due to uneven load.

When the parallelization is performed in both time and space, the overall
efficiency is equal to the product of time and space efficiencies.

The total efficiency is easily determined by measuring the computing time
necessary to obtain the converged solution. The parallel efficiency cannot be
measured directly, since the number of inner iterations is not the same for
all outer iterations (unless it is fixed by the user). However, if we execute
a certain number of outer iterations with a fixed number of inner iterations
per outer iteration on 1 and n processors, the numerical efficiency is unity
and the total efficiency is then the product of the parallel and load balancing
efficiencies. If the load balancing efficiency is reduced to unity by making all
sub-domains equal, we obtain the parallel efficiency. Some computers have
tools which allow operation counts to be performed; then the numerical effi-
ciency can be directly measured.

For both space and time domain decomposition, all three efficiencies are
usually reduced as the number of processors is increased for a given grid. This
decrease is both non-linear and problem-dependent. The parallel efficiency is
especially affected, since the time for LC is almost constant, the time for GC
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increases, and the computing time per processor decreases due to reduced sub-
domain size. For time parallelization, the time for GC increases while the LC
and computing times remain the same when more time steps are calculated
in parallel for the same problem size. However, the numerical efficiency will
decrease disproportionately if the number of processors is increased beyond a
certain limit (which depends on the number of outer iterations per time step).
Optimization of the load balancing is difficult in general, especially if the grid
is unstructured and local refinement is employed. There are algorithms for
optimization, but they may take more time than the flow computation!
Parallel efficiency can be expressed as a function of three main parameters:

e set-up time for data transfer (called latency time);
e data transfer rate (usually expressed in Mbytes/s);
e computing time per floating point operation (usually expressed in Mflops).

For a given algorithm and communication pattern, one can create a model
equation to express the parallel efficiency as a function of these parameters
and the domain topology. Schreck and Perié (1993) presented such a model
and showed that the parallel efficiency can be fairly well predicted. One can
also model the numerical efficiency as a function of alternatives in the so-
lution algorithm, the choice of solver and the coupling of the sub-domains.
However, empirical input based on experience with similar flow problems is
necessary, since the behavior of the algorithm is problem-dependent. These
models are useful if the solution algorithm allows alternative communica-
tion patterns; one can choose the one most suitable for the computer used.
For example, one can exchange data after each inner iteration, after every
second inner iteration, or only after each outer iteration. One can employ
one, two, or more pre-conditioner iterations per conjugate gradient iteration;
the pre-conditioner iterations may include local communication after each
step or only at the end. These options affect both the numerical and parallel
efficiency; a trade-off is necessary to find an optimum.

Combined space and time parallelization is more efficient than pure spa-
tial parallelization because, for a given problem size, the efficiency goes down
as the number of processors increases. Table 11.5.4 shows results of the com-
putation of the unsteady 3D flow in a cubic cavity with an oscillating lid at a
maximum Reynolds number of 10, using a 32 x 32 x 32 CV grid and a time
step of At = T'/200, where T is the period of the lid oscillation. When sixteen
processors were used with four time steps calculated in parallel and the space
domain decomposed into four sub-domains, the total numerical efficiency was
97%. If all processors are used solely for spatial or temporal decomposition,
the numerical efficiency drops below 70%.

Communication between processors halts computation on many machines.
However, if the communication and computation could take place simultane-
ously (which is possible on some new parallel computers), many parts of the
solution algorithm could be rearranged to take advantage of this. For example,
while LC takes place in the solver, one can do computation in the interior of
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Table 11.2. Numerical efficiency for various domain decompositions in space and
time for the calculation of cavity flow with an oscillating lid

Decomposition in  Mean number of Mean number of Numerical

space and time outer iterations  inner iterations efficiency
xyxzxt per time step per time step (in %)
1x1x1x1 11.3 359 100
1x2x2x1 11.6 417 90
1x4x4x1 11.3 635 68
Ix1x1x2 11.3 348 102
Ix1x1x4 11.5 333 104
1x1x1x8 14.8 332 93
1x1x1x12 21.2 341 76
1x2x2x4 11.5 373 97

the sub-domain. With time parallelism, one can assemble the new coefficient
and source matrices while LC is taking place. Even the GC in a conjugate
gradient solver, which appears to hinder execution, can be overlapped with
computation if the algorithm is rearranged as suggested by Demmel et al.
(1993). Convergence checking can be skipped in the early stages of computa-
tion, or the convergence criterion can be rearranged to monitor the residual
level at the previous iteration, and one can base the decision to stop on that
value and the rate of reduction.

Peri¢ and Schreck (1995) analyzed the possibilities of overlapping commu-
nication and computation in more detail and found that it can significantly
improve parallel efficiency. New hard- and software are likely to allow con-
currency of computation and communication, so one can expect that parallel
efficiency can be optimized. One of the main concerns for the developers of
parallel implicit CFD algorithms is numerical efficiency. It is essential that
the parallel algorithm not need many more computing operations than the
serial algorithm for the same accuracy. Results show that parallel computing
can be efficiently used in CFD. The use of workstation clusters is especially
useful with this respect, as they are available to almost all users and big prob-
lems are not solved all the time. It is expected that most computers (PCs,
workstations and mainframes) will be multiprocessor machines in the future;
it is therefore essential to have parallel processing in mind when developing
new solution methods.



12. Special Topics

12.1 Introduction

Fluid flows may include a broad range of additional physical phenomena that
take the subject far beyond the single-phase non-reacting flows that have been
the focus of this work up to this point. Many types of physical processes may
occur in flowing fluids. Each of these may interact with the flow to produce
an amazing range of new phenomena. Almost all of these processes occur in
important applications. Computational methods have been applied to them
with varying degrees of success.

The simplest element that can be added to a flow is a scalar quantity such
as the concentration of a soluble chemical species or temperature. The case in
which the presence of the scalar quantity does not affect the properties of the
fluid has already been treated in earlier chapters; in such a case, we speak of
a passive scalar. In a more complex case, the density and viscosity of the fluid
may be modified by the presence of the scalar and we have an active scalar.
In a simple example, the fluid properties are functions of temperature or the
concentration of the species. This field is known as heat and mass transfer.

In other cases, the presence of a dissolved scalar or the physical nature of
the fluid itself cause the fluid to behave in way that the stress in not related to
the strain rate by the simple Newtonian relationship (1.9). In some fluids, the
viscosity becomes a function of the instantaneous strain rate and we speak of
shear-thinning or shear-thickening fluids. In more complex fluids, the stress
is determined by an additional set of non-linear partial differential equations.
We then say that the fluid is viscoelastic. Many polymeric materials, including
biological ones, exhibit this kind of behavior, giving rise to unexpected flow
phenomena. This is the field of non-Newtonian fluid mechanics.

Flows may contain various kinds of interfaces. These may be due to the
presence of a solid body in the fluid. In simple cases of this kind, it is possible
to transform to a coordinate system moving with the body and the problem
is reduced to one of the kind treated earlier, albeit in a complex geometry.
In other problems, there may be bodies that move with respect to each other
and there is no choice but to introduce a moving coordinate system. A par-
ticularly important and difficult case of this kind is one in which the surface
is deformable. Surfaces of bodies of liquid are examples on this type.
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In still other flows, multiple phases may coexist. All of the possible com-
binations are of importance. The solid-gas case includes such phenomena
as dust in the atmosphere, fluidized beds, and gas flow through a porous
medium. In the solid-liquid category are slurries (in which the liquid is the
continuous phase), again, porous medium flows. Gas-liquid flows include
sprays (in which the gas phase is continuous) and bubbly flows (in which
the reverse is true). Finally, there may be three-phase flows. Each of these
cases has many sub-categories.

Chemical reaction may take place in flows and again, there are many
individual cases. When the reacting species are dilute, the reaction rates may
be assumed constant (they may, however, depend on temperature) and the
reacting species are essentially passive scalars with respect to their effect on
the flow. Examples of this kind are pollutant species in the atmosphere or
the ocean. Another kind of reaction involves major species and releases a
large amount of energy. This is the case of combustion. Still another example
is that of airflow at high speeds; compressibility effects may lead to large
temperature increases and the possibility of dissociation or ionization of the
gas.

Geophysics and astrophysics also require the solution of the equations of
fluid motion. Other than plasma effects (discussed below), the new elements
in these flows are the enormous scales compared to engineering flows. In me-
teorology and oceanography, rotation and stratification have a great influence
on the behavior.

Finally, we mention that in plasmas (ionized fluids), electromagnetic ef-
fects play an important role. In this field, the equations of fluid motion have
to be solved along with the equations of electro-magnetism (the Maxwell
equations) and the number of phenomena and special cases is enormous.

In the remainder of this chapter, we shall describe methods for dealing
with some, but not all, of these difficulties. We should point out that each of
the topics mentioned above is an important sub-specialty of fluid mechanics
and has a large literature devoted to it; references to textbooks in each area
are given below. It is impossible to do justice to each of these topics in the
space available here.

12.2 Heat and Mass Transfer

Of the three mechanisms of heat transfer — conduction, radiation, and con-
vection — usually presented in courses on the subject, the last is most closely
connected with fluid mechanics. The link is so strong that convective heat
transfer may be regarded as a sub-area of fluid mechanics.

Steady heat conduction is described by Laplace’s equation (or equations
very similar to it) while unsteady conduction is governed by the heat equa-
tion; these equations are readily solved by methods presented in Chaps. 3, 4
and 6. A complication arises when the properties are temperature-dependent.
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In such a case, the properties are calculated using the temperature on the
current iteration, the temperature is updated, and the process is repeated.
Convergence is usually nearly as rapid as in the fixed-property case.

In some applications, heat conduction in a solid needs to be considered
along with convection in an adjacent fluid. Problems of this kind are called
conjugate heat transfer problems and need to be solved by iterating between
the equations describing the two types of heat transfer. Fully coupled methods
have also been suggested.

Radiation involving solid surfaces has little connection with fluid me-
chanics (except in problems with multiple active mechanisms of heat trans-
fer). There are interesting problems (for example, flows in rocket nozzles and
combustors) in which both fluid mechanics and radiative heat transfer in the
gas are important. The combination also occurs in astrophysical applications
and in meteorology. We shall not deal with this type of problem here.

In laminar convective heat transfer, the dominant processes are advec-
tion (which we previously called convection!) in the streamwise direction and
conduction in the direction normal to the flow. When the flow is turbulent,
much of the role played by conduction in laminar flows is taken over by the
turbulence and is represented by a turbulence model; these models are dis-
cussed in Chapter 9. In either case, interest generally centers on exchange of
thermal energy with solid surfaces.

If the temperature differences are small (less than 5 K in water or 10
K in air), the variations of the fluid properties are not important and the
temperature behaves as a passive scalar. Problems of this sort can be treated
by methods described earlier in this book. Since the temperature is a passive
scalar in this case, it can be computed after the computation of the velocity
field has been completely converged, making the task much simpler. In the
case in which the flow is driven by density differences, the latter must be
taken into consideration. This can be done with the aid of the Boussinesq
approximation described below.

Another important special case is that of heat transfer occurring in flows
past bodies of smooth shape. In flows of this type, one can first compute
the potential flow around the body and then use the pressure distribution
obtained as input to a boundary layer code for the prediction of the heat
transfer. If the boundary layer does not separate from the body, it is possible
to compute these flows using the boundary-layer simplification of the Navier-
Stokes equations (see, for example, Kays and Crawford, 1978, or Cebeci and
Bradshaw, 1984). The boundary-layer equations are parabolic and can be
solved in a matter of seconds (for the 2D case) or a minute or so (for the 3D
case) on a modern workstation or personal computer. Methods for computing
these flows have not been covered in detail in this work (but the general
principles are found in Chaps. 3 to 7); the interested reader can find them
in the works by Cebeci and Bradshaw (1984) and Patankar and Spalding
(1977).
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In the general case, temperature variations are significant. They affect
the flow in two ways. The first is through the variation of the transport
properties with temperature. These can be very large and must be taken
into account but are not difficult to handle numerically. The important issue
is that the energy and momentum equations are now coupled and must be
solved simultaneously. Fortunately, the coupling is not usually so strong as
to prevent solution of the equations in sequential fashion. On each outer
iteration, the momentum equations are first solved using transport properties
computed from the ‘old’ temperature field. The temperature field is updated
after the solution of the momentum equations has been obtained for the new
outer iteration and the properties are updated. This technique is very similar
to the one for solving the momentum equations with a turbulence model
described in Chapter 9.

Another effect of temperature variation is that density variation interact-
ing with gravity, produces a body force that may modify the flow considerably
and may be the principal driving force in the flow. In the latter case, we talk of
buoyancy-driven or natural convection flow. The relative importance of forced
convection and buoyancy effects is measured by the ratio of the Rayleigh and
Reynolds numbers. The former is defined by:

_gApL?
~ povk

Ra (12.1)

where g is the acceleration of gravity, Ap is the density variation within the
domain, pg is a reference density, and & is the thermal diffusivity. If Re/Ra
> 10*, the effects of natural convection may be ignored.

In purely buoyancy-driven flows, if the density variations are small
enough, it may be possible to ignore the density variations in all terms other
than the body force in the vertical momentum equation. This is called the
Boussinesq approximation and it allows the equations to be solved by meth-
ods that are essentially identical to those used for incompressible flow. An
example was presented in Sect. 7.8.

Computation of flows in which buoyancy is important is usually made by
methods of the type described above i.e. iteration of the velocity field precedes
iteration for the temperature and density fields. Because the coupling between
the fields may be quite strong, this procedure may converge more slowly than
in isothermal flows. Solution of the equations as a coupled system increases
the convergence rate at the cost of increased complexity of programming and
storage requirements; see Galpin and Raithby (1986) for an example. The
strength of the coupling also depends on the Prandtl number. It is stronger
for fluids with high Prandtl numbers; for these fluids, the coupled solution
approach yields much faster convergence than the sequential approach.
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12.3 Flows With Variable Fluid Properties

Although we have dealt mainly with incompressible flows, the density, viscos-
ity, and other fluid properties have been kept inside the differential operators.
This allows the discretization and solution methods presented in the preced-
ing chapters to be used to solve problems with variable fluid properties.

The variation in fluid properties is usually caused by temperature varia-
tion; pressure variation also affects the change of density. This kind of vari-
ation was considered in Chap. 10, where we dealt with compressible flows.
However, there are many cases in which the pressure does not change substan-
tially, but the temperature and/or concentration of solutes can cause large
variation in fluid properties. Examples are gas flows at reduced pressure, flows
in liquid metals (crystal growth, solidification and melting problems, etc.),
and environmental flows of fluids stratified by dissolved salt.

Variations in density, viscosity, Prandtl number, and specific heat increase
the non-linearity of the equations. The sequential solution method can be
applied to these flows in the much the same way they are applied to flows with
variable temperature. One recalculates the fluid properties after each outer
iteration and treats them as known during the next outer iteration. If the
property variation is significant the convergence may be slowed considerably.
For steady flows, the multigrid method can result in a substantial speed-up;
see Durst et al. (1992) for an example of application to metalorganic chemical
vapor deposition problems, and Kadinski and Peri¢ (1995) for application to
problems involving thermal radiation.

Flows in the atmosphere and the oceans are special examples of variable
density flows; they are discussed later.

12.4 Moving Grids

In many application areas the solution domain changes with time due to the
movement of boundaries. The movement is determined either by external
effects (as in piston-driven flows) or by calculation as part of the solution
(for example, in free-surface flows). In either case, the grid has to move to
accommodate the changing boundary. If the coordinate system remains fixed
and the Cartesian velocity components are used, the only change in the con-
servation equations is the appearance of the relative velocity in convective
terms; see Sect. 1.2. We describe here briefly how the equations for a moving
grid system can be derived.
First consider the one dimensional continuity equation:

dp | 9(pv)

5 + el 0. (12.2)
By integrating this equation over a control volume whose boundaries move
with time, i.e. from z,(t) to z22(t), we get:



374 12. Special Topics

z2(t) zo(t)

dp d(pv) . _
/6 de +/ 2 4z =0. (12.3)
z1(t) z1(t)

The second term causes no problems. The first requires the use of Leibniz’s
rule and, as a result, Eq. (12.3) becomes:

T2 (t)

d dz dz;
o / pdx — [pgd—: T } + pavy — prvy =0. (12.4)

a:l(t)

The derivative dz/dt represents the velocity with which the grid (integration
boundary) moves; we denote it by v,. The terms in square brackets have
therefore a form similar to the last two terms involving fluid velocity, so we
can rewrite the Eq. (12.3) as

d z2(t) z2(t)
— / pdz +

dt
z1(t) z1(t)

(v~ w)dz =0. (125)

When the boundary moves with fluid velocity, i.e. v, = v, the second inte-
gral becomes zero and we have the Lagrangian mass conservation equation,
dm/dt = 0.

The three-dimensional version of Eq. (12.4) (obtained using the 3D version
of Leibniz’s rule) gives:

;: pdf2 ~ / dr ndS+/pv ndS=0, (12.6)

or, in the notation used above:

:t/pd!?-}-/ plv—vp)-ndS=0. (12.7)

In Sect. 1.2 we noted that the conservation laws can be transformed from
the control mass to control volume form by using Eq. (1.4); this also leads to
the above mass conservation equation. The same approach may be applied
to any transport equation.

The integral form of the conservation equation for the ith momentum
component takes the following form when the CV-surface moves with velocity
Vb

;t/pu,dﬁ—i-/pu,(v—vb) ndS = /T,]z] pi;) -ndS+

/ b;d2 . (12.8)
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Conservation equations for scalar quantities are easily derived from the cor-
responding equations for a fixed CV by replacing the velocity vector in the
convective term with the relative velocity v — vy,.

Obviously, if the boundary moves with the same velocity as the fluid, the
mass flux through the CV face will be zero. If this is true for all CV faces,
then the same fluid remains within the CV and it becomes a control mass;
we then have the Lagrangian description of fluid motion. On the other hand,
if the CV does not move, the equations are those dealt with earlier.

When the location of the grid is known as a function of time, solution of
the Navier-Stokes equations poses no new problems: we simply calculate the
convective fluxes (e.g. the mass fluxes) using the relative velocity components
at the cell faces. However, when the cell faces move, conservation of mass (and
all other conserved quantities) is not necessarily ensured if the grid velocities
are used to calculate the mass fluxes. For example, consider the continuity
equation with implicit Euler time integration; for the sake of simplicity we
assume that the CV is rectangular and that the fluid is incompressible and
moves at constant velocity. Figure 12.1 shows the relative sizes of the CV at
the old and new time levels. We also assume that the grid lines (CV faces)
move with constant, but different velocities, so that the size of the CV grows
with time.

New position
2 n
: 7—"\ """""""
= Old position !
<>1‘ S H €
g :
s

(Ax)" l Sx Fig. 12.1. A rectangular control volume
(A )n+1'" whose size increases with time due to a dif-
X ference in the grid velocities at its boundaries.

The discretized continuity equation for the CV shown in Fig. 12.1 with
the implicit Euler scheme reads:
pl(AD™ — (AD)"]
At

+p[(u—uple — (u—up)w)" (Ay)™ " +

pl(v=vp)a = (v —w)s " (A2)" =0, (12.9)

where u and v are the Cartesian velocity components. Since we assume that
the fluid moves with a constant velocity, the contribution of fluid velocity in
the above equation cancels out — only the difference in grid velocities remains:

LLAQ)™ — (AQ)™] = plun,e - up)(Ay)™ ~
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p(Ub,n — Ubs)(Az)"T! = 0. (12.10)

Under the assumptions made above, the difference in grid velocities at the
opposite CV sides can be expressed as (see Fig. 12.1):

dx dy
Ube = Ubw = Z5 5 Vb —Ubs = 77 - (12.11)

By substituting these expressions into Eq. (12.10) and noting that (A2)"+! =
(Az Ay)™*™! and (AN)" = [(Az)™H! - §z][(Ay)™*! — by, we find that the
discretized mass conservation equation is not satisfied — there is a mass source

. oz
b = P_E_g = p(tipe — Upw)(Ubn — Ubs) At . (12.12)

The same error {with opposite sign) is obtained with the explicit Euler
scheme. For constant grid velocities it is proportional to the time step size,
i.e. it is a first-order discretization error. One might think that this is not
a problem, since the scheme is only first-order accurate in time; however,
artificial mass sources may accumulate with time and cause serious problems.
The error disappears if only one set of grid lines moves, or if the grid velocities
are equal at opposite CV sides.

Under the above assumptions, both the Crank-Nicolson and three-time-
level implicit scheme satisfy the continuity equation exactly. More generally,
when the fluid and /or grid velocities are not constant, these schemes can also
produce artificial mass sources.

Mass conservation can be obtained by enforcing the so-called space con-
servation law (SCL) which can be thought of as the continuity equation in
the limit of zero fluid velocity:

i/ dQ—/vb-ndSzo. (12.13)
dt /o s

This equation describes the conservation of space when the CV changes its
shape and/or position with time.

In what follows the implicit Euler scheme for time integration is used for il-
lustration; the extension to higher-order schemes is straightforward, but more
complicated. For spatial integration we use the midpoint rule and central-
difference schemes.

Equation (12.13) reads, in discretized form:

n+l _ n
(AQ) At (AQ) = Z(‘Ub -n)c Sc y C:e)w’n,s,”_ (1214)

[

The difference between the ‘new’ and the ‘old’ CV volume can be expressed
as the sum of volumes §§2. swept by the CV faces during the time step, see
Fig. 12.2:
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New position
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T Fig. 12.2. A typical 2D CV at
----- x two time steps and the volume
swept by a cell face.
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At At

By comparing these two equations, we see that the volume swept by one cell
face is:

(12.15)

80,
At
The grid movement affects only the mass fluxes. When the CV position

at all times is known, the grid velocity vy, can be calculated explicitly. At the
cell face center:

2. = (vy-n) S = (12.16)

it oy

VUb,c = T . (1217)
When the grid moves in only one direction, this approach causes no problems.
It is also possible to transform equations to a moving coordinate system
(Gosman, 1984). However, if the grid moves in more than one direction, it is
difficult to ensure mass conservation using expressions like (12.17); artificial
mass sources may be generated, as demonstrated by Demirdzi¢ and Perié
(1988). By computing the volumes defined by the cell face positions at each
time step, these errors can be avoided, even if the time step is very large.
The mass flux through a cell face ‘¢’ can therefore be calculated as:

e = / p(v —vy) - ndS & pe(v-n).S, — pL2. . (12.18)
Se

In a sequential solution method, the mass fluxes are treated as known
in all other conservation equations, so these equations may be treated as
they were on a stationary grid. Only the continuity equation requires special
attention. For the implicit Euler scheme, the discretized continuity equation
reads:

n+l _ n
(p AN) (A" | Y oe=0, c=ewns,... (12.19)

At
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The unsteady term has to be treated in a way that is consistent with the
space conservation law. For incompressible flows, the contribution of the grid
movement to the mass fluxes has to cancel the unsteady term, i.e. the mass
conservation equation reduces to:

/pv-ndS:O. (12.20)
s

The discretization method must ensure that the unsteady term and the mass
fluxes satisfy this equation if strict mass conservation is to be obtained. If the
volume change and mass fluxes are calculated as above, this conservation is
assured. Therefore, for incompressible flows, grid movement, does not affect
the pressure-correction equation.

New
position

Fig. 12.3. On the calcula-
tion of a volume swept by
a cell face of a 3D CV;
shaded are surfaces common
to neighbor CVs.

In three dimensions, one has to be careful in calculating the volumes
swept by cell faces. Because the cell face edges may turn, the calculation of
the swept volume requires triangulation of the shaded surfaces in Fig. 12.3.
The volume can then be calculated using approach described in Sect. 8.6.4.
However, as the shaded surfaces are common to two CVs, one has to ensure
that they are triangulated in the same way for both CVs to assure space
conservation.

Extension to higher-order schemes is straightforward. For example, dis-
cretization of the SCL, Eq. (12.13) by the Crank-Nicolson scheme leads to
(see Eq. (12.16)):

80,

. 12.21
gy (12.21)

0= 3 [(wy - )2 2+ (oy - )P ST =

The swept volume 62, is calculated in the same way as for the implicit. Euler
scheme, but the mass flux is now calculated at the half step location:

3 1 n ngn n n n * ()
e = 3 [p2(v-n)2ST + p2t (v - n)2TESIHY] — pra2, . (12.22)
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For incompressible flows, the density is constant so p} = p = const. Com-
pressible flows require special care in order to determine p} such that both
space and mass conservation equations are satisfied. The problem is that the
mass conservation equation (12.19) contains the cell-center density in the un-
steady term and cell-face densities in the mass fluxes, so that the evaluation of
p; is not trivial if the density varies rapidly in both space and time. If it does,
small time steps are necessary so that the approximation p = 1/2(p?+p2+1)
is sufficiently accurate.

The importance of taking the space (or geometric) conservation law into
account in unsteady flows with moving boundaries has been recognized by
many authors; see Thomas and Lombard (1979) and Demirdzié¢ and Peri¢
(1988) for a more detailed discussion. Using coordinate transformations or
calculating the grid velocities from the motion of the cell-face center (see Eq.
(12.17)) leads to artificial mass sources or sinks. The error depends on the
time step and grid velocity, (see Eq. (12.12)). When the time step is small
(which is usually the case with explicit schemes), the error is also small and
is often neglected. However, care needs to be taken to avoid accumulation of
the mass-imbalance error.

When the grid location is known at each time level, inclusion of grid
movement in the solution procedure is simple; see Demirdzi¢ and Peri¢ (1990)
for more details and an example. When the boundary movement is not known
in advance, an iterative procedure has to be used at each time step (or outer
iteration).

In some implicit time-integration methods (so-called fully-implicit meth-
ods), in which fluxes and source terms are computed only at the newest time
level, grid motion can be ignored everywhere except near boundaries. Exam-
ples of such methods are the implicit Euler scheme and the three-time-level
scheme, see Chap. 6. Since the fluxes are computed at time level t,41, we do
not need to know where the grid was (or what shape the CVs had) at the
previous time level ¢,: instead of Eq. (12.8) we can use the usual equation
for a space-fixed CV:

%/ﬂpuidﬂ—}-/spuiv-nds:/S(Tijij—pii)-ndS—}-

/ bidf2 . (12.23)
£2

The two equations differ in the definition of the rate-of-change and convective
terms: for a space-fixed CV convective fluxes are computed using fluid veloc-
ity, and time derivative represents the local rate of change at a fixed point
in space (e.g. CV-center). On the other hand, for a moving CV convective
fluxes are computed using relative velocity between fluid and CV-surface, and
the time derivative expresses the rate of change in a volume whose location
changes. If the CV-surface moves with the fluid velocity the same fluid re-
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mains in the CV, it becomes the material derivative and the CV becomes a
control mass.

Since solutions from previous time steps are not needed to compute sur-
face and volume integrals, the grid can not only move but may also change
its topology, i.e. both the number of CVs and their shape can change from
one time step to another. The only term in which the old solution appears is
the unsteady term, which requires that volume integrals over the new CV of
some old quantities have to be approximated. If midpoint rule is used for this
purpose, all we need to do is to interpolate the old solutions to the locations
of the new CV-centers. One possibility is to compute gradient vectors at the
center of each old CV and then, for each new CV-center, find the nearest
center of an old CV and use linear interpolation to obtain the old value at
the new CV-center:

P = A4 + (grad @)% - (Pgnew — P o) . (12.24)

Schneider (2000) investigated the effects of the order of interpolation on the
overall accuracy of this approach and found - for a particular flow problem in-
volving a moving indentation in a channel with laminar flow — that quadratic
and cubic interpolation lead to better results but linear interpolation was
acceptable on a sufficiently fine grid.

Near moving boundaries we have to account for the fact that the boundary
moved during the time step and either displaced fluid or made space to be
filled by fluid. For small motions this can be taken into account by prescribing
inlet or outlet mass fluxes (or mass sources or sinks in the near-boundary
CVs). A problem can arise if the CV moves more than its width in the
direction of motion in one time step, since the center of a new CV may lie
outside the old mesh. Thus, for grids which are fine near moving walls it may
be desirable to use a moving grid and equations based on moving control
volumes in the near-wall region, while away from walls the grid motion may
be ignored, allowing for the grid to be re-generated if its properties deteriorate
due to excessive deformation.

Many engineering applications require the use of moving grids. However,
different problems require different solution methods. An important example
is rotor-stator interaction which is common to turbomachinery and mixers:
one part of the grid is attached to the stator and does not move, while another
part is attached to the rotor and moves with it. The interface between the
moving and fixed grids is usually a flat annulus. If grids match at the interface
at the initial time, one can allow the rotating part of the grid to move while
keeping the boundary points “glued” to the fixed grid, until the deformation
becomes substantial (45° angles should be the maximum allowed); then, the
boundary points “leap” one cell ahead and stay glued to the new location for
a while. This kind of “clicking” grid has been used in these applications.

Another possibility is to let the moving grid “slide” along the interface
without deformation. In this case the grids do not match at the interface, so
some CVs have more neighbors than others. However, this situation is com-
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pletely analogous to that encountered in block-structured grids with non-
matching interfaces and can be handled by the method described in Sect.
8.6.5; the only difference is that the cell connectivity changes with time and
has to be re-established after each time step. This approach is more flexible
than the one described above; the grids can be of different kinds and/or fine-
ness, and the interface can be an arbitrary surface. This approach can also be
applied to flows around bodies passing each other, entering a tunnel, or mov-
ing in an enclosure with a known trajectory. Examples of such applications
were presented by Lilek et al. (1997¢) and Demirdzié et al. (1997).

The third approach is to use overlapping (Chimera) grids. Again, one
grid is attached to the fixed part of the domain and the other to the moving
body. This approach can be used even if the trajectory of the moving body is
not known in advance, when it is very complicated, or when the surrounding
domain is of a complex shape (e.g. when a sliding interface can not be con-
structed). The fixed grid may cover the whole “environment” in which the
body is moving. The overlap region changes with time and the relationship
between the grids needs to be re-established after each time step. Except for
difficulties in ensuring exact conservation, there are almost no limitations on
the applicability of this approach.

As noted above, the same equations and discretization methods apply to
both the fixed and moving grids, the only difference being that on the fixed
grid, the grid velocity vy, is obviously zero. Sometimes it may be advantageous
to use different coordinate systems on the two domains; for example, one may
use Cartesian velocity components in one part and polar components on the
other grid. This is possible provided: (i) one adds the body forces due to
frame acceleration and (ii) one transforms the vector components from one
system to another at the interface or in the overlap region. Both of these are
easy to do in principle but the programming may be tedious.

12.5 Free-Surface Flows

Flows with free surfaces are an especially difficult class of flows with moving
boundaries. The position of the boundary is known only at the initial time;
its location at later times has to be determined as part of the solution. To
accomplish this, the SCL and the boundary conditions at the free surface
must be used.

In the most common case, the free surface is an air-water boundary but
other liquid-gas surfaces occur, as do liquid-liquid interfaces. If phase change
at the free surface can be neglected, the following boundary conditions apply:

e The kinematic condition requires that the free surface be a sharp boundary
separating the two fluids that allows no flow through it, i.e.:

[(w—wvp) n]s=0 or mE=0, (12.25)
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where ‘fs’ denotes the free surface. This states that the normal component
of the fluid velocity at the surface is the normal component of the velocity
of the free surface, see Eq. (12.18).

o The dynamic condition requires that the forces acting on the fluid at the
free surface be in equilibrium (momentum conservation at the free surface).
This means that the normal forces on either side of the free surface are of
equal magnitude and opposite direction, while the forces in the tangential
direction are of equal magnitude and direction:

(n-Th-n+oK=—(n Thn,
Oo

(n-Tht-—Z = Tht, (12.26)
(n-T)l-s—%;-:(n-T)g-s.

Here o is the surface tension, n, t and s are unit vectors in a local or-
thogonal coordinate system (n,t,s) at the free surface (n is the outward
normal to the free surface while the other two lie in the tangent plane and
are mutually orthogonal). The indices ‘I’ and ‘g’ denote liquid and gas,
respectively, and K is the curvature of the free surface,

1 1

K=—+4+—
R TR’

(12.27)

with R; and R, being radii of curvature along coordinates t and s, see Fig.
12.4. The surface tension o is the force per unit length of a surface element
and acts tangential to the free surface; in Fig. 12.4, the magnitude of the
force f, due to surface tension is f, = o dl. For an infinitesimally small
surface element d.S, the tangential components of the surface tension forces
cancel out when ¢ =const., and the normal component can be expressed
as a local force that results in a pressure jump across the surface, as in Eq.
(12.27).

Surface tension is a thermodynamic property of a liquid that depends on
the temperature and other state variables such as chemical composition and
surface cleanliness. If the temperature differences are small, the temperature
dependence of o can be linearized so that 9o /0T is constant; it is usually
negative. When the temperature varies substantially along the free surface,
the gradient in surface tension results in a shear force that causes fluid to
move from the hot region to the cold region. This phenomenon is called
Marangoni or capillary convection and its importance is characterized by the
dimensionless Marangoni number:

80 AT L

Ma = —
a oT puk

(12.28)
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where AT is the bulk temperature difference across the domain, L is a char-
acteristic length of the surface and & is the thermal diffusivity.

Fig. 12.4. On the description of
boundary conditions at the free sur-
face

In many applications the shear stress at the free surface can be neglected
(e.g. ocean waves with no appreciable wind). The normal stress and the ef-
fect of the surface tension are also often neglected; in this case the dynamic
boundary condition reduces to py = p,.

The implementation of these boundary conditions is not as trivial as it
would appear. If the position of the free surface were known, there would be
little problem. The mass flux can be set to zero on cell faces lying on the free
surface, and the forces acting on the cell face from outside can be calculated;
if surface tension is neglected, only the pressure force remains. The problem is
that the location of the free surface must be computed as part of the solution
and is not usually known in advance. One can therefore directly implement
only one of the boundary conditions at the free surface; the other must be
used to locate the surface. Location of the surface must be done iteratively,
greatly increasing the complexity of the task.

Many methods have been used to find the shape of the free surface. They
can be classified into two major groups:

e Methods which treat the free surface as a sharp interface whose motion is
followed (interface-tracking methods). In this type of method, boundary-
fitted grids are used and advanced each time the free surface is moved. In
explicit methods, which must use small time steps, the problems associated
with grid movement that were discussed earlier are often ignored.

e Methods which do not define the interface as a sharp boundary (interface-
capturing methods). The computation is performed on a fixed grid, which
extends beyond the free surface. The shape of the free surface is determined
by computing the fraction of each near-interface cell that is partially filled.
This can be achieved by introducing massless particles at the free surface
at the initial time and following their motion; this is called the Marker-
and-Cell or MAC scheme that was proposed by Harlow and Welch (1965).
Alternatively, one can solve a transport equation for the fraction of the cell



384 12. Special Topics

occupied by the liquid phase (the Volume-of-Fluid or VOF scheme, Hirt
and Nichols, 1981).

There are also hybrid methods. All of these methods can also be applied
to some kinds of two-phase flows as will be discussed in the following section.

Interface-Capturing Methods. The MAC scheme is attractive because it
can treat complex phenomena like wave breaking. However, the computing
effort is large, especially in three dimensions because, in addition to solving
the equations governing fluid flow, one has to follow the motion of a large
number of marker particles.

In the VOF method, in addition to the conservation equations for mass
and momentum, one solves an equation for the filled fraction of each control
volume, ¢ so that ¢ = 1 in filled CVs and ¢ = 0 in empty CVs. From the
continuity equation, one can show that the evolution of ¢ is governed by the
transport equation:

o +div(ev) =0. (12.29)
ot

In incompressible flows this equation is invariant with respect to interchange
of ¢ and 1 — ¢; for this to be assured in the numerical method, mass conser-
vation has to be strictly enforced.

The critical issue in this type of method is the discretization of convective
term in Eq. (12.29). Low-order schemes (like the first-order accurate upwind
method) smear the interface and introduce artificial mixing of the two fluids,
so higher-order schemes are preferred. Since ¢ must satisfy the condition

0<c<1,

it is important to ensure that the method does not generate overshoots or
undershoots. Fortunately, it is possible to derive schemes which both keep
the interface sharp and produce monotone profiles of ¢ across it; see Leonard
(1997) for some examples and Ubbink (1997) or Muzaferija and Perié (1999)
for methods specifically designed for interface-capturing in free surface flows.

This approach is more efficient than the MAC scheme and can be applied
to complex free surface shapes including breaking waves. However, the free
surface profile is not sharply defined; it is usually smeared over one to three
cells (similar to shocks in compressible flows). Local grid refinement is im-
portant for accurate resolution of the free surface. The refinement criterion
is simple: cells with 0 < ¢ < 1 need to be refined. A method of this kind,
called the marker and micro-cell method, has been developed by Raad and
his colleagues (see, for example Chen et al., 1997).

There are several variants of the above approach. In the original VOF-
method (Hirt and Nichols, 1981) Eq. (12.29) is solved in the whole domain to
find the location of the free surface; the mass and momentum conservation
equations are solved for the liquid phase only. The method can calculate flows
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with overturning free surfaces, but the gas enclosed by the liquid phase will
not feel buoyancy effects and will therefore behave in an unrealistic manner.

Kawamura and Miyata (1994) used Eq. 12.29) to calculate the distribution
of the density function (the product of the density and the VOF) and to
locate the free surface, which is the contour with ¢ = 0.5. The computation
of the motion of the liquid and gas flows are done separately. The free surface
is treated as a boundary at which the kinematic and dynamic boundary
conditions are applied. Cells which become irregular due to being cut by
the free surface require special treatment (variable values are extrapolated
to nodal locations lying on the other side of the interface). The method was
used to calculate flows around ships and submerged bodies.

Alternatively, one can treat both fluids as a single fluid whose properties
vary in space according to the volume fraction of each phase, i.e.:

p=pc+pl —c), p=mec+pl-c), (12.30)

where subscripts 1 and 2 denote the two fluids (e.g. liquid and gas). In this
case, the interface is not treated as a boundary so no boundary conditions
need to be prescribed on it. The interface is simply the location where the fluid
properties change abruptly. However, solution of Eq. (12.29) implies that the
kinematic condition is satisfied, and the dynamic condition is also implicitly
taken into account. If surface tension is significant at the free surface, it can
be taken into account by treating the force as a body force. Methods of this
kind were presented by Brackbill et al. (1992), Lafaurie et al. (1994), Ubbink
(1997), and Muzaferija and Perié (1999), among others. These methods can
also deal with merging and fragmentation in multiphase flows.

The surface-tension force acts only in the region of interface, i.e. in par-
tially filled cells, since in full or empty cells the gradient of c is zero:

Fy = / ok gradc df? . (12.31)
2

However, there are problems when the surface-tension effects become domi-
nant, like in the case of droplets or bubbles whose diameter is of the order
of 1 mm or less and which move with very low velocity. In this case, there
are two very large terms in the momentum equations (the pressure term and
the body force representing the surface-tension effects) which have to bal-
ance each other; they are the only non-zero terms if the bubble or droplet is
stationary. Due to the fact that curvature of the interface also depends on c,

T grade
k= —div (__|gradc|) , (12.32)

it is difficult to ensure on an arbitrary 3D grid that the two terms are identical,
so their difference may cause the so called parasitic currents. These can be
avoided by using special discretization methods in 2D (see Scardovelli and
Zaleski, 1999, for some examples of such special methods); we do not know at



386 12. Special Topics

present of a method that eliminates the problem for unstructured arbitrary
grids in 3D.

An example of the capabilities of interface-capturing methods is shown
in Fig. 12.5, which illustrates the solution to the ‘dam-break’ problem, a
standard test case for methods for computing free-surface flows. The barrier
holding back the fluid is suddenly removed, leaving a free vertical water face.
As water moves to the right along the floor, it hits an obstacle, flows over it
and hits the opposite wall. The confined air escapes upwards as water falls to
the floor on the other side of obstacle. Numerical results compare well with
experiments by Koshizuka et al. (1995). The method has also been applied to
vigorous sloshing in tanks, slamming of bodies onto liquid surface, and flow
around ships and submerged bodies.

Fig. 12.5. Comparison of experimental visualization (left) and numerical prediction
(right) of collapsing water column flow over an obstacle (experiments by Koshizuka
et al., 1995; prediction by Muzaferija and Peri¢, 1999)
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Another class of interface-capturing methods is based on the level-set
formulation, introduced by Osher and Sethian (1988). The surface is defined
as the one on which a level-set function ¢ = 0. Other values of this function
have no significance and to make it a smooth function, ¢ is typically initialized
as the signed distance from the interface i.e. its value at any point is the
distance from the nearest point on the surface and its sign is positive on one
side and negative on the other. This function is then allowed to evolve as a
solution of the transport equation:

8_45 +div(¢v) =0, (12.33)
ot

where v is the local fluid velocity and, at any time, the surface on which
¢ = 0 is the interface. If the function ¢ becomes too complicated, it can be
re-initialized in the manner described above. The advantage of this approach
relative to the VOF-method is that ¢ varies smoothly across the interface
while the volume fraction ¢ is discontinuous there.

Asin VOF-like methods, fluid properties are determined by the local value
of ¢ but here, only the sign of ¢ is important.

When solving for the volume fraction ¢, its step-wise variation across the
interface is usually not maintained-—the step is smeared by the numerical
approximation. As a result, the fluid properties experience a smooth change
across the interface. In level-set methods, the step-wise variation of the prop-
erties is maintained, since we define

p=p if ¢6<0, p=p; if ¢$>0.

However, this usually causes problems when computing viscous flows so one
needs to introduce a region of some finite thickness € over which a smooth
but rapid change of the properties occurs across the interface.

As noted above, the computed ¢ needs to be re-initialized every now
and then. Sussman et al. (1994) proposed that this be done by solving the
following equation:

%9 = sen(o)(1 ~ [grad ) . (12.34)
until steady state is reached. This guarantees that ¢ has the same sign and
zero level as ¢ and fulfills the condition that |grad ¢| = 1, making it similar
to a signed distance function.

Since ¢ does not explicitly occur in any of the conservation equations, the
original level-set method did not exactly conserve mass. Mass conservation
can be enforced by making the right-hand side of Eq. (12.34) a function
of the local mass imbalance Am as was done by Zhang et al. (1998). The
more frequently one solves this equation, the fewer iterations are needed to
reach steady state; of course, frequent solution of this equation increases the
computational cost so there is a trade-off.
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Many level-set methods have been proposed; they differ in the choices
for the various steps. Zhang et al. (1998) describe one such method, which
they applied to bubble-merging and mold-filling, including melt solidification.
They used a FV-method on structured, non-orthogonal grids to solve the
conservation equations, and a FD-method for the level-set equation. An ENO-
scheme was used to discretize the convective term in the latter.

Another version of this method is used to study flame propagation. In
this case, the flame propagates relative to the fluid and this introduces the
possibility that the surface will develop cusps, locations at which the surface
normal is discontinuous. This will be discussed further below.

More details on level-set methods can be found in a book by Sethian
(1996); see also Smiljanovski et al. (1997) and Reinecke et al. (1999) for
examples of similar approaches used for flame tracking.

12.5.1 Interface-Tracking Methods

In the calculation of flows around submerged bodies, many authors linearize
about the unperturbed free surface. This requires introduction of a height
function, which is the free surface elevation relative to its unperturbed state:

z=H(z,y,t) . (12.35)

The kinematic boundary condition (12.25) then becomes the following equa-
tion describing the local change of the height H:

86_1': =uz—uzaa—I:—~uy%—I; . (12.36)
This equation can be integrated in time using the methods described in Chap.
6. The fluid velocity at the free surface is obtained either by extrapolation
from the interior or by using the dynamic boundary condition (12.27).

This approach is usually used in conjunction with structured grids and
explicit Euler time integration. Many authors use a FV method for the flow
calculation and a FD method for the height equation and enforce both bound-
ary conditions at the free surface only at the converged steady state (see
e.g. Farmer et al., 1994).

Hino (1992) used a FV method with the enforcement of the SCL, thus
satisfying all conditions at each time step and ensuring volume conservation.
Similar methods were developed by Raithby et al. (1995), Thé et al. (1994)
and Lilek (1995). One fully-conservative FV method of this type consists of
the following steps:

e Solve the momentum equations using the specified pressure at the current
free surface to obtain velocities u;.

¢ Enforce local mass conservation in each CV by solving a pressure-correction
equation, with a zero pressure correction boundary condition at the current
free surface (see Sect. 10.2.2). Mass is conserved both globally and in each
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CV, but the prescribed pressure at the free surface produces a velocity
correction there, so that mass fluxes through the free surface are non-zero.

e Correct the position of the free surface to enforce the kinematic boundary
condition. Each free-surface cell face is moved so that the volume flux due
to its movement compensates the flux obtained in the previous step.

o Iterate until no further adjustment is necessary and both the continuity
equation and momentum equations are satisfied.

e Advance to the next time step.

The critical issue for the efficiency and stability of the method is the
algorithm for the movement of the free surface. The problem is that there
is only one discrete equation per free-surface cell face but a larger number
of grid nodes that have to be moved. Correct treatment of the intersections
of the free surface with other boundaries (inlet, outlet, symmetry, walls) is
essential if wave reflection and/or instability is to be avoided. We shall briefly
describe one such method. Only two-time-level schemes are considered, but
the approach can be extended.

The mass flux through a moving free-surface cell face is (see Eqgs. (12.18)
and (12.22)):

s = / pv -ndS — vy - ndS & p(v - n)LSL — plks . (12.37)
st st

The superscript 7 denotes the time (¢, < t; < th+1) at which the quantity
is calculated; for the implicit Euler scheme, ¢, = t,41, while for the Crank-
Nicolson scheme, t, = fracl2(t, + tn41)-

The mass fluxes obtained from the pressure-correction equation with pre-
scribed pressure at the free surface are non-zero; we compensate by displacing
the free surface, i.e.:

thes 4+ pf%s =0 . (12.38)

From this equation we obtain the volume of fluid {2 which has to flow into or
out of the CV due to free-surface motion. We need to obtain the coordinates
of the CV vertices that lie on the free surface from this equation. This has
to be done carefully and thus requires special attention. Because there is a
single volumetric flow rate for each cell but a greater number of CV vertices,
there are more unknowns than equations.

Thé et al. (1994) suggested using staggered CVs in the layer adjacent to
free surface, but only in the continuity (pressure- correction) equation. The
method was applied to several problems in 2D and showed good performance.
However, it requires substantial adaptation of the solution method, especially
in 3D; see Thé et al. (1994) for more details.

Another possibility is to define the CVs under the free surface not by
vertices but by cell-face centers; the vertices are then defined by interpolating
cell-face center locations, as shown in Fig. 12.6 for a 2D structured grid.
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The volume swept by the free-surface cell face is then (see Eqs. (12.16) and
(12.21)):

1
80t = 54T (haw +2ha + hne) (12.39)

where h is the distance the free surface-markers move during one time step;
hn = h; while hyy and hp are obtained by linearly interpolating h; and
hi—1 or h; and hiy1. By expressing hny, hn and hye in terms of h;, hi1, hipy
and inserting the above expression into Eq. (12.38), we obtain a system of
equations for the locations of the cell-face centers, h;. In 2D, the system is
tridiagonal and can be solved directly by the TDMA method of Sect. 5.2.3. In
3D, the system is block-tridiagonal and is best solved by one of the iterative
solvers presented in Chap. 5. ‘Boundary conditions’ have to be specified at
the CV vertices at the edges of the free surface. If the boundary is not allowed
to move, h = 0. If the edge of the free surface is allowed to move, e.g. for
an open system, the boundary condition should be of the non-reflective or
‘wave-transmissive’ type that does not cause wave reflection; the condition
(9.4) is one appropriate possibility.

This approach was applied by Lilek (1995) to 2D and 3D problems on
structured grids. When the lateral bounding surface has an irregular shape
(e.g. a ship hull), the expressions for the volume 42 become complicated
and require iterative solution on each outer iteration.

Muzaferija and Peri¢ (1997) suggested a simpler approach. They noted
that it is not necessary to calculate the swept volume from the geometry
of the cell vertices on the free surface; it can be obtained from Eq. (12.38).
The displacement of free-surface markers located above the cell-face center
is defined by the height h , obtained from the known volume and cell-face
area. The new vertex locations are then computed by interpolating h; the
resulting swept volume is not exact and iterative correction is necessary.
The method is suitable for implicit schemes, for which outer iterations are
required at each time step anyway. The ‘old’ and ‘new’ locations shown in
Fig. 12.6 are now the values for the current and preceding outer iterations;
each outer iteration corrects the swept volume according to Eq. (12.38). At



12.5 Free-Surface Flows 391

the end of each time step, when the outer iterations converge, all corrections
are zero. For a detailed description of this approach and its implementation
on arbitrary unstructured 3D-grids, see Muzaferija and Perié (1997,1999).

Free surface

Fig. 12.7. Geometry and boundary conditions for the
sloshing problem

Flows with free surfaces, like open channel flows, flows around ships etc.
are characterized by the Froude number:

v v

Fr = ow ~ JoL’ (12.40)
where g is the gravity acceleration, v is the reference velocity, L is the refer-
ence length; /gL is the velocity of a wave of length L in deep water. When
Fr > 1, the fluid velocity is greater than the wave speed and the flow is
said to be supercritical and waves cannot travel upstream (as in supersonic
compressible flow). When Fr < 1, waves can travel in all directions. If the
method of calculating the free surface shape is not properly implemented,
disturbances in the form of small waves may be generated and it may not
be possible to obtain a steady solution. A method which does not generate
waves where they physically should not be (e.g. in front of ships) is said to
satisfy the radiation condition.

We now present, three examples of free-surface flow problems. The first is
small-amplitude sloshing in a 2D tank. The initial free surface is a sine wave
with amplitude 1% of the water depth; see Fig. refsloshgeo. If the liquid is
inviscid, sloshing continues forever, i.e. the wave is not damped.

Figure 12.8 shows results of computations on a 40 x 40 CV uniform grid.
The free-surface heights at the two side walls are shown as functions of time.
In the inviscid case, (left figure) the amplitude is nearly unchanged after
several oscillation periods. When viscosity is introduced (right figure), the
wave amplitude decays with time and the period is changed. Linear theory,
which is accurate for small amplitude waves, predicts the period to be T' =
3.55. Lilek (1995) obtained T' = 3.55 for the inviscid case and T = 3.65 for
the viscous case.

The second example is the flow over a hydrofoil under a free surface.
The geometry of the problem and the grid used are shown in Fig. 12.9.
The grid is block-structured with non-matching interfaces and the steady-
state shape of the free surface is shown. The hydrofoil of length L = 0.203
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Fig. 12.8. The free surface heights at the side walls as functions of time for inviscid
(left) and viscous (right) sloshing in a 2D tank (from Lilek, 1995)

Fig. 12.9. A block-structured non-matching grid and the predicted free surface
shape for the flow around a NACA 0012 hydrofoil at 6° angle of attack (Fr =
0.567)

m has a NACA 0012 profile and 5° angle of attack; the undisturbed water
height above the profile is 0.21 m, and the Froude number is 0.567. This flow
was studied experimentally by Duncan (1983). In Fig. 12.10 the steady-state
free surface profiles calculated on four grids using CDS discretization are
shown and compared with experimental data. The improvement with grid
refinement is obvious and although the agreement with the experimental
data is acceptable, it is clear that the converged result is not perfect. Since
discretization errors are small {measured by the difference between solutions
on the two finest grids), the discrepancy between prediction and experiment
is due to modeling errors {different boundary conditions, turbulence effects
etc.).

Finally we present results for 3D flow around the blunt-bow ship model
shown in Fig. 12.11. The upper part is the waterline shape. The semi-circular
bow with radius R = 0.3 m is followed by a parallel middle body 1 m long,
and the 0.7 m long stern is defined by a spline. Thus the total length of
the model is 2.0 m and the beam is 0.6 m. This shape is maintained 0.2 m
above the load waterline to the deck and 0.3 m beneath the load waterline.
There, a half body of revolution, obtained by rotating the waterline around
its longitudinal axis completes the body which has a total draft of 0.6 m.
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Fig. 12.10. The free-surface profile in flow around NACA 0012 foil at 5° angle of
attack (Fr = 0.567), calculated on grids with 1004 CV, 4016 CV, 16064 CV, and
64256 CV, compared with experimental data of Duncan (1983) (from Yoo, 1998)

In both the experiments and computations, the model is held fixed, i.e.
it is not allowed to sink and trim. The model moves at v = 1.697 m/s,
corresponding to a Froude number Fr = 0.7, based on the hull draft. The
Reynolds number, based on the hull length was around 3.4x106.

Since wave breaking occurs, interface-capturing method is used. The grid
also extends 0.4 m into the air. Computations were carried out on three
numerical grids. The coarsest one had 103950 CVs, the medium one had
411180 CVs, and the finest one had 2147628 CVs.

Fig. 12.11. Geometry of the hull model
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The inlet, outlet, lateral, and bottom boundaries are placed about 1.5
model lengths away from the model. Due to the symmetry of the flow, only
half of the model was considered. The grid resolution is high at the model
surface and in the proximity of the waterline to better capture the boundary
layer and free surface distortion. It expands continuously in all directions
away from the hull and the waterline. The simple geometry of the model
makes grid generation relatively easy. The coarsest grid is a matching block-
structured grid, in which some cells are prisms; the finer grids were obtained
by locally refining the base grid in the vicinity of the model and free surface.

At the inlet, the velocities of both water and air were set to the hull ve-
locity, and the turbulence parameters were derived by assuming a turbulence
intensity of 1% and a turbulent viscosity equal to the molecular viscosity. The
top, bottom and lateral boundaries were treated as slip walls. At the sym-
metry plane, the symmetry boundary condition was enforced. At the outlet,
extrapolation in streamwise direction was used, and the hydrodynamic pres-
sure was specified according to a prescribed water level. The standard k-¢
eddy-viscosity model was used.

The presence of wave breaking required that the simulation allow un-
steady flow; over 12 periods of breaking were computed. Figure 12.12 shows
time-averaged velocity vectors in the symmetry plane. The still waterline and
average free-surface shape are also shown. Some back-flow is observed in the
stern region; here, water flows upwards while air flows downwards, with free
surface as a dividing streamline.

=3 :
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==

Fig. 12.12. Computed average velocity vectors, the undisturbed waterline, and
the average free-surface profile in the symmetry plane (medium grid)

Figure 12.13 shows instantaneous experimental photographs of breaking
waves around the model taken at the Ship Research Institute in Tokyo. They
are compared with the instantaneous free surface obtained on the finest grid.
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The similarity of the wave patterns is obvious. There is a breaking wave ahead
of the bow followed by a deep trough at the hull shoulder, where the velocity
is high and the pressure is low. The water rises steeply at mid-ship, where
severe wave breaking takes place. The photograph shows a foamy region so a
sharp interface (free surface) cannot be identified. In the simulation, interface
is not sharp in this region (it is smeared over more cells than elsewhere), but
the iso-surface ¢ = 0.5 indicates the presence of wave breaking through its
lack of smoothness.

Fig. 12.13. Photographs of the instantaneous free surface (top left: bow and side;
top right: stern; courtesy of Ship Research Institute, Tokyo) and the instantaneous
shape of the free surface computed on the finest grid (bottom; from Azcueta et al.,
2001)

Figure 12.14 compares the computed time-averaged free-surface eleva-
tion along the hull with experimental data from the Ship Research Insti-
tute, Tokyo. Surprisingly good agreement is observed between experiment
and simulation; appreciable differences are only seen in the region of the
breaking stern wave, which was so severe that measurements of wave height
are uncertain. Also, the averaging period is probably not long enough. The
computations were done without knowledge of the experimental results; for
more details, see Azcueta et al. (2001).

This example demonstrates the versatility of the interface-capturing
scheme. The same method has been used to study break-up of liquid jets
in air (Albina et al., 2000), sloshing in tanks (Hadzi¢ et al., 2001), water-
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Fig. 12.14. Comparison of computed and measured average wave profile in sym-
metry plane and along hull; from Azcueta et al. (2001)

entry (Muzaferija et al., 1998), and flow around ships and floating bodies
(Azcueta, 2001).

12.5.2 Hybrid Methods

Finally, there are methods for computing two-phase flows that do not fall
into either of the categories described above. These methods borrow elements
from both interface-capturing and interface-tracking methods so we shall call
them hybrid methods. Among these are a method developed by Tryggvason
and his colleagues that has been applied to bubbly flows, see Tryggvason and
Unverdi (1990) and Bunner and Tryggvason (1999).

In this method, the fluid properties are smeared over a fixed number
of grid points normal to the interface. The two phases are then treated as a
single fluid with variable properties as in the interface-capturing methods. To
keep the interface from becoming smeared, it is also tracked as in interface-
tracking methods. This is done by moving marker particles using the velocity
field generated by the flow solver. To maintain accuracy, marker particles are
added or removed to maintain approximately equal spacing between them.
The level-set method has been suggested as an alternative for this purpose.
After each time step, the properties are re-computed.

Tryggvason and his colleagues have computed a number of flows with
this method including some containing hundreds of bubbles of water vapor
in water. Phase change, surface tension and merging and splitting of the
bubbles can all be treated with this method.



12.6 Meteorological and Oceanographic Applications 397

Similar hybrid methods, in which both an additional equation for the
volume fraction of one phase and the tracking of the interface are used, have
been reported by Scardovelli and Zaleski et al (1999).

In many applications the interface between two fluids is not sharp; an
example is a breaking wave or a hydraulic jump, where a region exists in
which the water and air form a foamy mixture. In such a case it would be
necessary to add a model] for the mixing of the two fluids, similar to the models
of turbulent transport in single-phase flows. Also, cavitation is an important
phenomenon which falls into the class of two-phase flows which require hybrid
methods for their simulation. The equation for the volume fraction of the gas
phase has to have both a diffusion term (to account for turbulent diffusion)
and a source term to account for the phase change; an example of such
a method is the one presented by Sauer (2000). Special treatment is also
required when computing bubble growth due to heat addition during boiling,
as well as in some other flows with free surfaces; it is beyond the scope of
this book to go into details of each particular application, but most of the
methods in use are related to one of the methods described above.

12.6 Meteorological and Oceanographic Applications

The atmosphere and the oceans are the sites of the largest scale flows on
Earth. The velocities may be tens of meters per second and the length scales
are enormous so the Reynolds numbers are huge. Due to the very large as-
pect ratios of these flows (thousands of kilometers horizontally and a few
kilometers of depth), the large-scale flow is almost two-dimensional (although
vertical motions are important) while the flow at the small scales is three-
dimensional. The Earth’s rotation is a major force on the large scales but is
less significant at the small scales. Stratification or a stable variation of den-
sity is important, mainly at the smaller scales. The forces and phenomena
that play dominant roles are different on different scales.

Also, one needs predictions on different time scales. In the case of greatest
interest to the public, one wants to predict the state of the atmosphere or
ocean for a relatively short time in the future. In weather forecasting, the
time scale is a few days while in the ocean, which changes more slowly, the
scale is a few weeks to a few months. In either case, a method that is accurate
in time is required. At the other extreme are climate studies, which require
prediction of the average state of the atmosphere over a relatively long time
period. In this case, the short term time behavior can be averaged out and
the time accuracy requirement relaxed; however, it is essential to model the
ocean as well as the atmosphere in this case. Because the actual state of
the atmosphere or ocean is required, computations in these fields are nearly
always large-eddy simulations.

Computations are done on a wide range of different length scales. The
smallest region of interest is the atmospheric boundary layer or ocean mixed
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layer that has dimensions of hundreds of meters. The next scale may be called
the basin scale and consists of a city and its surroundings. On the regional- or
meso-scale, one considers a domain that is a significant part of a continent or
ocean. Finally there are the continental (or ocean) and global scales. In each
case, computational resources dictate the number of grid points that can be
used and thus the grid size. Phenomena that occur on smaller scales must be
represented by an approximate model. Even on the smallest scales of interest,
the size of the regions over which averaging must be done is obviously much
larger than in engineering flows. Consequently, the models used to represent
the smaller scales are much more important than in the engineering large-
eddy simulations discussed in Chap. 9.

The fact that significant structures cannot be resolved in simulations at
the largest scales requires that calculations be performed at a number of
different scales; on each scale, the aim is to study phenomena particular to
that scale. Meteorologists distinguish four to ten scales on which simulations
are performed (depending on who does the counting). As one might expect,
the literature on this subject is vast and we cannot even begin to cover all of
what has been done.

As already noted, on the largest scales, atmospheric and oceanic flows
are essentially two-dimensional (although there are important influences of
vertical motion). In simulations of the global atmosphere or an entire ocean
basin, the capacity of current computers requires the grid size in the hori-
zontal directions be about a hundred kilometers. As a result, in these types
of simulations, significant structures such as fronts (zones that exist between
masses of fluid of different properties) have to be treated by approximate
models to render their thickness sufficiently large that the grid can resolve
them. Models of this kind are very difficult to construct and are a major
source of error in predictions.

Three-dimensional motion is important only on the smallest scales of at-
mospheric of oceanographic motion. It is also important to note that, despite
the high Reynolds numbers, only the portion of the atmosphere closest to the
surface is turbulent; this is the atmospheric boundary layer and usually occu-
pies a region about 1-3 km thick. Above the boundary layer, the atmosphere
is stratified and remains laminar. Similarly, only the top layer of the ocean
is turbulent; it is 100-300 m thick and is called the mixed layer. Modeling
these layers is important because it is within them that the atmosphere and
ocean interact and their impact on large-scale behavior is very important.
These have been treated by large-eddy simulation methods similar to those
described in Chap. 9.

The numerical methods used in these simulations vary somewhat with the
scale on which the simulation is performed. For simulations at the smallest
atmospheric scale, the boundary layer, one may use methods similar to those
used in large-eddy simulation of engineering flows. For example, Coleman
et al. (1992) used a spectral method originally designed for the engineering
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boundary layer. Nieuwstadt et al. (1991) discuss results of a number of au-
thors who used codes based on finite-volume methods. At the global scale,
finite-volume methods are used but a spectral method specifically designed
for the surface of a sphere is more common. This method uses spherical har-
monics as the basis functions.

In choosing a time-advancement method, one must take into account the
need for accuracy but it is also important to note that wave phenomena play
a significant role in both meteorology and oceanography. The large weather
systems that are familiar from weather maps and satellite photographs may
be regarded as very large scale traveling waves. The numerical method must
not amplify or dissipate them. For this reason, it is quite common to use the
leapfrog method in these fields. This method is second-order accurate and
neutrally stable for waves. Unfortunately, it is also unconditionally unstable
(it amplifies exponentially decaying solutions) so it must be stabilized by
restarting it approximately every ten time steps. There are a number of ways
of doing this; one of the simplest is to use a different method for one time
step.

12.7 Multiphase flows

Engineering applications often involve multiphase flows; examples are solid
particles carried by gas or liquid flows (fluidized beds, dusty gases, and slur-
ries), gas bubbles in liquid (bubbly fluids and boilers) or liquid droplets in
gas (sprays), etc. A further complication is that multiphase flows often occur
in combustion systems. In many combustors, liquid fuel or powdered coal is
injected as a spray. In others, coal is burned in a fluidized bed.

The methods described in the previous section may be applied to some
types of two-phase flows, especially those in which both phases are fluids.
In these cases, the interface between the two fluids is treated explicitly as
described above. Some of the methods were specifically designed for this
type of flow. However, the computational cost associated with the treatment
of interfaces limits these methods to flows in which the interfacial area is
relatively small.

There are several other approaches to computing two-phase flows. The
carrier or continuous phase fluid is always treated by an Eulerian approach,
but the dispersed phase may be handled by either a Lagrangian or an Eulerian
method.

The Lagrangian approach is often used when the mass loading of the dis-
persed phase is not very large and the particles of the dispersed phase are
small; dusty gases and some fuel sprays are examples of flows to which this
method might be applied. In this approach, the dispersed phase is represented
by a finite number of particles or drops whose motion is computed in a La-
grangian manner. The number of particles whose motion is tracked is usually
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much smaller than the actual number in the fluid. Each computational parti-
cle then represents a number (or packet) of actual particles; these are called
packet methods. If phase change and combustion are not present and the
loading is light, the effect of the dispersed phase on the carrier low can be
neglected and the latter can be computed first. Particles are then injected and
their trajectories are computed using the pre-computed velocity field of the
background fluid. (This approach is also used for flow visualization; one uses
massless point particles and follows their motion to create streaklines.) This
method requires interpolation of the velocity field to the particle location; the
interpolation scheme needs to be at least as accurate as the methods used
for time advancement. Accuracy also requires that the time step be chosen
so that particles do not cross more than one cell in one time step.

When the mass loading of the dispersed phase is substantial, the influ-
ence of particles on the fluid motion has to be taken into account. If a packet
method is used, the computation of particle trajectories and fluid flow must
be done simultaneously and iteration is needed; each particle contributes
momentum (and energy and mass) to the gas in the cell in which it is lo-
cated. Interaction between particles (collision, agglomeration, and splitting)
and between particles and walls needs to be modeled. For these exchanges,
correlations based on experiment have been used but the uncertainties may
be rather large. These issues require another book to be described in any
detail; see the newly published work by Crowe et al. (1998) for a description
of most widely used methods.

For large mass loadings and when phase change takes place, an Eulerian
approach (the two-fluid model) is applied to both phases. In this case, both
phases are treated as continua with separate velocity and temperature fields;
the two phases interact via exchange terms analogous to those used in the
mixed Eulerian-Lagrangian approach. A function defines how much of each
cell is occupied by each phase. The principles of two-fluid models are described
in detail by Ishii (1975); see also Crowe et al. (1998) for a description of some
methods for gas-particle and gas-droplet flows. The methods used to compute
these flows are similar to those described earlier in this book, except for the
addition of the interaction terms and boundary conditions and, of course,
twice as many equations need to be solved.

12.8 Combustion

Another important problem area deals with flows in which combustion i.e.
chemical reaction with significant heat release plays an important role. Some
of the applications should be obvious to the reader. Some combustors operate
at nearly constant pressure so the principal effect of heat release is reduction
of the density. In many combustion systems it is not unusual for the absolute
temperature to increase by a factor of five to eight through the flame; the
density decreases by the same factor. In such a case, there is no possibility
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that the density differences can be dealt with by means of the Boussinesq
approximation discussed earlier. In other systems (engine cylinders are the
most common example) there are large changes in both pressure and density.

It is possible to do direct numerical simulation of turbulent combusting
flows but only for very simple flows. It is important to note that the speed of
travel of a flame relative to the gas is rarely greater than 1 m/s (explosions
or detonations are an exception). This speed is much lower than the speed
of sound in the gas; usually, the fluid velocities are also well below the sound
speed. Then the Mach number is much less than unity and we have the
strange situation of a flow with large temperature and density changes that
is essentially incompressible.

It is possible to compute combusting flows by solving the compressible
equations of motion. This has been done (see Poinsot et al., 1991). The
problem is that, as we have pointed out earlier, most methods designed for
compressible flows become very inefficient when applied to low speed flows,
raising the cost of a simulation. For this reason, these simulations are very
expensive; this is especially so when the chemistry is simple. However, when
more realistic (and therefore more complex) chemistry is included, the range
of time scales associated with the chemical reaction is almost always very
large and this dictates that small time steps be used. In other words, the
equations are very stiff. In this case, the penalty for using compressible flow
methods may be largely eliminated.

An alternative approach is to introduce a low Mach number approxima-
tion (McMurtry et al., 1986). One starts with the equations describing a
compressible flow and assumes that all of the quantities to be computed may
be expressed as power series in the Mach number. This is a non- singular
perturbation theory so no special care is required. The results are, however,
somewhat surprising. To lowest (zeroth) order, the momentum equations re-
duce to the statement that the pressure p(®) is constant everywhere. This
is the thermodynamic pressure and the density and temperature of the gas
are related by its equation of state. The continuity equation has the com-
pressible (variable density) form, which is no surprise. At the next order, the
momentum equations in their usual form are recovered but they contain only
the gradient of the first-order pressure, p{!), which is essentially the dynamic
head found in the incompressible equations. These equations resemble the
incompressible Navier-Stokes equations and can be solved by methods that
have been given in this book.

In the theory of combustion, two idealized cases are distinguished. In the
first, the reactants are completely mixed before any reaction takes place and
we have the case of premixed flames. Internal combustion engines are close
to this limit. In premixed combustion, the reaction zone or flame propagates
relative to the fluid at the laminar flame speed. In the other case, the reactants
mix and react at the same time and one speaks of non-premixed combustion.
These two cases are quite different and are treated separately. Of course,
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there are many situations that are not close to either limit; they are called
partially premixed. For a complete treatment of the theory of combustion,
the reader is advised to consult the well-known work by Williams (1985).

The key parameter in reacting flows is the ratio of the flow time scale to
the chemical time scale; it is known as the Damkoéhler number, Da. When
the Damkéhler number is very large, chemical reaction is so fast that it takes
place almost instantaneously after the reactants have mixed. In this limit,
flames are very thin and the flow is said to be mixing-dominated. Indeed,
if the effects of heat release can be ignored, it is possible to treat the limit
Da — oo as one involving a passive scalar and the methods discussed at the
beginning of this chapter can be used.

For the calculation of practical combustors, in which the flow is almost
always turbulent, it is necessary to rely on solution of the Reynolds-averaged
Navier-Stokes (RANS) equations. This approach and the turbulence models
that need to be used in conjunction with it for non-reacting flows were de-
scribed in Chapter 9. When combustion is present, it is necessary to solve
additional equations that describe the concentrations of the reacting species
and to include models that allow one to compute the reaction rate. We shall
describe some of these models in the remainder of this section.

The most obvious approach, that of Reynolds-averaging the equations for
a reacting flow does not work. The reason is that chemical reaction rates are
very strong functions of temperature. For example, the reaction rate between
species A and species B might be given by:

Rap = Ke~F/RTy vy | (12.41)

where E, is called the activation energy, R is the gas constant, and Y4 and
Yp are the concentrations of the two species. The presence of the Aarhenius
factor e(~Fe/ET) is what makes the problem difficult. It varies so rapidly with
temperature that replacing T' with its Reynolds-averaged value produces large
erTors.

In a high Damkdéhler number non-premixed turbulent flame, the reaction
takes place in thin wrinkled flame zones. For this case, several approaches
have been used, of which we will briefly describe two. Despite the significant
difference in philosophy and appearance between them, they are more alike
than it would seem.

In the first approach, one takes the point of view that, since mixing is the
slower process, the reaction rate is determined by how fast it takes place. In
that case, the rate of reaction between two species A and B is given by an
expression of the form:

Rap = , (12.42)

where 7 is the time scale for mixing. For example, if the k-¢ model is used,
7 = k/e. In the k-w model, 7 = 1/w. A number of models of this kind have
been proposed, perhaps the best known of which is the eddy break-up model
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of Spalding (1978). Models of this type are in common use for the prediction
of the performance of industrial furnaces.

Another type of model for non-premixed combustion is the laminar
flamelet model. Under stagnant conditions, a non-premixed flame would
slowly decay as its thickness increases with time. To prevent this from hap-
pening, there must be a compressive strain on the flame. The state of the
flame is determined by this strain rate or, its more commonly used surrogate,
the rate of scalar dissipation, x. Then it is assumed that the local structure
of a flame is determined by just a few parameters; at minimum, one needs
the local concentrations of the reactants and the scalar dissipation rate. The
data on flame structure is tabulated. Then the volumetric reaction rate is
computed as the product of the reaction rate obtained by table look-up and
the flame area per unit volume. A number of versions of the equation for
the flame area have been given. We shall not present one here but it should
suffice to say that these models contain terms describing the increase of the
flame area by stretching of the flame and destruction of flame area.

For premixed flames, which propagate relative to the flow, the equivalent
of the flamelet model is a kind of level-set method. If the flame is assumed
to be the location where some variable G = 0, then G satisfies the equation:

oG oG

3{+Uj5$_j = SL|V{|, (12.43)
where Sy is the laminar flame speed. One can show that the rate of consump-
tion of reactants is S |VG|, thus completing the model. In more complex
versions of the model, the flame speed may be a function of the local strain
rate just as it depends on the scalar dissipation rate in non-premixed flames.

Finally, note that there are many effects that are very difficult to include
in any combustion model. Among these are ignition (the initiation of a flame)
and extinction (the destruction of a flame). Models for turbulent combustion
are undergoing rapid development at the present time and no snapshot of the
field can remain current for very long. The reader interested in this subject
should consult the recent book by Peters (2000).



A. Appendices

A.1 List of Computer Codes and How to Access Them

A number of computer codes embodying some of the methods described in
this book can be obtained by readers via the Internet. These codes may be
useful as they stand, but they can also serve as the starting point for further
development. They will be updated from time to time, and new codes may be
added; for a current list of codes, download the read.me file in the directory
given below.

All computer codes can be accessed using ftp from the publisher’s server
ftp.springer.de; the procedure is as follows:

Type ftp ftp.springer.de on your computer;

Type f£tp when prompted for a user name;

Type your E-mail address when prompted for a password;

Type cd pub/technik/peric to access the main directory;

Type get read.me to obtain a copy of the read.me file; read this file and
proceed further as explained in it to obtain codes you desire.

Included are codes used to solve the one- and two-dimensional generic
conservation equation; these were used to do the examples in Chaps. 3, 4 and
6. Several schemes for discretization of the convective and diffusive terms and
time integration are used in these codes. They can be used to study features
of the schemes, including convergence and discretization errors and the rela-
tive efficiency of the solvers. They can also be used as the basis for student
assignments; they could, for example, be asked to modify the discretization
scheme and/or boundary conditions.

Several solvers are given in the initial package including:

e TDMA solver for 1D problems;

e Line-by-line TDMA solver for 2D problems (five-point molecule);

e Stone’s ILU solver (SIP) for 2D and 3D problems (five- and seven-point
molecules; the 3D version is also given in vectorized form);

e Conjugate gradient solver preconditioned by the Incomplete Cholesky

method (ICCG) for symmetric matrices in 2- and 3-D (five- and seven-

point molecules);

A modified SIP solver for a nine-point molecule in 2D;
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e CGSTAB solver for non-symmetric matrices and 3D problems;
e Multigrid solver for 2D problems using Gauss-Seidel, SIP, and ICCG as
smoothers.

Other codes may be added in the future.
Finally, there are several codes for solving fluid flow and heat transfer
problems. The source codes of the following are included:

A code for generating Cartesian 2D grids;

A code for generating non-orthogonal structured 2D grids;

A code for post-processing 2D data on Cartesian and non-orthogonal grids,

which can plot the grid, velocity vectors, profiles of any quantity on lines of

x = const. or y = const., and contours of any quantity in black and white

or color (the output is a postscript file);

e A FV code on a Cartesian 2D grid with the staggered variable arrangement,
for steady problems;

e A FV code using Cartesian 2D grids with the colocated variable arrange-
ment, for steady or unsteady problems; versions for serial and parallel
computers using the PVM are provided;

e A FV code using Cartesian 3D grids and the colocated variable arrange-
ment, for steady and unsteady problems, with multigrid applied to the
outer iterations;

e A FV code using boundary-fitted non-orthogonal 2D grids and the colo-
cated variable arrangement, for laminar steady or unsteady flows (including
moving grids);

e Versions of the above code that include k— and k-w turbulence models
with wall functions and a version that does not use wall functions;

o A multigrid version of the above code for laminar flows (multigrid applied

to outer iterations).

The codes are programmed in standard FORTRAN77 and have been tested
on many computers. For the larger codes there are also explanation files
in the directory; many comment lines are included in each code, including
suggestions how to adapt them to 3D problems on unstructured grids.

In addition to the source codes, the directory contains a subdirectory
Comet, which contains a version of the commercial code Comet( Continuum
mechanics engineering tool) provided by ICCM (Institute of Computational
Continuum Mechanics) GmbH, Hamburg. It is a full-featured code; the only
difference compared with the version that is sold lies in the limit to the
maximum number of CVs that can be used and the exclusion of user coding.
Included are versions for the Linux and Windows NT operating systems. Doc-
umentation in pdf-format explains how to use the pre-processor, flow solver,
and post-processor; several sub-directories contain sets of examples of appli-
cation, including predictions of inviscid steady flows, creeping flows, laminar
steady flows, laminar unsteady flows, turbulent flows, compressible subsonic,
transonic, and supersonic flows, flows with free surfaces, flows with moving
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boundaries etc. These examples also demonstrate the method of estimating
discretization errors, checking and improving of grid quality, error-guided
local mesh refinement etc. Suggestions are also given for parameter varia-
tion, further testing, and other suitable test cases that can be used both to
learn fluid dynamics and to demonstrate the use of CFD-tools for solving
problems in engineering practice. A quick guide is also given for setting-up
grids and parameters for flow computations in simple geometry without the
need to read all of the documentation. We believe that this CFD-package
will be especially useful to those who teach a CFD-course, since they will
be able to present applications of CFD on-line without lengthy preparations.
A set of postscript-files with lecture transparences that the authors used in
their courses and also some presentation files for PowerPoint and StarOffice
programs are included for this purpose.

There is also a directory that contains color plots of different quantities
from various flow predictions, as well as mpeg-animations showing simula-
tions of unsteady flows. These materials, which could not be printed in the
book are a useful supplement to a course on CFD. We hope that the readers
will share our view.

Finally, the directory contains a file named errata; in it, errors which
might be found will be documented (we hope that this file will be very small,
if not empty). Postscript files of modified pages compared to previous editions
of this book are also included in a separate directory; this will enable buyers
of the older editions to obtain free updates.

A.2 List of Frequently Used Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

ADI alternating direction implicit
BDS backward difference scheme
CDS central difference scheme
CFD computational fluid dynamics
CG conjugate gradient method
CGSTAB CG stabilized

CM control mass

cv control volume

CVFEM control-volume-based finite element method
DNS direct numerical simulation
ENO essentially non-oscillatory
FAS full approximation scheme
FD finite difference

FDS forward difference scheme

FE finite elements



408

FFT
FMG
FV
GC
GS
ICCG
ILU
LC
LES
LU
MAC
MG
ODE
PDE
PVM
RANS
SCL
SGS
SIP
SOR
TDMA
TVD
UDS
VOF

A. Appendices

fast Fourier transform

full multigrid method

finite volume

global communication
Gauss-Seidel method

CG preconditioned by incomplete Cholesky method
incomplete lower-upper decomposition
local communication

large eddy simulation
lower-upper decomposition
marker-and-cell

multigrid

ordinary differential equation
partial differential equation
parallel virtual machine
Reynolds averaged Navier-Stokes
space conservation law

subgrid scale

strongly implicit procedure
successive over-relaxation
tridiagonal matrix algorithm
total variation diminishing
upwind difference scheme
volume-of-fluid
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Turbulence spectrum, 270, 271
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